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ABSTRACT

Latent variable models serve as powerful tools to infer underlying dynamics from
observed neural activity. Ideally, the inferred dynamics should align with true
ones. However, due to the absence of ground truth data, prediction benchmarks
are often employed as proxies. One widely-used method is co-smoothing, which
involves jointly estimating latent variables and predicting observations along held-
out channels to assess model performance. In this study, we reveal the limitations
of the co-smoothing prediction framework and propose a remedy. Utilizing a
student-teacher setup with Hidden Markov Models, we demonstrate that the high
co-smoothing model space encompasses models with arbitrary extraneous dynam-
ics within their latent representations. To address this, we introduce a secondary
metric— few-shot co-smoothing. This involves performing regression from the
latent variables to held-out channels in the data using fewer trials. Our results
indicate that among models with near-optimal co-smoothing, those with extrane-
ous dynamics underperform in the few-shot co-smoothing compared to ’minimal’
models that are devoid of such dynamics. We also provide analytical insights into
the origin of this phenomenon. We further validate our findings on real neural data
using two state-of-the-art methods: LFADS and STNDT. In the absence of ground
truth, we suggest a novel measure to validate our approach. By cross-decoding
the latent variables of all model pairs with high co-smoothing, we identify models
with minimal extraneous dynamics. We find a correlation between few-shot co-
smoothing performance and this new measure. In summary, we present a novel
prediction metric designed to yield latent variables that more accurately reflect the
ground truth, offering a significant improvement for latent dynamics inference.
Code available here.

1 INTRODUCTION

In neuroscience, we often have access to simultaneously recorded neurons during certain behaviors.
These observations, denoted X , offer a window onto the actual hidden (or latent) dynamics of the
relevant brain circuit, denoted Z (Vyas et al., 2020). Although, in general, these dynamics can be
complex and high-dimensional, capturing them in a concrete mathematical model opens doors to
reverse-engineering, revealing simpler explanations and insights (Barak, 2017; Sussillo & Barak,
2013). Inferring a model of the Z variables, also known as latent variable modeling (LVM), is part
of the larger field of system identification with applications in many areas outside of neuroscience,
such as fluid dynamics (Vinuesa & Brunton, 2022) and finance (Bauwens & Veredas, 2004).

Because we don’t have ground truth for Z, prediction metrics on held-out parts of x are commonly
used as a proxy (Pei et al., 2021). However, it has been noted that prediction and explanation are
often distinct endeavors (Shmueli, 2010). For instance, Versteeg et al. (2023) use an example where
ground truth is available to show how different models that all achieve good prediction neverthe-
less have varied latents that can differ from the ground truth. Such behavior might be expected
when using highly expressive models with large latent spaces. Bad prediction with good latents is
demonstrated by Koppe et al. (2019) for the case of chaotic dynamics.

Various regularisation methods on the latents have been suggested to improve the similarity of Z to
the ground truth, such as recurrence and priors on external inputs (Pandarinath et al., 2018), low-
dimensionality of trajectories (Sedler et al., 2022), low-rank connectivity (Valente et al., 2022; Pals
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et al., 2024), injectivity constraints from latent to predictions (Versteeg et al., 2023), low-tangling
(Perkins et al., 2023), and piecewise-linear dynamics (Koppe et al., 2019). However, the field lacks
a quantitative, prediction-based metric that credits the simplicity of the latent representation—an
aspect essential for interpretability and ultimately scientific discovery, while still enabling compar-
isons across a wide range of LVM architectures.

Here, we characterize the diversity of model latents achieving high co-smoothing, a standard
prediction-based framework for Neural LVMs, and demonstrate potential pitfalls of this framework.
We propose a few-shot variant of co-smoothing which, when used in conjunction with co-smoothing,
differentiates varying latents. We verify this approach both on synthetic toy problems and state-of-
the-art methods on neural data, providing an analytical explanation of why it works in a simple
setting.

2 RELATED WORK

Our work builds on recent developments in Neural LVMs for the discovery of latent structure in
noisy neural data on single trials. We refer the reader to Pei et al. (2021) supplementary table 3
for a comprehensive list of Neural LVMs published from 2008-2021. Central to our work is the
co-smoothing procedure, which evaluates models based on the prediction of activity from held-out
neurons provided held-in neuron activity from the same trial. Co-smoothing was first introduced in
Yu et al. (2008) and Macke et al. (2011) for the validation of GPFA as a Neural LVM.

Pei et al. (2021) curated four datasets of neural activity recorded from behaving monkeys and es-
tablished a framework to evaluate co-smoothing among other prediction-based metrics on several
models in the form of a standardized benchmark and competition.

In contrast to prediction approaches, a parallel line of work focuses on explaining and validat-
ing Neural LVMs on synthetic data, enabling direct comparison with the ground truth (Sedler
et al., 2022; Brenner et al., 2022; Durstewitz et al., 2023). Versteeg et al. (2023) validated their
method with both ground truth and neural data, demonstrating high predictive performance with
low-dimensional latents.

A concept we introduce is cross-decoding across a population of models to find the most parsi-
monious representation. Several works compare representations of large model populations (Mah-
eswaranathan et al., 2019; Morcos et al., 2018). They apply Canonical Correlation Analysis (CCA),
a symmetric measure of representational similarity, whereas we use regression, which is not sym-
metric. The application to Neural LVMs may be novel.

One related approach comparing representations in deep neural networks is stitching components of
separately trained (and subsequently frozen) models into a composite model using a simple linear
layer (Lenc & Vedaldi, 2015; Bansal et al., 2021).

Central to our work is the concept of few-shot learning a decoder from a frozen intermediate rep-
resentation. Sorscher et al. (2022) developed a theory of geometric properties of representations
that enables few-shot generalization to novel classes. They identified the geometric properties that
determine a signal-to-noise ratio for classification, which dictates few-shot performance. While this
setting differs from ours, links between our works are a topic for future research. To our knowl-
edge, the use of few-shot generalization as a means to identify interpretable latent representations,
particularly for Neural LVMs, is a novel idea.

3 CO-SMOOTHING: A CROSS-VALIDATION FRAMEWORK

Let X ∈ ZT×N
≥0 be spiking neural activity of N channels recorded over a finite window of time,

i.e., a trial, and subsequently quantised into T time-bins. Xt,n represents the number of spikes in
channel n during time-bin t. The dataset X := {X(i)}Si=1, partitioned as X train and X test, consists
of S trials of the experiment. The latent-variable model (LVM) approach posits that each time-point
in the data X

(i)
t,: is a noisy measurement of a latent state Z

(i)
t,: .

To infer the latent trajectory Z is to learn a mapping f : X 7→ Z. On what basis do we validate the
inferred Z? We have no ground truth on Z, so instead we test the ability of Z to predict unseen or
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held-out data. Data may be held-out in time, e.g., predicting future data points from the past, or in
space, e.g., predicting neural activities of one set of neurons (or channels) based on those of another
set. The latter is called co-smoothing (Pei et al., 2021).

The set of N available channels is partitioned into two: N in held-in channels and N out held-out
channels. The S trials are partitioned into train and test. During training, both channel partitions are
available to the model and during test, only the held-in partition is available. During evaluation, the
model must generate the T ×N out rate-predictions R:,out for the held-out partition. This framework
is visualised in Fig. 1A.

Importantly, the encoding-step or inference of the latents is done using a full time-window, i.e., anal-
ogous to smoothing in control-theoretic literature, whereas the decoding step, mapping the latents to
predictions of the data is done on individual time-steps:

Zt,: = f(X:,in; t) (1)
Rt,out = g(Zt,:), (2)

where the subscripts ‘in’ and ‘out’ denote partitions of the neurons. During evaluation, the held-
out data from test trials X:,out is compared to the rate-predictions R:,out from the model using the
co-smoothing metric Q defined as the normalised log-likelihood, given by:

Q(Rt,n, Xt,n) :=
1

µn log 2

(
L(Rt,n;Xt,n)− L(r̄n;Xt,n)

)
(3)

Qtest :=
∑

n∈held-out

∑
i∈test

T∑
t=1

Q(R
(i)
t,n, X

(i)
t,n), (4)

where L is poisson log-likelihood, r̄n = 1
TS

∑
i

∑
t X

(i)
t,n is a the mean rate for channel n, and

µn :=
∑

i

∑
t X

(i)
t,n is the total number of spikes, following Pei et al. (2021).

Thus, the inference of LVM parameters is performed through the optimization:

f∗, g∗ = argmaxf,gQtrain (5)

using X train, without access to the test trials from X test. For claritry, apart from equation 5, we report
only Qtest, omitting the superscript.

4 GOOD CO-SMOOTHING DOES NOT GUARANTEE CORRECT LATENTS

It is common to assume that being able to predict held-out parts of X will guarantee that the inferred
latent aligns with the true one (Macke et al., 2011; Pei et al., 2021; Wu et al., 2018; Meghanath et al.,
2023; Keshtkaran et al., 2022; Keeley et al., 2020; Le & Shlizerman, 2022; She & Wu, 2020; Wu
et al., 2017; Zhao & Park, 2017; Schimel et al., 2022; Mullen et al., 2024; Gokcen et al., 2022; Yu
et al., 2008; Perkins et al., 2023). To test this assumption, we use a student-teacher scenario where
we know the ground truth. To compare how two models (u, v) align, we infer the latents of both
from X test, then do a regression from latents of u to v. The regression error is denoted Du→v (i.e.
DT→S for teacher to student decoding). Contrary to the above assumption, we hypothesize that good
prediction guarantees that the true latents are contained within the inferred ones (low DS→T), but not
vice versa (Fig. 1C). It is possible that the inferred latents possess additional features, unexplained
by the true latents (high DT→S).

To verify this hypothesis, we choose both student and teacher to be a discrete-space, discrete-time
Hidden Markov Model (HMM). As a teacher model, they simulate two important properties of
neural time-series data: its dynamical nature and its stochasticity. As a student model, they are
perhaps the simplest LVM for time-series, yet they are expressive enough to capture real neural
dynamics 1Appendix D shows similar results for linear gaussian models. The HMM has a state space

1Q of 0.29 for HMMs vs. 0.24 for GPFA and 0.35 for LFADS

3
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A B C

D E

Figure 1: Prediction framework and its relation to ground truth. A. To evaluate a neural LVM with
co-smoothing, the dataset is partitioned along the neurons and trials axes. B. The held-in neurons
are used to infer latents z, while the held-out serve as targets for evaluation. The encoder f and
decoder g are trained jointly to maximise co-smoothing Q. After training, the composite mapping
g ◦ f is evaluated on the test set. C. We hypothesise that models with high co-smoothing may
have an asymmetric relationship to the true system, ensuring that model representation contains the
ground truth, but not vice-versa. We reveal this in a synthetic student(S)-teacher(T) setting by the
unequal performance of regression on the states in the two directions. Du→v denote decoding error
of model v latents zv from model u latents zu. D. Several student HMMs are trained on a dataset
generated by a single teacher HMM. The Student→Teacher decoding error DS→T is low and tightly
related to the co-smoothing score. E. The Teacher→Student decoding error DT→S is more varied
and uncorrelated to co-smoothing. Dashed lines represent the ground truth, evaluating the teacher
itself as a candidate model. A score of Q = 0 corresponds to predicting the mean firing-rate for
each neuron at all trials and time points. Green and red arrows represent “Good” and “Bad” models
respectively, presented in Fig. 2.

z ∈ {1, 2, . . . ,M}, and produces observations (emissions in HMM notation) along neurons X , with
a state transition matrix A, emission model B and initial state distribution π. More explicitly:

Am,l = p(zt+1 = l|zt = m) ∀m, l

Bm,n = p(xn,t = 1|zt = m) ∀m,n

πm = p(z0 = m) ∀ m

(6)

The same HMM can serve two roles: a) data-generation by sampling from equation 6 and b) infer-
ence of the latents from data on a trial-by-trial basis:

ξ
(i)
t,m = fm((X:,in)

(i)) = p(z
(i)
t = m|(X:,in)

(i)), (7)
i.e., smoothing, computed exactly with the forward-backward algorithm (Barber, 2012). Note that
although z is the latent state of the HMM, we use its posterior probability mass function ξt as
the relevant intermediate representation. To make predictions of the rates of held-out neurons for
co-smoothing we compute:

R
(i)
n,t = gn(ξ

(i)
t ) =

∑
m

Bm,nξ
(i)
t,m ∀ n ∈ out, 1 ≤ t ≤ T, i ∈ test (8)

As a teacher, we constructed a 4-state model of a noisy chain Am,l ∝ I[l = (m+ 1) mod M ] + ϵ,
with ϵ = 1e − 2, π = 1

M , and Bm,n ∼ Unif(0, 1) sampled once and frozen (Fig. 2, left). We
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Ground-truth

"Good" S

"Bad" S

Figure 2: Visualisations of HMMs: the ground truth or teacher model along with two representative
extreme student models. Nodes represent states, with colors showing initial state probabilities πm

(bright is high probability). Edge width and opacity represents transition probabilities Am,l. All
three models have high co-smoothing Q (low DS→T). The students differ in DT→S (Fig. 1C,D).
Edges with values below 0.02 are removed for visualisation. Note the (1 → 7 → 0 → 4) cycle of
the good student, and the (6 → 0 → 1 → 7) cycle in the bad student. They differ in π, and the latter
has an outgoing edge (6 → 2), with A6,2 = 0.08, A6,0 = 0.89.

generated a dataset of observations from this teacher (see appendix H). We trained 400 students
with 4 − 15 states on the same teacher data using gradient-based methods (see appendix A). All
students had high co-smoothing scores, with some variance, and a trend for large students to perform
better. Consistent with our hypothesis, the ability to decode the teacher from the student varied little,
and was highly correlated to the co-smoothing score (Fig. 1D). In contrast, the ability to decode the
student from the teacher displayed a large variability, and little correlation to the co-smoothing score
(Fig. 1E). See appendix B for details of the regression.

What is it about a student model, that produces good co-smoothing with the wrong latents? We
consider the HMM transition matrix for the teacher and two exemplar students – named ”Good”
and ”Bad” (marked by green and red arrows in Fig. 1CD) – and visualise their states and transition
probabilities using graphs in Fig. 2 . The teacher is a cycle of 4 steps. The good student has such a
cycle (1 → 7 → 0 → 4), and the initial distribution π is only on that cycle, rendering the other states
irrelevant. In contrast, the bad student also has this cycle (6 → 0 → 1 → 7), but the π distribution
is not consistent with the cycle, and there is an outgoing edge from the cycle (6 → 2, highlighted in
pink). Note that this does not interfere with co-smoothing, because the teacher itself is noisy. Thus,
occasionally, there will be trials where the teacher will not have an exact period of 4 states. In such
trials, the bad model will infer the irrelevant states instead of jumping to another relevant state, as in
the teacher model.

5 FEW-SHOT PREDICTION SELECTS BETTER MODELS

Because our objective is to obtain latent models that are close to the ground truth, the co-smoothing
prediction scores described above are not satisfactory. Can we devise a new prediction score that
will be correlated with ground truth similarity? The advantage of prediction benchmarks is that they
can be optimized, and serve as a common language for the community as a whole to produce better
algorithms (Deng et al., 2009).

We suggest few-shot co-smoothing as a complementary prediction score to co-smoothing, to be
used on models with good scores on the latter. Similarly to standard co-smoothing, the functions g
and f are trained using all trials of the training data (Fig. 3A). The key difference is that a separate
group of Nk-out neurons is set aside, and only k trials of these neurons are used to estimate a mapping
g′ : Zt,: 7→ Rt,k-out (Fig. 3B), similar to g in equation 2. The neural LVM (f, g, g′) is then evaluated
on both the standard co-smoothing Q using g ◦f and the few-shot version Qk using g′ ◦f (Fig. 3C).

This procedure may be repeated several (s) times independently on resampled sets of k trials, giving
s estimates of g′, each yielding a score Qk for each k-set. For small k, the Qks tend to be highly
variable. Thus we compute and report the average score ⟨Qk

S⟩ over the s resamples for each student
S. Practical advice on how to choose the value of k and s is given in appendix G.

5
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Figure 3: Co-smoothing and few-shot co-smoothing; a composite evaluation framework for Neural
LVMs. A. The encoder f and decoder g are trained jointly using held-in and held-out neurons. B. A
separate decoder g′ is trained to readout k-out neurons using only k trials. Meanwhile, f and g are
frozen. C. The neural LVM is evaluated on the test set resulting in two scores: co-smoothing Q and
k-shot co-smoothing Qk.

A B

Figure 4: Few-shot prediction selects better models. A. Student models with high co-smoothing have
highly variable 6-shot co-smoothing and uncorrelated to co-smoothing. B. For the set of students
with high co-smoothing, i.e., satisfying QS > QT − 10−3, 6-shot co-smoothing to held-out neurons
is negatively correlated with decoding error from teacher-to-student. Following Fig. 4C,D dashed
lines represent the ground truth, green and red arrows represent “Good” and “Bad” models (Fig. 2).

To show the utility of the newly-proposed prediction score, we return to the same HMM students
from Fig. 1. For each student, we evaluate ⟨Qk

S⟩. This involves estimating the bernoulli emission
parameters B̂m,k-out, given the latents ξ

(i)
t,m using equation 11 and then generating rate predictions

for the k-out neurons using equation 8. First, we see that it provides new information on the models,
as it is not correlated with standard co-smoothing (Fig. 4A). We also show that it is not simply
a harder version of co-smoothing (appendix C). We are only interested in models that have good
co-smoothing, and thus select students satisfying QS > QT − ϵ, choosing ϵ = 10−3. For these
students, we see that despite having very similar co-smoothing scores, their k-shot scores ⟨Qk

S⟩
are highly correlated with the ground truth measure DT→S (Fig. 4B). Taken together, these results
suggest that the combined objective of maximising QS and ⟨Qk

S⟩ simultaneously – both prediction
based objectives – yields models achieving low DS→T and DT→S, a more complete notion of model
similarity to the ground truth.

6 WHY DOES FEW-SHOT WORK?

The example HMM students of Fig. 2 can help us understand why few-shot prediction identifies
good models. The students differ in that the bad student has more than one state corresponding
to the same teacher state. Because these states provide the same output, this feature does not hurt
co-smoothing. In the few-shot setting, however, the output of all states needs to be estimated using
a limited amount of data. Thus the information from the same amount of observations has to be
distributed across more states. This data efficiency argument can be made more precise.

6
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Consider a student-teacher scenario as in section 4. We let T = 2 and use a stationary teacher
z
(i)
1 = z

(i)
2 = m. Now consider two examples of inferred students. To ensure a fair comparison,

both must have two latent states. In the good student, ξ, these two states statistically do not depend
on time, and therefore it does not have extraneous dynamics. In contrast, the bad student, µ, uses
one state for the first time step, and the other for the second time step. A particular example of such
students is:

ξt = [0.5 0.5]
T

t ∈ {1, 2} (9)

µt=1 = [1 0]
T

µt=2 = [0 1]
T (10)

where each vector corresponds to the two states, and we only consider two time steps t = 1, 2.

We can now evaluate the maximum likelihood estimator of the emission matrix from k trials for
both students. In the case of bernoulli HMMs the maximum likelihood estimate of g′ given a fixed
f and k trials has a closed form:

B̂m,n =

∑
i∈k-shot trials

∑T
t=1 I[X

(i)
t,n = 1]ξ

(i)
t,m∑

i′∈k-shot trials
∑T

t′=1 ξ
(i′)
t′,m

∀ 1 ≤ m ≤ M and n ∈ k-out neurons (11)

We consider a single neuron, and thus omit n. Because both states play the same role, we write the
m = 1 case:

B̂1(ξ) =
0.5(C1+C2)

0.5kT B̂1(µ) =
C1

k
(12)

where Ct is the number of times x occurs at time t in k trials. We see that Ct is a sum of k i.i.d
Bernoulli random variables with the teacher parameter B∗, for both t = 1, 2.

The expected value of both quantities is the same (B∗), but the good student, ξ, averages over more
Bernoulli samples (kT samples as opposed to k in the bad student, µ), and hence has a smaller vari-
ance. We show in appendix ?? that this larger variability translates to lower performance on average.
Overall we see that every time that a student has an extra state instead of reusing existing states, this
costs the estimator more variance. In appendix K we show a similar argument for continuous state
models.

7 SOTA LVMS ON NEURAL DATA

In section 4 we showed that models with near perfect co-smoothing may possess latents with ex-
traneous dynamics. We established this in a synthetic student-teacher setting with simple HMM
models.

To show the applicability in more realistic scenarios, we trained several models from two SOTA ar-
chitectures, LFADS (Sedler & Pandarinath, 2023; Pandarinath et al., 2018; Keshtkaran et al., 2022),
a variational autoencoder (Kingma, 2013), and STNDT (Le & Shlizerman, 2022; Ye & Pandarinath,
2021), a transformer (Nguyen & Salazar, 2019; Huang et al., 2020), on mc maze 20 consisting of
neural activity recorded from monkeys performing a maze solving task (Churchland et al., 2010),
curated by Pei et al. (2021). The 20 indicates that spikes were binned into 20ms time bins. We
evaluate co-smoothing on a test set of trials and define the set of models with the best co-smoothing
(appendix E and H).

An integral part of LFADS and STNDT training is the random hyperparameter sweep which gener-
ates several candidate solutions to the optimization problem equation 5.

With each model fu, we infer latents evaluated over a fixed set of test trials X test, using equation 1.

In the HMM case, we had ground truth that enabled us to directly compare the student latent to
that of the teacher. With real neural data we do not have this privilege. To nevertheless reveal the

7
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LFADS STNDT

Figure 5: Cross-decoding as a proxy for distance to the ground truth in near-SOTA models. 200
LFADS models (left) and 120 STNDT models (right) were trained on the mc maze 20 dataset
then selected for high-cosmoothing (appendix E). The latents of each pair of models were de-
coded from one another, and the decoding error is shown in the matrices. Good models are
expected to be decoded from all other models, and hence have low values in their correspond-
ing columns. Bottom left: Trajectories of two LFADS models, with the lowest (left and in
a green box, best model:= argminv⟨Du→v⟩u) and highest (right and in the red box, the worst
model:= argmaxv⟨Du→v⟩u) column averaged cross-decoding errors, projected onto their leading
two principal components. Scores for these models are indicated in Fig. 6 by the arrows. Each trace
is the trajectory for a single trial, starting at a green dot and ending at a red dot. Bottom right Same
for STNDT.

presence or absence of extraneous dynamics, we instead compare the models to each other. The key
idea is that all models contain the teacher latent, because they have good co-smoothing. One can
then imagine that each student contains a selection of several extraneous features. The best student
is the one containing the least such features, which would imply that all other students can decode
its latents, while it cannot decode theirs. We therefore use cross-decoding among student models as
a proxy to the ground truth.

Instead of computing DS→T and DT→S as in section 4 we perform cross-decoding from latents of
model u to model v (Du→v) for every pair of models u and v using linear regression and evaluating
an R2 score for each mapping (appendix E). In Fig. 5 the results are visualised by a U × U matrix
with entries Du→v for all pairs of models u and v.

We hypothesize that the latents zu contain the information necessary to output good rate predictions
r that match the outputs plus the arbitrary extraneous dynamics. This former component must be
shared across all models with high Q, whereas the latter could be unique in each model – or less
likely to be consistent in the population. The ideal model v∗ would have no extraneous dynamics
therefore, all the other models should be able to decode to it with no error, i.e., Du→v∗ = 0 ∀ u.
Provided a large and diverse population of models only the ‘pure’ ground truth would satisfy this
condition. To evaluate how close is a model v to the ideal v∗ we propose a simple metric: the column
average ⟨Du→v⟩u. This will serve as proxy for the distance to ground truth, analogous to DT→S in
Fig. 4. We validate this procedure using the student-teacher HMMs in appendix F, where we show
it is highly correlated to ground truth, and as correlated to few-shot as the SOTA models.

Having developed a proxy for the ground truth we can now correlate it with the few-shot regres-
sion to held-out neurons. Fig. 6 shows a negative correlation for both architectures, similar to
the HMM examples above. As an illustration of the latents of different models, Fig. 5 shows the

8
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LFADS

STNDT

Figure 6: Few-shot scores correlate with the proxy of distance to the ground truth. Several models
of two architectures (LFADS top, STNDT bottom) were trained on neural recordings from monkeys
performing a maze task, the mc maze 20 benchmark (Churchland et al., 2010; Pei et al., 2021).
Distance to ground truth was approximated by the cross-decoding column average ⟨Du→v⟩u (Fig.
5). Few-shot (k = 128) co-smoothing scores (left) negatively correlate with µ, while regular co-
smoothing (right) does not. Green and red arrows indicate the extreme models whose latents are
visualised in Fig. 5 matched by box/arrow colours. Qv values may be compared against an EvalAI
leaderboard (Pei et al., 2021). Note that we evaluate using an offline train-test split, not the true test
set used for the leaderboard scores, for which held-out neuron data is not directly accessible.

.
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PCA projection of several trials from two different models. Both have high co-smoothing scores
(LFADS: 0.3647,0.3643, STNDT: 0.3488, 0.3495), but differ in their cross-decoding column aver-
age ⟨Du→v⟩u. Note the somewhat smoother trajectories in the model with higher few-shot score. It
is also possible to cross-decode across the two populations, as shown in Appendix J.

8 DISCUSSION

Latent variable models aim to infer the underlying latents using observations of a target system. We
showed that co-smoothing, a common prediction measure of the goodness of such models cannot
discriminate between certain classes of latents. In particular, extraneous dynamics can be invisible
to such a measure.

We suggest a complementary prediction measure: few-shot co-smoothing. Instead of directly re-
gressing from held-in to held-out neurons as is done to evaluate co-smoothing, we distinguish the
encoder and the decoder. To evaluate the trained model we substitute the decoder with a new decoder
estimated using only a ‘few’ (k) number of trials. The rate predictions provided by the few-shot de-
coder are evaluated the same as in standard co-smoothing. Using synthetic datasets and HMM mod-
els, we show numerically and analytically that this measure correlates with the distance of model
latents to the ground truth.

We demonstrate the applicability of this measure to real world neural datasets, with SOTA architec-
tures. This required developing a new proxy to ground truth – cross decoding. For each pair of SOTA
models that we obtained, we performed a linear regression across model latents, provided identical
input data. Models with extraneous dynamics showed up as a bad target latent on average, and vice
versa. Finally we show that these two characterisations of extraneous dynamics are correlated. An
interesting extension would be to use this new metric as another method to select good models.
The computational cost is high, because it requires training a population of models and comparing
between all of them. It is also less universal and standardised than few-shot co-smoothing, as it is
dependent on a specific ‘jury’ of models. The HMM results, however, show that it is more correlated
to ground truth than the few-shot.

While the combination of student-teacher and SOTA results put forth a compelling arguement, we
address here a few limitations of our work. Firstly, our SOTA results use only one of the datasets in
the benchmark suite (Pei et al., 2021). With regard to the few-shot regression, while the bernoulli
HMM scenario has a closed form solution: the maximum likelihood estimate, the poisson GLM
regression for the SOTA models is optimised iteratively and is sensitive to the l2 hyperparameter
alpha. In our results we select k and α that distinguish models in our candidate model sets giving
moderate/high few-shot scores for some models and low scores to others. This is an empirical choice
that must be made for each dataset and model-set. The few-shot training of g′ is computationally
inexpensive and may be thus can evaluated over a range of values to find the ideal ones.

Overall, our work advances latent dynamics inference in general and prediction frameworks in par-
ticular. By exposing a failure mode of standard prediction metrics, we can guide the design of
inference algorithms that take this into account. Furthermore, the few-shot prediction can be incor-
porated into existing benchmarks and help guide the community to build models that are closer to
the desired goal of uncovering latent dynamics in the brain.
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A HIDDEN MARKOV MODEL TRAINING

HMMs are traditionally trained with expectation maximisation, but they can also be trained using
gradient-based methods. We focus here on the latter as these are used ubiquitously and apply to
a wide range of architectures. We use an existing implementation of HMMs with differentiable
parameters: dynamax – a library of differentiable state-space models built with jax.

We seek HMM parameters θ := (A,B[in,out], π) that minimise the negative log-likelihood loss, L of
the held-in and held-out neurons in the train trials:

L(θ;X train
[in,out]) = − log p(X train

[in,out]; θ) (13)

=
∑
i∈train

− log p
((

X1:T,[in,out]
)(i)

; θ
)

(14)

To find the minimum we do full-batch gradient descent on L, using dynamax together with the Adam
optimiser (Kingma & Ba, 2014) .

B DECODING ACROSS HMM LATENTS: FITTING AND EVALUATION

Consider two HMMs u and v, of sizes M(u) and M(v), both candidate models of a dataset X . Fol-
lowing equation 7, each HMM can be used to infer latents from the data, defining encoder mappings
fu and fv . These map a single trial i of the data (X:,in)

(i) ∈ X to (ξ
(i)
t )u and (ξ

(i)
t )v .

We now perform a multinomial regression from (ξ
(i)
t )u to (ξ

(i)
t )v .

p
(i)
t = h

((
ξ
(i)
t

)
u

)
(15)

h(ξ) = σ(Wξ + b) (16)

where W ∈ RM(v)×M(u), b ∈ RM(v) and σ is the softmax. During training we sample states from
the target PMFs (z(i)t )v ∼ (ξ

(i)
t )v thus arriving at a more well know problem scenario: classification

of M(v)-classes. We optimize W and b to minimise a cross-entropy loss to the target (ẑ(i)t )v using
the fit() method of sklearn.linear model.LogisticRegression.

We define decoding error, as the average Kullback-Leibler divergence DKL between target and
predicted distributions:

Du→v :=
1

StestT

∑
i∈test

T∑
t=1

DKL

(
p
(i)
t , (ξ

(i)
t )v

)
(17)

where DKL is implemented with scipy.special.rel entr.

In section 4 and Fig. 1, the data X is sampled from a single teacher HMM, T, and we evaluate DT→S
and DS→T for each student notated simply as S.

C FEW-SHOT CO-SMOOTHING IS NOT SIMPLY HARD CO-SMOOTHING

The few-shot benchmark is a more difficult one than standard co-smoothing. Thus, it might seem
that any increase in the difficulty of the benchmark will yield similar results. To show this is not
the case, we use standard co-smoothing with fewer held-in neurons (Fig. 7). The score is lower
(because it’s more difficult), but does not discriminate models.

D STUDENT-TEACHER RESULTS IN LINEAR GAUSSIAN STATE SPACE
MODELS

We demonstrate that our results are not unique to the HMM setting by simulating another simple
scenario: linear gaussian state space models (LGSSM), i.e., Kalman Smoothing.
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Figure 7: Making co-smoothing harder does not discriminate between models. Top three: Increas-
ing the number of held out neurons from N out = 50 to N out = 100. First two panels: Same as main
text Fig. 1CD. Lower panel: Same as main text Fig. 4B. Bottom three: Decreasing the number of
held-in and held-out neurons to N in = 5, N out = 5, Nk-out = 50. Panels as in top row. The score
does decrease because the problem is harder, but co-smoothing is still not indicative of good models
while few-shot is.
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The model is defined by by parameters (µ0,Σ0,F ,G,H,R). A major difference to HMMs is that
the latent states z ∈ RM are continuous. They follow the dynamics given by:

z0 ∼ N (µ0,Σ0) (18)
zt ∼ N (Fzt−1 + b,G) (19)
xt ∼ N (Hzt + c,R) (20)

Given these dynamics, the latents z can be inferred from observations x using Kalman smoothing,
analogous to equation 7. Here we use the jax based dynamax implementation.

As with HMMs we use a teacher LGSSM with M = 4, with parameters chosen randomly (using
the dynamax defaults) and then fixed. Student LGSSMs are also initialised randomly and opti-
mised with Adam (Kingma & Ba, 2014) to minimise negative loglikelihood on the training data
(see appendix H for dimensions of data). DS→T and DT→S is computed with linear regression
(sklearn.linear model.LinearRegression) and predictions are evaluated against the
target using R2 (sklearn.metrics.r2 score). We define Du→v := 1− (R2)u→v . Few-shot
regression from z to xk-out is also performed using linear regression.
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Figure 8: Left to right: Student-teacher results for Linear Gaussian State Space Models. We report
loglikelihood instead of co-smoothing, and k-shot MSE instead of k-shot co-smoothing.

E ANALYSIS OF SOTA MODELS

We denote the set of high co-smoothing models as those satisfying Qmodel > Qbest model−ϵ, choosing
ϵ = 5×10−3 for LFADS and ϵ = 1.3×10−2 for STNDT. F := {(fu, gu)}Uu=1, the encoders and de-
coders respectively. Note that both architectures are deep neural networks given by the composition
g ◦ f , and the choice of intermediate layer whose activity is deemed the ‘latent’ Z is arbitrary. Here
we consider g the last ’read-out’ layer and f to represent all the layers up-to g. g takes the form of
Poisson Generalised Linear Model (GLM), a natural and simple choice for the few-shot version g′.
To this end, we use sklearn.linear model.PoissonRegressor. The poisson regressor
has a hyperparameter alpha, the amount of l2 regularisation. For the results in the main text, ⟨Qk

v⟩
in Fig. 6, we select α = 10−3.
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To perform few-shot co-smoothing, we partition the train data into several subsets of k trials. To
implement this in a standarised way, we build upon the nlb tools library (appendix I). This way
we ensure that all models are trained and tested on identitical partitions.

We perform a cross-decoding from the latents of model u, (Zt,:)u, to those of model v, (Zt,:)v ,
for every pair of models u and v using a linear mapping h(z) := Wz + b implemented with
sklearn.linear model.LinearRegression:

(
Ẑ

(i)
t,:

)
v
= hu→v

((
Z

(i)
t,:

)
u

)
(21)

minimising a mean squared error loss. We then evaluate a R2 score
(sklearn.metrics.r2 score) of the predictions, (Ẑ)v , and the target, (Z)v , for each
mapping. We define the decoding error Du→v := 1− (R2)u→v . The results are accumulated into a
U × U matrix (see Fig. 5).

F VALIDATING CROSS-DECODING COLUMN-MEAN AS A PROXY OF GROUND
TRUTH DISTANCE IN HMMS

For SOTA models, we don’t have ground truth and therefore use cross-decoding as a proxy. We
validate this approach in the HMM setting, where we can compute cross-decoding among student
models, while also having access to ground truth, i.e., the teacher. As Fig. 9 shows, the novel
cross-decoding metric is highly correlated to the ground truth metric of interest DT→S.
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Figure 9: For HMM students with high co-smoothing QS > QT − 10−3 (and therefore low DS→T
1D), the cross-decoding metric ⟨Du→v⟩u∈students is correlated to ground truth distance DT→S and
uncorrelated to DS→T.

Next, in Fig. 10 we replicate the comparison in Fig. 6 of the main text, with the HMMs instead
of SOTA models. Despite very different LVM architectures and very different datasets (synthetic
versus real neural data), the results are strikingly similar.

Taken together, these results reinforce our use of the novel cross-decoding metric as a proxy to DT→S
for SOTA models on real data where there is no access to ground truth, i.e., no teacher model T.

G HOW TO CHOOSE k AND s?

We define Qk the k-shot co-smoothing score: the co-smoothing score given by predictions from
decoder g′ trained with only k trials of the k-out neurons and the corresponding latents given by the
encoder f (section 5 and Fig. 3). As this can be variable across random k-trial subsets we report
the average k-shot co-smoothing, ⟨Qk⟩, averaging over s decoders each independently trained on
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Figure 10: Few-shot co-smoothing validated with cross-decoding in HMMs: a repeat of main text
Fig. 6, now in the HMM setting. For HMMs, v ∈ students, with near-optimal co-smoothing,
Qv > QT − 10−3, few-shot co-smoothing scores ⟨Qk

v⟩, with k = 6, negatively correlate with the
cross-decoding metric ⟨Du→v⟩u, used as proxy for the distance from ground truth metric DT→S.
Meanwhile, co-smoothing scores Q are uncorrelated with the same.

random resamples of k-trials. Here we report how the results change with k, offering guidelines on
how to choose k and s.

We first analyse the student-teacher HMMs from 4. In Fig. 11 we show several quantities as a
function of k. We see that small k maximimally separates two extreme models and the scores
converge for k → ∞. However at small k, scores Qk from single models are also more variable,
therefore more resamples s are required for a good estimate of the mean ⟨Qk⟩. We choose s :=
⌊Strain

k ⌋ and find that k ≈ 6 gives us the best correlation to ground-truth measure (Fig. 11 bottom-
right).

We do a similar analysis for LFADS models on the mc maze 20 dataset. In Fig. 12 we show
several values of Qk (appendix E) for several random samples of k-trials, and at various values of
k. We find that for k values including and below k = 32, scores are negative, and at k = 4 scores
are even worse and vary by orders of magnitude. Among the values we checked, we found k = 128
to be the smallest value with positive and low-variance Qk. Thus, in Fig. 6 we use an intermediate
value of k = 128 and s := ⌊Strain

k ⌋.

H DIMENSIONS OF DATASETS

We analyse three datasets in this work. Two synthetic datasets generated by an HMM (ground
truth in Fig. 2), an LGSMM (appendix D) and the mc maze 20 dataset from the Neural Latent
Benchmarks (NLB) suite (Pei et al., 2021; Churchland et al., 2010). In table 1, we summarise the
dimensions of these datsets. To evaluate k-shot on the existing SOTA methods while maintaining
the NLB evaluations, we conserved the forward-prediction aspect. During model training, models
output rate predictions for T fp future time bins in each trial, i.e., equation 1 and equation 2 are
evaluated for 1 ≤ t ≤ T fp while input remains as X1:T,in. Although we do not discuss the forward-
prediction metric in our work, we note that the SOTA models receive gradients from this portion of
the data.

In mc maze 20we reuse held-out neurons as k-out neurons. We do this to preserve NLB evaluation
metrics on the SOTA models, as opposed to re-partitioning the dataset resulting in different scores
from previous works. This way existing co-smoothing scores are preserved and k-shot co-smoothing
scores can be directly compared to the original co-smoothing scores. The downside is that we are
not testing the few-shot on ‘novel’ neurons. Our numerical results (Fig. 6) show that our concept
still applies.
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Figure 11: Choosing k and s: analysis with HMMs. Top-left: Average k-shot co-smoothing as a
function of k for three models, the teacher T, a good and a bad student as (see 2). Top-right Standard
deviation of k-shot co-smoothing values across resamples. Bottom-left Signal to noise ratio, ratio
of standard deviation of k-shot co-smoothing values across models vs with models. Bottom-right:
Pearson’s correlation of average k-shot score and the ground-truth decoding measure, for models
with high co-smoothing Q, as reported in Fig. 4B for k = 6. Here we take s := ⌊Strain
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Figure 12: k-shot scores (without averaging over s resamples) for LFADS models on the
mc maze 20 dataset, as a function of k. Qk = 0 is a baseline score obtained by reporting the
mean firing rate for each neuron. For small k scores fall below 0 and become highly variable.
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Table 1: Dimensions of real and synthetic datasets. Number of train and test trials Strain, Stest, time-
bins per trial for co-smoothing T , and forward-prediction T fp, held-in, held-out and k-out neurons
N in, N out, Nk-out.

Dataset Strain Stest T T fp N in N out Nk-out

Synthetic HMM 2000 100 10 – 20 50 50

Synthetic LGSSM (appendix D) 20 500 10 – 5 30 30

NLB mc maze 20 (Pei et al.,
2021; Churchland et al., 2010)

1721 574 35 10 127 55 552

I CODE REPOSITORIES

The experiments done in this work are largely based on code repositories from previ-
ous works. The code developed here is in https://osf.io/4bckn/?view_only=
73b3aee9a8eb43e8bb3b286c800c6448. Table 2 provides links to the code repositories used
or developed in this work.

Table 2: Summary of key repositories used in this paper

Repository Forked from Citations

anonymous repo https://github.
com/neurallatents/
nlb_tools

(Pei et al., 2021)

anonymous repo https://github.
com/trungle93/
STNDT

(Le & Shlizerman, 2022;
Ye & Pandarinath, 2021;
Pei et al., 2021; Nguyen &
Salazar, 2019; Huang et al.,
2020)

anonymous repo https://github.
com/arsedler9/
lfads-torch

(Sedler & Pandarinath,
2023; Pandarinath et al.,
2018; Keshtkaran et al.,
2022)

J COMPATIBILITY AND CONSISTENCY OF CROSS-DECODING ACROSS LVM
ARCHITECTURES

In this section we analyse the cross-decoding approach, pooling together the SOTA models from the
two architectures: STNDT and LFADS, all trained on the same mc maze 20 dataset. We filtered
models to those with near-SOTA co-smoothing, specifically 0.348 < Q < 0.36, resulting in 75
LFADS and 40 STNDT models. Note that this included LFADS models which were not in the main
text Fig. 6.

Fig. 13 shows the cross-decoding matrix Du→v for all pairs of models (u, v) in this combined
set, as computed in section 7 and appendix E. The cross-decoding matrix reveals a block structure,
suggesting larger decoding errors for model pairs from different architectures versus model pairs
within the same architecture. Crucially, on top of this block structure, we see clear continuation of
columns. This implies that models that are extraneous in one class are also judged as extraneous
by the other class. This is summarised in Fig. 14, where we compare column means for each
model over the ‘same architecture pool’ and ‘other architecture pool’. Thus, cross decoding can be
used across architectures. One should note, however, that having an unbalanced sample from the
two classes could bias scores to be lower for the larger class. Finally, we use the combined cross-
decoding matrix to repeat the analysis of the main text, but combining both model types. Fig. 15

2In mc maze 20 we use the same set of neurons for N out and Nk-out.
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shows that our conclusions hold – co-smoothing is uncorrelated with cross-decoding, while few-shot
is correlated.
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Figure 13: Cross decoding matrix Du→v for all model pairs (u, v) from the combined set of 75
LFADS and 40 STNDT models on mc maze 20with near-SOTA co-smoothing 0.345 < Q < 0.36.
The colormap saturates at the upper 99% quantile of scores in the matrix to better visualise the bulk
of the data.

K FEW-SHOT ERROR IN CONTINUOUS STATE SPACE

In the main text, we showed that for HMMs, a model with extraneous states gives rise to noisy
estimators, and thus to worse few-shot performance. In Appendix D we empirically showed a similar
result for a continuous class of models. Here we provide a proof for a simplified setting in the
continuous case.

As in the HMM case, we consider two students that can both perfectly predict the observations.
One of the students does so in a compact manner, so its z only contains a noisy version of the
observations. The other model also has components of its latent z that do not affect the observation.
With enough trials, regression will ignore these extraneous directions.

For simplicity, consider where the latent z ∈ R2 is a noisy version of the data x ∈ R. For k-shot
regression, the data can be described as X ∈ R1×K and the latents Z ∈ R2×K . More precisely, we
formulate the latents as:

Z := BX +N , (22)
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Figure 14: Architecture-wise column means of the cross-decoding matrix. Compare their cross-
decoding column means for input models from models of the same architecture versus models of a
different architectures, i.e., ⟨Du→v⟩u∈U\{v} for target models v ∈ V . LEFT: V is the population of
STNDT models and RIGHT: LFADS. All models in U ∪ V have near-SOTA co-smoothing, in the
range 0.345 < Q < 0.36. We do not include the self-decoding scores Du→u as these are trivially
near-zero and bias the results.
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Figure 15: Few-shot scores correlate with the proxy of distance to the ground truth, even in a
mixed population of architectures. We repeat the analysis in main text Fig. 6, pooling together
the STNDT and LFADS models with high co-smoothing scores Q > 0.348 and compute cross-
decoding ⟨Du→v⟩u for the combined population. To replicate the main text result, we plot models
in narrow Q range, i.e., an upper co-smoothing limit of Q < 0.355, while ensuring that models of
both architectures are included.

where B ∈ R2×1 is an encoding matrix. The two models will differ in their noise term N . The
compact model has less noise in the directions orthogonal to B. This is because extraneous latents
imply variability in directions that are not needed for decoding the observations x.

For our few-shot regression, we would like to obtain weights a ∈ R2, such that aTz is similar to x.
The test error is given by:
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L = Ex,z(a
Tz − x)2 (23)

= Ex,n

(
aT (Bx+ n)− x

)2
(24)

= Ex,n

(
aTBx+ aTn− x

)2
(25)

= Ex,n

((
aTB − 1

)
x+ aTn

)2
(26)

= (aTB − 1)2 +Tr[aaTΣn] (27)

The a obtained by linear regression is given by:

a = C−1
zz Czx, (28)

where Czz = ZZT and Czx = ZXT .

For the expected few-shot test error we have:

EaL = Ea(a
TB − 1)2 +Tr[aaTΣn] (29)

= Tr[ΣaBBT ] + āTBBT ā+ 1− 2āTB +Tr [ΣaΣn] + āTΣnā (30)

where ā and Σa are the mean and covariance of the regression-weight estimates.

For simplicity we choose B = [1 0]
T , x ∼ N (0, 1), n ∼ N (0,Σn), where Σn =

[
σ2

obs 0
0 σ2

ext

]
.

σobs is an observation noise that affects the link between the original data x and the estimated readout
x̂ while σext is an extraneous noise orthogonal to the coded variable x in z and corresponds to how
extraneous a model is. In this case, the expected few-shot error simplifies to the following:

EaL = (1− ā1)
2︸ ︷︷ ︸

I

+Var(a1)[1 + σ2
obs]︸ ︷︷ ︸

II

+Var(a2)σ
2
ext︸ ︷︷ ︸

III

+ ā21σobs︸ ︷︷ ︸
IV

+ ā22σ
2
ext︸ ︷︷ ︸

V

(31)

We also obtain that ā1 = 1
1+σ2

obs
and ā2 = 0. Thus term III is the only term with significant

dependence on σext. As the model becomes more extraneous, this term grows, and so does the
few-shot error. The σext dependence is amplified for ‘few’-shot, i.e., small k, since the Var(a2) is
larger.
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