LLM-SRBench: A New Benchmark for Scientific Equation Discovery with
Large Language Models

Parshin Shojaee* ! Ngoc-Hieu Nguyen* > Kazem Meidani** Amir Barati Farimani 3
Khoa D Doan’ Chandan K Reddy '
Website: https://github.com/deep-symbolic-mathematics/1l1lm-srbench

Abstract

Scientific equation discovery has long been a
cornerstone of scientific progress, enabling the
derivation of laws governing natural phenomena.
Recently, Large Language Models (LLMs) have
gained interest for this task due to their poten-
tial to leverage embedded scientific knowledge
for hypothesis generation. However, it is diffi-
cult to assess the true discovery capabilities of
these methods because existing benchmarks of-
ten use well-known equations. This makes them
vulnerable to memorization by LL.Ms and results
in inflated performance metrics that do not re-
flect genuine discovery. In this paper, we in-
troduce LLM-SRBench, a comprehensive bench-
mark with 239 challenging problems across four
scientific domains specifically designed to eval-
uate LLM-based scientific equation discovery
methods while preventing trivial memorization.
Our benchmark comprises two main categories:
LSR-Transform, which transforms common phys-
ical models into less common mathematical repre-
sentations to test reasoning beyond memorized
forms, and LSR-Synth, which introduces syn-
thetic, discovery-driven problems requiring data-
driven reasoning. Through extensive evaluation
of several state-of-the-art methods, using both
open and closed LLMs, we find that the best-
performing system so far achieves only 31.5%
symbolic accuracy. These findings highlight the
challenges of scientific equation discovery, posi-
tioning LLM-SRBench as a valuable resource for
future research.

“Equal contribution 'Virginia Tech *VinUniversity *Carnegie
Mellon University *Capital One. Correspondence to: Parshin
Shojaee <parshinshojace@vt.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

10°{ _my 0.961} 1.0

~ & X x x
m e ¢ A A S
S 105 y.__ 0741 £
= X v i
- L
L . =
g 10-10 \ @® Feynman Benchmark 0.5 .8
w \ ¥ LLM-SRBench (LSR-Transform) P E
L \ A LLM-SRBench (LSR-Synth) A
@ 10715 p -
o ©
g) 0.171 £
- w

z 10—20
0 ®-—--- ®----- e,
12 10 20 50 100 500 1000

of Search Candidates

Figure 1. Error analysis comparing simple LLM sampling (Llama-
3.1-8B) on 100 Feynman problems versus LLM-SRBench datasets
(LSR-Transform and LSR-Synth). The sharp drops in numeric
error curves and considerably lower symbolic error for Feynman
problems suggest memorization rather than gradual discovery.

1. Introduction

Equation discovery, the process of uncovering symbolic
mathematical expressions from observational data, has been
a cornerstone of scientific advancement. This task, also
known as symbolic regression (SR), goes beyond mere data-
driven predictive modeling by seeking interpretable math-
ematical relations that reveal the underlying mechanisms
of natural phenomena. When scientists derive mathemati-
cal equations from empirical data, they gain more than just
predictive power — they obtain insights into fundamental
physical principles, enable extrapolation beyond observed
data, and facilitate knowledge transfer across scientific do-
mains (Langley, 1981; Schmidt & Lipson, 2009).

Standard approaches to equation discovery have primar-
ily relied on genetic programming (GP) and evolutionary
algorithms (Cranmer, 2023; La Cava et al., 2021), which
represent mathematical expressions as trees and navigate the
vast space of possible equations through evolutionary search
techniques. However, these methods face two fundamental
challenges. First, the NP-hard nature of equation discov-
ery (Virgolin & Pissis, 2022) makes their random mutation
and crossover operations computationally prohibitive across

https://github.com/deep-symbolic-mathematics/llm-srbench

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

that describes [output variable] based on
given [input features].

- Use domain-specific knowledge of [the
scientific field] and provided data samples
to find an equation that is scientifically valid

\and fits the data well. Y,

Scientific Context

Problem description
Variable names and descriptions

28 15 3.6 14 0.4
U VAN

2 7~
Goal / Instruction Typical Workflow
- Discover the mathematical equation/law

LLM internal scientific
knowledge

@D Reasoning and planning

Programming

Hypothesis
Generation

denominator = omegakk2 * Xkk2 + Omega_0xk2 k Xik2
Example: Prompt m = numerator / denominator
Input/Feedback

Find an equation 1in the field of classical return m

mechanics that describes the mass (m) needed to

store energy 1in an oscillating system, given

physical input variables: mean stored energy .

(En),driving frequency (w), natural frequency (wo), . y :
\and amplitude (x). / Evaluation Evaluation

- Data Fidelity:

= o
o Parameter Optimization

| simulation x Experiments

|_ Statistical Fit to Data

- Discovered mathematical equation represented
by expressions, trees, programs, etc.

- Supporting explanations / reasoning

m = 4%E_n/(x**2 *
(omega**2 + omega_0%**2))

def equation(E_n, omega, omega_@, x, params):
Energy-mass ratio normalized by parameter
numerator = params (0] * E_n
Combined frequency and amplitude scaling effects

In-Domain accuracy
Out-of-Domain generalization

Symbolic Accuracy:
Human expert / LLM evaluator
Scientific plausibility
Interpretability

j k - Computational Efficiency /

Figure 2. Overview of the LLM-based Scientific Equation Discovery. The benchmark tasks (left) combine scientific context with
numerical data. The discovery process (middle) iteratively leverages LLM’s scientific knowledge and data-driven reasoning to generate
hypotheses for underlying equations. Discovered hypotheses, represented as equation strings, trees, or programs, are then evaluated
(right) using multiple metrics including data fidelity, symbolic accuracy, and computational efficiency.

vast search spaces. Second, unlike human scientists who
leverage their domain knowledge and expertise to guide
hypothesis formation, these approaches are mostly purely
data-driven, and isolated from existing scientific knowledge.
These limitations have motivated researchers to develop
methods that incorporate scientific domain knowledge into
the equation discovery process.

Large Language Models (LLMs) have recently emerged as
a promising solution to these challenges, offering a new
paradigm for scientific equation discovery. LLMs, trained
on vast corpora of scientific literature, possess extensive
embedded scientific knowledge. This has sparked signif-
icant interest in leveraging LLMs for scientific equation
discovery, with several recent works demonstrating their po-
tential (Shojaee et al., 2024b; Ma et al., 2024; Grayeli et al.,
2024; Merler et al., 2024; Du et al., 2024; Reddy & Shojaee,
2024; Zhang et al., 2024). These LLM-based approaches
have shown to enhance the equation hypothesis generation
process by incorporating scientific priors, guiding the ex-
ploration of equation search spaces more efficiently, and
providing interpretable reasoning for the search process.

Despite the promising potential of LLM-based equation dis-
covery methods, their rigorous and robust evaluation still
remains an open challenge. The current scientific equa-
tion discovery benchmarks are primarily represented by
SRBench (La Cava et al., 2021) and SRSD (Matsubara
et al., 2022). SRBench incorporates two key data groups
for this purpose: the Feynman physics equations (Udrescu

& Tegmark, 2020), and Strogatz dynamical systems (La
Cava et al., 2016; Strogatz, 2018). A notable extension to
this framework is SRSD (Matsubara et al., 2022), which en-
hances the Feynman benchmark by incorporating physically
meaningful sampling ranges for data points. However, these
benchmarks exhibit significant limitations for the evaluation
of LLM-based methods. Their problems are mostly based
on known physics equations from textbooks, which makes
them often subject to memorization by LLMs.

As noted by (Shojaee et al., 2024b), LLMs frequently suc-
ceed on these common equation discovery benchmarks
through simple recitation based on variable names and prob-
lem descriptions, rather than the actual process of data-
driven discovery and reasoning. Our analysis (shown in
Fig. 1) also confirms this finding - the sudden drop in the
numeric error curve within the first few iterations and signif-
icantly lower symbolic error on Feynman problems indicate
memorized solutions rather than a meaningful search to-
wards discovery. To mitigate this issue, (Shojaee et al.,
2024b; Ma et al., 2024) have introduced a handful of five
custom-crafted problems designed to prevent memorization
by manually modifying known physical models. While
these efforts represent a step forward, the small scale and
limited diversity of these problem sets are insufficient to
provide a comprehensive evaluation framework for emerg-
ing LLM-based methods in scientific equation discovery.
A more robust and systematic benchmark is needed to en-
able standardized evaluation and foster the development of
innovative methods in this emerging field.

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

In this paper, we introduce LLM-SRBench, a new
benchmark designed to rigorously evaluate the capabili-
ties of LLM-based scientific equation discovery methods.
LLM-SRBench addresses the limitations of existing bench-
marks by constructing problem sets that avoid trivial recita-
tion while leveraging the scientific priors embedded in
LLMs, simulating conditions akin to scientific discovery.
The benchmark is structured around two main categories
of problems, each targeting distinct aspects of equation
discovery. The first category focuses on transforming com-
mon scientific problems, such as those from the Feynman
equations, into different mathematical representations of
the same underlying physical problem. By symbolically
altering input-output mappings and generating less common
mathematical forms for the same problem, we challenge
LLM-based equation discovery to go beyond memorization
of the common forms. This approach is motivated by recent
findings on the fragility of LLMs’ reasoning capabilities to
unfamiliar representations of otherwise familiar problems
(Mirzadeh et al., 2024; Xie et al., 2024; Wu et al., 2023).
The second category extends the approach introduced by
(Shojaee et al., 2024b), which combines known terms in the
underlying equation with synthetic, novel terms to create
problems that go beyond memorization and demand data-
driven reasoning. We expand this idea into a comprehen-
sive set of benchmark problems spanning diverse scientific
domains. These problems incorporate carefully designed
synthetic terms that are both novel and plausible. We fur-
ther verify the solvability of the generated equations using
numerical solvers, ensuring that the benchmark problems
remain grounded in physical feasibility while presenting
meaningful challenges for LLM-based discovery methods.

LLM-SRBench comprises 111 problems in the first cate-
gory (LSR-Transform), and 128 problems in the second
category (LSR-Synth), spanning four scientific domains:
chemistry (36), biology (24), physics (43), and material
science (25). We comprehensively benchmark state-of-the-
art LLM-based scientific equation discovery methods with
several LLM backbones on these datasets. Our experiments
reveal several key insights into the capabilities and limi-
tations of current LLLM-based scientific equation discov-
ery methods. Results show that the best model can only
solve 31.5% of problems on LSR-Transform and 28.1% on
LSR-Synth. This underscores the challenging nature of the
tasks in LLM-SRBench and highlights its potential as a crit-
ical evaluation foundation for future LLM-based scientific
equation discovery methods. Overall, the contributions of
this work are as follows:

* We introduce LLM-SRBench, the first comprehensive
benchmark with 239 challenging problems across vari-
ous scientific domains, designed to evaluate LLM-based
scientific equation discovery methods.

* We propose a novel benchmark design through alternative
mathematical representations (LSR-Transform) and syn-
thetic, discovery-driven problems (LSR-Synth) to ensure
rigorous evaluation of scientific reasoning and discovery
capabilities beyond LLM memorization.

» Extensive experiments on state-of-the-art methods reveal
performance peaks at 31%, highlighting the benchmark’s
challenging nature and its potential for future research.

2. LLM-SRBench

We introduce LLM-SRBench, a novel benchmark designed
to evaluate LLM-based methods for data-driven scientific
equation discovery. As shown in Fig. 2, in this benchmark, a
“data-driven scientific equation discovery” task is defined as
follows: Given a task dataset D, the corresponding scientific
context C, the objective is to derive a hypothesis h that repre-
sents the underlying mathematical relations behind the data
with high precision and scientific plausibility. This process
resembles the iterative search and refinement undertaken by
human scientists, where LLMs act as optimizers, proposing
and refining hypotheses based on both scientific knowledge
and empirical data.

2.1. LSR-Transform

This category is designed to evaluate whether LLM-based
methods can discover equations in less common mathemati-
cal forms, avoiding reliance on memorization of well-known
representations. This approach is motivated by the observa-
tion that LLMs often struggle with unfamiliar instantiations
of otherwise familiar problems, as highlighted by recent
studies on the fragility of LLM reasoning (Mirzadeh et al.,
2024; Xie et al., 2024; Wu et al., 2023). By transforming
existing benchmark problems into different mathematical
representations, we challenge LLMs’ capabilities in data-
driven scientific equation discovery and reasoning.

We build on the Feynman (Udrescu & Tegmark, 2020)
benchmark (current standard benchmark in scientific equa-
tion discovery), which consists of 100 physics equations,
and systematically transform these equations into alternative
mathematical forms (examples in App. A.1). As demon-
strated in Fig. 3(a), the transformation process involves
seven key steps: 1) Equation Collection: We gather the
original mathematical expressions, along with their input
and output variables, and scientific problem descriptions
from the Feynman benchmark. 2) Select Pivot Variable:
For each equation, we choose an input feature to become
the new target variable. 3) Feature-Target Transforma-
tion: We transform the dataset by switching the roles of
the selected input feature and the original target variable.
4) Symbolic Transformation: Using the SymPy library
in Python on the parsed expressions, we solve each equa-
tion with respect to the selected input variable, treating it

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Mathematical Expressions
Data (Input/Output Variables)
Scientific Descriptions

Feynman
Benchmark

Equation
Collection

-
®

Choose an input

1 .
feature to become E,, = —mx?(w? + wg) Se|eC't Pivot @
new target variable 4 Variable

1 i a
@ Feature-Target bkt .oxt x|y]
Transformation
PR o Mgy o [Tl
Write the symbolic 4E, symbolic

transformed equation for the m =
pivot variable using SymPy

®

Transform the original data samples for new equation
Remove invalid samples under the new equation form

®

x*(w?+ w§) Transformation

Solvability
Check

Only retain symbolic transformations
that are analytically solvable

Dataset
Refinement

®

Find an equation in the field of classical
mechanics that describes the mass (m) needed
to store energy in an oscillating system, given
physical 1input variables: mean stored energy
(En),driving frequency (w), natural frequency

Problem
Reformulation

Chemistry >
Select Scientific ~ Ex.: Reaction ApEks (N Sl
Kinetics Biology Benchmark
Problem Material Science
Given problem descrigtion, —kA(t)? Known Term @
generate common an —kA(t)exp(~kst) Generation

well-known terms @
Given problem description,

generate synthetic and novel,

yet feasible terms @

Is this equation novel? Evaluate the novelty of
(/A1) B @ the equation using LLM

®

Synthetic Term

. k, sin(wA(t)
Generation pein)

dA ;
= —kA()? — kA(t) exp(—kst) + ky sin(wA(D))

Check the equation is solvable and numerically stable

®

-Generate data samples for the approved equations
- Numerical solution for differential equations

@

Solvability
Check

Novelty
Check

Datapoint
Generation

Filtered expressions and their
corresponding data samples are
cross-checked by subject matter

Expert
Validation

New specification for the
wnsformed problem using LLM

(a) LSR-Transform

(w0), and amplitude (x). @)

-

experts to validate their plausibility j

(b) LSR-Synth

Figure 3. Data generation pipelines for the two dataset categories in LLM-SRBench. (a) LSR-Transform converts Feynman problems
into alternative mathematical forms through symbolic transformation and input-output role switching, and (b) LSR-Synth generates novel
discovery-driven problems by combining known scientific terms in the underlying models with synthetic novel terms. Both pipelines
include validation steps to ensure solvability and scientific plausibility.

as the new output and the original output variable as an
input in the transformed equation. 5) Solvability Check:
We retain only those transformations that are analytically
solvable, ensuring the feasibility of the resulting equations.
6) Dataset Refinement: For the transformed equations with
altered data domains (e.g., due to square roots or denom-
inators), we filter the original Feynman dataset to ensure
all data points fall within the valid domains of the new
equations. 7) Problem Reformulation: Using LLM (GPT-
40), we generate a new natural language specification for
each transformed problem. During this data generation pro-
cess, we constrain the transformed equations’ complexity
(measured by expression tree node count) to the range of
original Feynman dataset distribution (full analysis in Fig. 8,
App.A.1). This allows us to focus on the semantic aspects
of discovery—specifically the interplay between reasoning
and memorization of the mathematical forms—rather than
conflating performance with the ability to handle syntac-
tically complex and lengthy hypotheses. We also exclude
transformed problems that LLM can solve through direct
sampling without requiring access to data.

This process yields 111 total transformed equations derived
from the 100 original Feynman problems. Each transformed
equation shares the same scientific context, problem descrip-
tion, and variables as its original counterpart but presents a
less common mathematical form to be discovered. The goal
of LSR-Transform is not to discover new equations but to
evaluate whether LLM-based systems can validate discover-
ies from non-trivial, data-driven transformations of known

equations. To support scientific knowledge-guided discov-
ery, each task in LSR-Transform is supplemented with a
natural language description of the scientific problem and
dataset, including variable names and their meanings. These
descriptions are absent in the original Feynman benchmark
but they are needed for LLM-based scientific equation dis-
covery methods to provide scientific context in prompts for
knowledge-guided equation discovery by LLMs.

2.2. LSR-Synth

This category is designed to assess whether LLMs can dis-
cover equations that incorporate new synthetic terms along-
side known terms, requiring scientific as well as data-driven
reasoning rather than reliance on memorization. The LSR-
Synth dataset is motivated by the approach introduced in
(Shojaee et al., 2024b) for the handful of manually designed
problems and systematically expands it into a comprehen-
sive set of benchmark problems across diverse scientific
domains. By combining known terms with synthetic, novel
terms, LLMs are challenged to demonstrate discovery capa-
bilities in unobserved contexts, yet leverage their knowledge
in the process. The LSR-Synth dataset spans four scientific
domains: chemistry, biology, physics, and material science,
focusing on key scientific problems, including reaction ki-
netics in chemistry, population growth in biology, damped
harmonic oscillators in physics, and stress-strain relation-
ships in material science (examples in App. A.2).

The data generation process for LSR-Synth involves multi-

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

ple steps , as illustrated in Fig. 3(b), to ensure the creation
of high-quality, challenging benchmark problems: 1) Select
Scientific Problem: We select problems from different sci-
entific domains, such as reaction kinetics in chemistry or
population dynamics in biology. 2) Known Term Gener-
ation: Given the problem description, we prompt an LLM
(GPT-40) to generate a list of common and well-known
mathematical terms that typically appear in the underlying
models. 3) Synthetic Term Generation: Similarly, we
prompt the LLM to generate a list of diverse novel syn-
thetic terms for a given scientific problem, along with de-
scriptions of the problem and variables. For example, in
chemistry reaction kinetics, known terms for reaction rate
(dA/dt) based on concentration (A4) and time (¢) might in-
clude first-order (—kA) and second-order kinetics (—kA?)
or the exponential decay term —k exp (—kst), while syn-
thetic terms could represent non-linear high-order saturation,
e.g., kA%/(1 + BA*), or non-linear quantum tunneling ef-
fects, e.g., kAexp (—2)/t%. 4) Solvability Check: After
sampling from the generated known and synthetic terms
and combining them into a complete mathematical expres-
sion, we verify the solvability of these expressions using
numerical solvers such as solve_ivp in Python. This
step ensures that the expressions are feasible, providing
a basis for generating datapoints. 5) Novelty Check: In
the context of each scientific problem and the complete
expression, we evaluate the novelty of the new generated
task using LLM (GPT-40) as a novelty evaluator. This step
is to verify that the synthetic terms are novel in the pro-
vided context and require data-driven reasoning rather than
relying on established knowledge to be discovered. 6) Data-
point Generation: For expressions that pass the solvability
and novelty checks, we generate datapoints using numer-
ical solvers based on the specified initial conditions and
parameters. These datapoints are used to create the final
task datasets. 7) Expert Validation: Finally, the filtered
expressions, along with visualizations of their generated
datapoints, are cross-checked by two subject matter experts
to validate their plausibility. After these filtering steps, we
finalize a candidate list of 128 problems across the four
domains (36: chemistry; 24: biology; 43: physics; and 25:
material science). More detailed analysis of LLM-SRBench
datasets are provided in App. A.

2.3. Evaluation

Evaluating LLM-based scientific equation discovery meth-
ods introduces unique challenges due to the open-ended
nature of the task and diverse symbolic representation of hy-
potheses. A discovered equation can be assessed from two
perspectives: (a) data fidelity, which measures how well
the equation fits the observed and out-of-domain (OOD)
data, and (b) symbolic accuracy, which evaluates the align-
ment with ground-truth symbolic equation hypotheses. Both

perspectives are critical, as equations may exhibit similar
symbolic forms but differ numerically, or vice versa.

Data Fidelity. We evaluate data-driven fidelity using two
known metrics in equation discovery: (1) Acccuracy to
tolerance 7 (Acc;) (Kamienny et al., 2022; Biggio et al.,
2021), and Normalized Mean Squared Error (NMSE). These
metrics are computed on both in-domain test data and OOD
data (when available) to assess generalization capacity, a
crucial requirement for scientific equations.
Yi

< T) ;
Ntest

NMSE — Zi;l (9i — y_a)Q

it (Wi —)?
Symbolic Accuracy. We evaluate symbolic accuracy with
a model-based evaluation strategy using GPT-40 as an eval-
uator (prompt in App. B, Fig. 11). This approach addresses
the limitations of current symbolic metrics like recovery
rate in symbolic regression (La Cava et al., 2016), which
are very sensitive to exact symbolic matches and fail to ac-
count for mathematical equivalence, particularly in different
hypothesis representations (e.g., equation as strings, expres-
sion trees, or Python programs). Here, GPT-40 evaluates
mathematical equivalence by comparing the symbolic form
of the predicted hypothesis versus the ground-truth equa-
tion after removing parameters and constants. The ability
of LLMs to recognize semantic equivalence across differ-
ent representations makes them particularly well-suited for
evaluating LLM-based equation discovery methods, which
often operate within a more diverse and open-ended hy-
pothesis space. To validate this metric, two authors also
independently evaluated symbolic equivalence on 130 sam-
pled problems, finding 94.6% agreement between GPT-40
and human evaluators. App. B provides more details on the
evaluation metrics.

Yi — Yi

max
1<i< Niess

Acc, =1 (

3. Experiments
3.1. Experimental Setup

We benchmark state-of-the-art LLM-based scientific
equation discovery methods using three LLM backbones:
one open-source model (Llama-3.1-8B-Instruct)
and two proprietary models (GPT-4o-mini and
GPT-3.5-turbo). Each discovery task takes as input the
problem description, variables, the corresponding dataset,
and an instruction specifying the task. The discovery
methods then generate and refine equation hypotheses
through LLMs. To ensure fair comparison, we standardize
each of the methods to use 1k LLLM calls per problem
while maintaining their core algorithmic designs and
hyperparameter settings. Detailed implementation specifics
and prompts of each method are provided in App. C. We

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Table 1. Comparison of different LLM-based scientific equation discovery methods on LLM-SRBench. Performance metrics include
symbolic accuracy (SA), numeric precision (Acco.1), and normalized mean squared error (NMSE). Bold values indicate best performance

within each method, and underlined values show best overall performance across discovery methods.

Models

LSR-Transform

LSR-Synth

Chemistry Biology Physics

Material Science

SA (%)t Acco1(%)t NMSE]

SA (%) Acco1(%)T NMSE] SA (%) Accy1(%)t NMSE| SA (%) Accy1(%)t NMSE/|

SA (%)T Accy (%)t NMSE|

Direct Prompting (DataBlind)

Llama-3.1-8B-Instruct ~ 3.61 1.801 0.3697 0.0 0.0 0.0644 0.0 0.0 0.5481 0.0 0.0 0.0459 0.0 0.0 0.0826
GPT-3.5-turbo 2.10 1.801 0.3553 0.0 8.33 0.0023 0.0 4.16 0.5990 0.0 2.27 0.0274 0.0 0.0 0.0277
GPT-40-mini 721 6.306 0.2631 0.0 13.88 0.0221 0.0 4.16 0.4648 4.54 9.09 0.0647 0.0 0.0 0.0484
SGA (Maet al., 2024)
Llama-3.1-8B-Instruct ~ 2.70 0.909 0.3519 0.0 8.33 0.0458 0.0 0.0 0.2416 0.0 2.27 0.1549 0.0 12.12 0.0435
GPT-3.5-turbo 0.0 0.909 0.3465 0.0 8.33 0.0071 0.0 8.33 0.1279 2.27 4.54 0.0249 0.0 28.10 0.0019
GPT-40-mini 9.91 8.11 0.2321 0.0 16.66 5.46e-4 4.16 12.51 0.0128 4.54 9.09 0.0511 0.0 36.11 6.02¢-4
LaSR (Grayeli et al., 2024)
Llama-3.1-8B-Instruct ~ 5.41 45.94 0.0021 0.0 27.77 2.77e-4 4.16 16.66 2.73e-4 4.54 25.02 0.0018 8.21 64.22 7.44e-5
GPT-3.5-turbo 12.61 47.74 0.0015 0.0 38.89 1.51e-4 0.0 16.66 2.31le-4 6.81 22.71 0.0011 20.66 64.09 3.77e-5
GPT-40-mini 6.31 5045 0.0011 2.77 38.92 9.11e-5 8.33 20.83 1.53e-4 991 31.81 9.94e-4 28.12 72.04 9.23¢-6
LLM-SR (Shojaee et al., 2024b)
Llama-3.1-8B-Instruct ~ 30.63 38.55 0.0101 8.33 66.66 8.0le-6 25.30 58.33 1.04e-6 697 34.09 1.23e-4 4.10 88.12 1.15e-7
GPT-3.5-turbo 10.81 10.81 0.1449 0.0 50.22 2.87e-5 0.0 25.03 2.33e-5 0.0 25.12 8.84e-4 1242 82.14 2.75e-8
GPT-40-mini 3153 39.64 0.0091 11.11 52.77 4.12e-6 16.66 29.16 3.06e-6 991 36.36 7.62e-5 20.24 88.28 3.21e-9
evaluate the following discovery methods: @ (b)
[0-15] [0-15)
LLM-SR (Shojaee et al., 2024b), a program search equa-
tion discovery method that generates hypotheses of equa- s s
tion skeleton as Python functions with the main idea of 3 3
combining LLMs’ scientific knowledge with multi-island f:)[mﬂ gmm
evolutionary search guided by feedback from data.
LaSR (Grayeli et al., 2024), a concept learning equation — e 25351
discovery method that finds abstract textual concepts of = S Tecow
o 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80

mathematical relations from successful equation hypotheses
with LLMs and uses these concepts to evolve new hypothe-
ses through a hybrid approach of evolutionary search (with
PySR (Cranmer, 2023)) and LLM-guided search.

SGA (Ma et al., 2024), a bilevel optimization equation dis-
covery method that iteratively combines LLMs for discrete
hypothesis generation of scientific laws and physical simu-
lations in PyTorch for continuous parameter optimization
with respect to data.

Direct Prompting (DataBlind) serves as a baseline for
generating hypotheses purely from contextual information
without access to data. By not using data-driven reasoning
and refinement in the hypothesis generation, this baseline
helps to assess LLMs’ memorization of the problem.

3.2. Main Results

Our experimental results (Table 1) reveals several key in-
sights into the strengths and limitations of LLM-based sci-
entific equation discovery methods. Overall, performance

% Symbolic Accuracy % AcCo1

Figure 4. Performance comparison across equation complexity
levels for Feynman and LSR-Transform datasets: (a) symbolic
accuracy and (b) numeric precision (Acco.1) showing considerable
performance gap between these two datasets at same complexity
levels (averaged over all method-LLM pairs).

remains relatively low across both symbolic and numeric
metrics, underscoring the fundamental challenges of this
task. One key observation is the poor performance of direct
prompting method (DataBlind), which only relies on LLMs’
knowledge about the problem without access to data for
data-driven refinement. This result underscores the neces-
sity of combining LLM reasoning with observational data,
as relying solely on prior knowledge proves insufficient for
accurate equation discovery across different problems in
LLM-SRBench. We observe that on LSR-Transform data
group, LaSR achieves the highest numerical accuracy, lead-
ing in both Accg.; and NMSE, while LLM-SR with GPT-

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

B Direct
102 4 . LLMSR
LaSR
7 SGA
10° =1 7
V] - D
% 71 00D
s 1072
= 7 /]
107
10-°
Chemistry Biology Material Science Physics

Figure 5. Detailed results of in-domain (ID) and out-of-domain (OOD) performance using Normalized Mean Squared Error across various
LSR-Synth scientific domains and LLM-based equation discovery methods (with GPT-40-mini as LLM backbone).

4o0-mini outperforms other methods in symbolic accuracy
(~31%). This comparative advantage inverts in the LSR-
Synth material science problems, where LaSR consistently
yields better symbolic accuracy and LLM-SR achieves bet-
ter numerical precision, suggesting that different equation
discovery strategies may be better suited to different prob-
lems.

Another notable observation is the consistent outperfor-
mance of models using GPT-40-mini and Llama-3.1-8B
compared to those based on GPT-3.5-turbo. This may be
due to improved reasoning architectures or better effective-
ness of smaller, less opinionated models in the search and
exploration needed for navigating space of possible equa-
tions. The lower performance on LSR-Synth compared to
LSR-Transform tasks also indicates that the ability to find
transformed variants of known problems does not necessar-
ily extend to more challenging scenarios involving novel
synthetic terms, where systematic data-driven exploration
becomes essential.

3.3. Analysis

LSR-Transform vs. Feynman datasets. We analyze the
performance gap between Feynman and LSR-Transform
datasets across different equation complexity levels, mea-
sured by the number of nodes in the corresponding expres-
sion tree (La Cava et al., 2021). Fig. 4 shows the aggregated
average performance (over all methods and LLM back-
bones) in terms of both symbolic accuracy (a) and numeric
precision (b). It can be observed that even at the same com-
plexity levels, LSR-Transform problems are substantially
more challenging for current discovery methods than orig-
inal Feynman problems. Also, this performance disparity
persists even for simpler problems ([0-15] nodes), indicat-
ing that the challenging nature of LSR-Transform problems
for LLM-based scientific equation discovery methods is not
necessarily due to the structural complexity.

Performance on In-domain vs. OOD. Generalization to
unseen data is a fundamental requirement for scientific laws
and a critical aspect of equation discovery. A correct mathe-
matical model of observations should not only fit observed
data but also extrapolate accurately to out-of-domain (OOD)
scenarios. However, current equation discovery benchmarks
largely overlook this aspect. In this work, we advocate for
explicit OOD assessment in scientific equation discovery
by introducing held-out OOD test sets in our benchmark.
To systematically evaluate generalization beyond observed
data, we generate dedicated OOD test sets for synthetic
problems in the LSR-Synth category (see App. A for details
on data generation). Fig. 5 provides a comparative analysis
of ID vs. OOD results. As expected, all discovery methods
exhibit higher NMSE in OOD settings, indicating degraded
generalization compared to in-domain data. Among the
evaluated methods, LLM-SR achieves the lowest NMSE
across both ID and OOD settings, while direct prompting
performs the worst. Also, we observe some domain-specific
variations in generalization performance: the performance
gap between ID and OOD is more pronounced in chemistry
and biology problems compared to physics and material
science, although the complexity of problems are designed
to be similar, as shown in Fig. 10. This suggests that dif-
ferent scientific problems may pose distinct challenges for
equation discovery methods, highlighting the need for future
research to develop more robust approaches for different
scientific disciplines.

OOD generalization and symbolic accuracy. We further
analyzed the correlation between our proposed symbolic
accuracy metric (Sec. 2.3) and data-driven extrapolation
performance in OOD settings (averaged over all LSR-Synth
domains). As shown in Fig. 6, symbolic accuracy exhibits a
strong positive correlation with numerical precision (Accg.1)
on OOD data and a corresponding negative correlation with
numerical error (NMSE). This strong correlation observed

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

(a) 15 (b)
N Direct GPT-3.5-turbo
BN LLMSR GPT-40-mini
-~ W LaSR Llama-3.1-8b .A -~ .A
E 10 SGA u § 10]
=1 =1
o o
< <
2 ® L
° °
-g 5 g 5
> A > A
[9)) %) o
® | = \
2) Q. A
o1 A (] 0 L AN |
0 10 20 40 60 80 107! 10° 10t 107
% Acco (OOD) NMSE (OOD)

Figure 6. Correlation between symbolic accuracy and OOD
performance across different equation discovery methods and
LLM backbones: (a) symbolic accuracy vs. Acco.1 showing
positive correlation; (b) symbolic accuracy vs. normalized mean
squared error showing negative correlation. Results are averaged
over all LSR-Synth datasets.

between symbolic and OOD performance provides two key
insights: First, it establishes OOD evaluation as a powerful
approach for assessing the discovery of generalizable equa-
tions—an aspect often underutilized in symbolic regression
research; second, it validates our LLM-based symbolic eval-
uation approach through its strong alignment with numeric
generalization performance.

More detailed experimental results, including both qual-
itative analyses of discovered equations and quantitative
performance comparisons across scientific equation discov-
ery methods and LLMs, are provided in App. D.

4. Related Work

Al for Scientific Discovery. Recent advancements in Al
for science highlight the ability of LLMs to generate sci-
entific hypotheses by leveraging their extensive knowledge
and reasoning capabilities (Lu et al., 2024; Ji et al., 2024;
Reddy & Shojaee, 2024). LLM agents, when augmented
with external tools and scientific simulators, have shown
promise in automated scientific data-driven analysis (Ma-
jumder et al., 2024a). While recent benchmarks have been
developed to evaluate LLMs and agents in hypothesis gen-
eration and scientific question answering (Majumder et al.,
2024b; Chen et al., 2024), evaluation for equation discovery
and symbolic regression—one of the core tasks in scientific
discovery—remains yet unexplored.

Symbolic Regression. Symbolic regression approaches
fall into three main categories: search-based methods that
explore equation spaces via evolutionary algorithms or re-
inforcement learning (Schmidt & Lipson, 2009; Cranmer,
2023; Petersen et al., 2021; Sun et al., 2023), learning-based
methods leveraging pre-trained Transformers on synthetic
data (Biggio et al., 2021; Kamienny et al., 2022), and hybrid
approaches that guide search using neural priors (Landajuela
et al., 2022; Shojaee et al., 2024a; Mundhenk et al., 2021;

Meidani et al., 2023). While these methods have advanced
the field of automated symbolic function discovery from
data, they mostly lack mechanisms to incorporate scientific
domain knowledge into the discovery process.

LLMs for Equation Discovery. Recent work has lever-
aged LLM-based symbolic regression to enhance scientific
equation discovery through various approaches leveraging
LLMs’ knowledge. LLM-SR (Shojaee et al., 2024b) utilizes
LLMs’ embedded scientific knowledge to generate initial
equation hypotheses in the form of Python programming
functions, which are then refined through adaptive mutation
and crossover operations with LLMs as evolutionary opti-
mizers. In-Context Symbolic Regression (ICSR) (Merler
et al., 2024) employs an iterative few-shot learning paradigm
over expression candidates, using previously tested success-
ful expressions along with their fitness scores to guide the
generation of improved candidates. LaSR (Grayeli et al.,
2024) alternates between hypothesis evolution, concept ab-
straction, and concept iteration phases to build a learned
library of scientific concepts for mathematical relations
needed to find the equation for a given data. The learned
concepts are then used with pure evolutionary search meth-
ods (Cranmer, 2023) like PySR (Cranmer, 2023) as well
as LL.M-guided search to guide the equation hypothesis
evolution. Scientific Generative Agent (SGA) (Ma et al.,
2024) also implements a bilevel optimization framework for
equation discovery where LLMs iteratively propose discrete
hypotheses for scientific laws while physical simulations in
PyTorch provide experimental validation and data-driven
parameter optimization.

Symbolic Regression Benchmarks. Symbolic regres-
sion benchmarks can be broadly categorized into scientific
discovery-oriented and general-purpose mathematical dis-
covery collections. The scientific equation discovery bench-
marks are primarily represented by the SRBench (La Cava
etal., 2021) and SRSD (Matsubara et al., 2022) benchmarks.
SRBench incorporates two key data groups for this purpose:
the Feynman physics equations (Udrescu & Tegmark, 2020),
and Strogatz dynamical systems (La Cava et al., 2016; Stro-
gatz, 2018). A notable extension to this framework is pre-
sented in SRSD (Matsubara et al., 2022), which enhances
the Feynman benchmark by incorporating physically mean-
ingful sampling ranges for datapoints. The second category
includes benchmarks like the Nguyen collection (Uy et al.,
2011) and SRBench’s black-box regression problems (La
Cava et al., 2016) which include datasets without scien-
tific contexts. However, these existing benchmarks are not
well-suited for evaluating LL.M-based equation discovery
methods. These general-purpose benchmarks focus on the
data-driven discovery of abstract mathematical functions
without scientific context, while the former scientific bench-
marks consist of well-known equations likely memorized
by LLMs, enabling success through recitation rather than

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

scientific reasoning and discovery. Our work extends this
line of research by focusing on scientific equation discovery
with LLMs, designing the first comprehensive benchmark
to assess discovery capabilities of LLLM-based scientific
equation discovery methods beyond memorization.

5. Conclusion

We introduce LLM-SRBench, the first comprehensive
benchmark for LLM-driven scientific equation discovery,
encompassing 239 tasks across two distinct categories: LSR-
Transform (111 problems derived from transformations of
established physical models) and LSR-Synth (128 novel syn-
thetic problems spanning four scientific disciplines). Our
benchmark provides a standardized and multi-faceted eval-
uation protocol for assessing scientific equation discovery
with LLMs, accommodating diverse hypothesis representa-
tions, including expression strings and programs. Extensive
experiments with state-of-the-art discovery methods and
various LLM backbones on LLM-SRBenchshow a peak
performance of only 31%, highlighting the significant chal-
lenges and open research opportunities in this domain. We
envision that LLM-SRBench benchmark datasets and its
evaluation protocol could serve as a foundation for future
research, driving progress in automated equation discov-
ery and advancing our understanding of LLMs in symbolic
reasoning needed in scientific discovery.

Impact Statement

The development and future adoption of LLM-SRBench as
a benchmark for evaluating LLM-based scientific equation
discovery has the potential to significantly impact the field
of artificial intelligence for science and scientific discovery.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

Acknowledgments

This research was partially supported by the U.S. National
Science Foundation (NSF) under Grant No. 2416728.

References

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales. In
Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
936-945. PMLR, 18-24 Jul 2021.

Chen, Z., Chen, S., Ning, Y., Zhang, Q., Wang, B., Yu,
B., Li, Y., Liao, Z., Wei, C., Lu, Z., et al. Sci-
enceagentbench: Toward rigorous assessment of language

agents for data-driven scientific discovery. arXiv preprint
arXiv:2410.05080, 2024.

Cranmer, M. Interpretable machine learning for science
with pysr and symbolicregression. jl. arXiv preprint
arXiv:2305.01582, 2023.

Du, M., Chen, Y., Wang, Z., Nie, L., and Zhang, D. Large
language models for automatic equation discovery of
nonlinear dynamics. Physics of Fluids, 36(9), 2024.

Grayeli, A., Sehgal, A., Costilla-Reyes, O., Cranmer, M.,
and Chaudhuri, S. Symbolic regression with a learned
concept library. arXiv preprint arXiv:2409.09359, 2024.

Ji, H., Wang, Q., Downey, D., and Hope, T. Scimon: Scien-
tific inspiration machines optimized for novelty. In ACL
Anthology: Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 279-299. University of Illinois
Urbana-Champaign/CABBI, 2024.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton,
F. End-to-end symbolic regression with transformers.
In Advances in Neural Information Processing Systems,
2022.

La Cava, W., Danai, K., and Spector, L. Infer-
ence of compact nonlinear dynamic models by epige-
netic local search. Engineering Applications of Ar-
tificial Intelligence, 55:292-306, 2016. ISSN 0952-
1976. doi: https://doi.org/10.1016/j.engappai.2016.07.
004. URL https://www.sciencedirect.com/
science/article/pii/S0952197616301294.

La Cava, W., Orzechowski, P., Burlacu, B., de Franca, F.,
Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. Con-
temporary symbolic regression methods and their relative
performance. In Vanschoren, J. and Yeung, S. (eds.), Pro-
ceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, volume 1, 2021.

Landajuela, M., Lee, C., Yang, J., Glatt, R., Santiago, C. P,
Aravena, I., Mundhenk, T. N., Mulcahy, G., and Petersen,
B. K. A unified framework for deep symbolic regres-
sion. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022.

Langley, P. Data-driven discovery of physical laws. Cogni-
tive Science, 5(1):31-54, 1981.

Lu, C., Lu, C, Lange, R. T., Foerster, J., Clune, J., and Ha,
D. The ai scientist: Towards fully automated open-ended
scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

https://www.sciencedirect.com/science/article/pii/S0952197616301294
https://www.sciencedirect.com/science/article/pii/S0952197616301294

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Ma, P, Wang, T.-H., Guo, M., Sun, Z., Tenenbaum, J. B.,
Rus, D., Gan, C., and Matusik, W. LLM and simula-
tion as bilevel optimizers: A new paradigm to advance
physical scientific discovery. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=hz8cFsdz7P.

Majumder, B. P, Surana, H., Agarwal, D., Hazra, S., Sabhar-
wal, A., and Clark, P. Data-driven discovery with large
generative models. arXiv preprint arXiv:2402.13610,
2024a.

Majumder, B. P., Surana, H., Agarwal, D., Mishra, B. D.,
Meena, A., Prakhar, A., Vora, T., Khot, T., Sabharwal,
A., and Clark, P. Discoverybench: Towards data-driven
discovery with large language models. arXiv preprint
arXiv:2407.01725, 2024b.

Matsubara, Y., Chiba, N., Igarashi, R., Tatsunori, T., and
Ushiku, Y. Rethinking symbolic regression datasets
and benchmarks for scientific discovery. arXiv preprint
arXiv:2206.10540, 2022.

Meidani, K., Shojaee, P., Reddy, C. K., and Farimani,
A. B. Snip: Bridging mathematical symbolic and nu-
meric realms with unified pre-training. In The Twelfth

International Conference on Learning Representations,
2023.

Merler, M., Haitsiukevich, K., Dainese, N., and Marttinen,
P. In-context symbolic regression: Leveraging large lan-
guage models for function discovery. In Proceedings of
the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 4: Student Research Work-
shop), pp. 589-6006, 2024.

Mirzadeh, L., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P,,
faissol, D., and Petersen, B. K. Symbolic regression via
deep reinforcement learning enhanced genetic program-
ming seeding. In Beygelzimer, A., Dauphin, Y., Liang,
P, and Vaughan, J. W. (eds.), Advances in Neural Infor-
mation Processing Systems, 2021.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santi-
ago, C. P, Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. In International
Conference on Learning Representations, 2021.

Reddy, C. K. and Shojaee, P. Towards scientific discov-
ery with generative ai: Progress, opportunities, and chal-
lenges. arXiv preprint arXiv:2412.11427, 2024.

10

Schmidt, M. and Lipson, H. Distilling free-form natural
laws from experimental data. Science Advance, 324
(5923):81-85, 2009. ISSN 0036-8075. doi: 10.1126/
science.1165893.

Shojaee, P., Meidani, K., Barati Farimani, A., and Reddy,
C. Transformer-based planning for symbolic regression.
Advances in Neural Information Processing Systems, 36,
2024a.

Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B., and
Reddy, C. K. Llm-sr: Scientific equation discovery via
programming with large language models. arXiv preprint
arXiv:2404.18400, 2024b.

Strogatz, S. H. Nonlinear dynamics and chaos with student
solutions manual: With applications to physics, biology,
chemistry, and engineering. CRC press, 2018.

Sun, E,, Liu, Y., Wang, J.-X., and Sun, H. Symbolic physics
learner: Discovering governing equations via monte carlo
tree search. In The Eleventh International Conference on
Learning Representations, 2023.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020. doi: 10.1126/sciadv.
aay2631.

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I, and
Galvan-Lépez, E. Semantically-based crossover in ge-
netic programming: application to real-valued symbolic

regression. Genetic Programming and Evolvable Ma-
chines, 12:91-119, 2011.

Virgolin, M. and Pissis, S. P. Symbolic regression is NP-
hard. Transactions on Machine Learning Research, 2022.

ISSN 2835-8856.

Wu, Z., Qiu, L., Ross, A., Akyiirek, E., Chen, B., Wang,
B., Kim, N., Andreas, J., and Kim, Y. Reasoning or
reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. arXiv
preprint arXiv:2307.02477, 2023.

Xie, C., Huang, Y., Zhang, C., Yu, D., Chen, X., Lin, B. Y.,
Li, B., Ghazi, B., and Kumar, R. On memorization
of large language models in logical reasoning. arXiv
preprint arXiv:2410.23123, 2024.

Zhang, Y., Zheng, K., Liu, F., Zhang, Q., and Wang, Z.
Autoturb: Using large language models for automatic
algebraic model discovery of turbulence closure. arXiv
preprint arXiv:2410.10657, 2024.

https://openreview.net/forum?id=hz8cFsdz7P
https://openreview.net/forum?id=hz8cFsdz7P

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Appendix
A. Dataset Details

A.1. LSR-Transform

The LSR-Transform is the first category of datasets in LLM-SRBench, designed to evaluate the ability of LLM-based
scientific equation discovery methods in less common mathematical forms. This dataset challenges LLM-based discovery
methods to avoid reliance on memorization of well-known representations and instead reason through unfamiliar instan-
tiations of familiar problems. This approach is motivated by the observation that LLMs often struggle with unfamiliar
instantiations of otherwise familiar problems, as highlighted by recent studies on the fragility of LLM reasoning (Mirzadeh
et al., 2024). By transforming existing benchmark problems into alternative mathematical representations, LSR-Transform
provides a rigorous testbed to evaluate how well LLM-based discovery methods perform in both (1) semantic scientific
reasoning, which draws on LLMs’ built-in scientific knowledge, and (2) data-driven reasoning, which utilizes experimental
feedback for equation discovery. LSR-Transform builds on the Feynman benchmark (Udrescu & Tegmark, 2020), a widely
used standard benchmark in scientific equation discovery and symbolic regression. The Feynman benchmark consists of 100
physics equations from Feynman Lecture Series', representing fundamental laws in physics. While the Feynman benchmark
has been instrumental in evaluating symbolic regression methods, it primarily tests the ability to recover equations in their
standard, well-known forms which are mostly memorized by LLMs. However, real-world scientific equation discovery
often involves reasoning about unknown equations based on domain expertise and knowledge from literature as well as
empirical data observations. To address this gap, LSR-Transform transforms the original Feynman equations into less
common alternative mathematical forms of the same physical problem by switching input-output variables and symbolically
solving for the new target variables.

Description of Original Problem Original Problem Transformed
Problem Examples
4 4E N
Find a mathematical expression that represents the total energy (E) of s (02 + w?)x2
a harmonic oscillator system, given data on the mass of the object 1 . 53 o
(m), the angular frequency of the system (w), the natural angular Ei= Zm (0 + wp)x
frequency of the system (w,), and the displacement from the AE
equilibrium position (x). 0= [—— wé
mx
- %
/ _ 4mer?V;, \
Pa = cos(6)
Find a mathematical expression that represents the electric potential
(l@) at a point in space due to an electric d?pole, giyen data on ;he 1 pgcos(d) Pa cos(6)
dipole moment (p,), the angle between the dipole axis and the radius Ve = — r=
vector to the point (), the distance from the dipole to the point (r), 4me 23 4mev,
and the permittivity of free space (e).
Amer?V,
K 6 = arccos() /
/ ko T din \
= n(—
==y,
Find a mathematical expression that represents the current (/) in a Ip = I
semiconductor diode, given data on the saturation current (ip), the j _ j (oyn -V _ 1 (exp(‘I-V) _ 1)
elementary charge (g), the voltage across the diode (V), Boltzmann's 0 ky. T ky.T
constant (kp), and the absolute temperature (T). q.V
e 8

K - kb.ln(é+ 1) /

Figure 7. Examples of how LLM-SRBench (LSR-Transform) problems can be obtained from original Feynman benchmark problems.

Figure 7 demonstrates the equation transformation process, showing examples of the original Feynman problems (along
with their scientific descriptions) and their potential transformed versions. These examples show the dataset’s design for
altering the mathematical representation of the same problem by analytically solving the equations with respect to different
input variables. For instance, the original harmonic oscillator energy equation Ff = im(w2 + w3)x? is transformed into
symbolic representation of m = ﬁ and w = 4/ é—fz — w? where the target variable is switched from energy (F)

"https://space.mit.edu/home/tegmark/aifeynman.html

11

https://space.mit.edu/home/tegmark/aifeynman.html

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

0.35 -

0.30 -
0.25 -
0.20 -
0.15 -
0.10 -
N I i
6 é 1‘0 1‘5 2

B Feynman Benchmark
mm LLM-SRBench (LSR-Transform)

Fraction of Dataset

0 25 30 35 40

Complexity

0.00

Figure 8. Comparison of expression complexity distributions between Feynman Benchmark and LLM-SRBench (LSR-Transform)
datasets.

1 paqcos(6)

Iee = is also transformed

to mass (m) or angular frequency (w). Similarly, in the electric potential equation V, =

_ Amer? Ve

into pg = =< OR and 7 = ,/Racos(®)

4meVe
distance (r). These transformations introduce less-common mathematical representations that are simple but not trivial for

LLMs to find from the problem description and data. By systematically altering the input-output relationships into new
analytically solvable symbolic forms, LSR-Transform challenges models to reason through unfamiliar mathematical forms,
testing their ability to generalize beyond memorized representations and leverage data-driven reasoning to find new forms.

, showcasing how the problem is reformulated to solve for dipole moment (p;), and

The transformed expressions generally exhibit higher complexity than the original physical laws in the Feynman benchmark.
To maintain our focus on evaluating semantic complexity (reasoning and memorization capabilities) rather than syntactic
complexity and lengthy hypotheses, we deliberately filtered out LSR-transform expressions with significantly higher
complexities from the dataset. This filtering ensures that the benchmark primarily challenges discovery models’ ability
to understand and conduct both scientific and data-driven reasoning rather than their capacity to model longer and more
complex mathematical expressions. Figure 8 demonstrates the complexity distribution between the original Feynman
Benchmark problems versus their transformed counterparts in LSR-Transform. Following (La Cava et al., 2021), the
complexity of each hypothesis (i.e., expression) is quantified as the number of nodes in the expression tree representation of
the equation. The expression tree is constructed by parsing the equation into its constituent unary and binary operators,
variables, and constants.

Finally, we also exclude the transformed problems that LLM (L1ama-3.1-8B-Instruct) can solve through direct
sampling without requiring access to data. This process creates a dataset of 111 transformed equations, each sharing the
same scientific context and variables as its original counterpart but presenting a less common mathematical form. The goal
of LSR-Transform is not to discover new equations but to evaluate whether LLM-based systems can guide discoveries from
non-trivial, data-driven transformations of known equations.

Details of Filtering Process This section provides a comprehensive breakdown of the filtering steps applied during
the LSR-Transform dataset generation, addressing the apparent reduction from 100 original Feynman problems to 111
transformed equations. The LSR-Transform dataset generation involves multiple filtering stages that significantly reduce
the number of candidate problems. Starting from 100 original Feynman problems, the transformation process initially
generates 471 candidate equations by selecting different pivot variables for each equation and performing feature-target
transformations. This expansion reflects an average of approximately 4.7 transformed candidates per original problem,
demonstrating the diversity introduced by considering multiple input variables as potential targets. The first major filtering
occurs during the solvability check using SymPy’s symbolic solver (Step 5 in Figure 3), which eliminates 53 problems
(11.3% of candidates) that cannot be analytically solved for the target variable. These typically include transcendental
equations without closed-form solutions, high-degree polynomial equations where symbolic solutions become intractable,
and equations involving complex multi-valued functions. After this stage, 418 problems remain. Notably, no equations are

12

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

eliminated during dataset refinement (Step 6 in Figure 3). This stage focuses solely on filtering individual datapoints to ensure
they fall within the valid domains of the transformed equations (e.g., ensuring positive values under square roots, avoiding
division by zero), while the equations themselves remain intact. The most significant reduction occurs during complexity
filtering, where 307 problems (73.4% of remaining candidates) are eliminated, resulting in the final 111 problems. This
filtering serves a crucial purpose: to ensure that the challenging nature of LSR-Transform stems from semantic complexity
(reasoning about the scientific problem and unfamiliar mathematical forms) rather than syntactic complexity (handling
lengthy expressions). Following La Cava et al. (?), complexity is measured as the number of nodes in the expression tree
representation of each equation. Following this definition, we constrain the complexity distribution to match that of the
original Feynman benchmark (Figure 8). In other words, transformed equations with complexity significantly exceeding the
original Feynman distribution are exclude. These design choices maintains focus on testing reasoning capabilities while
preserving analytical tractability and scientific diversity across physics domains. As demonstrated in Figure 8, even after
filtering, LSR-Transform problems remain substantially more challenging than original Feynman problems at same levels of
complexity.

A.2. LSR-Synth

The LSR-Synth is the second category of datasets in LLM-SRBench which is a collection of synthetic problems designed to
benchmark the performance of LLMs in scientific equation discovery. This dataset is particularly focused on generating
plausible yet challenging equation discovery problems that span multiple scientific domains, including chemistry, physics,
biology, and material science. The problems in LSR-Synth are constructed by combining known terms, which are well-
established in the scientific literature, with synthetic terms that introduce novel and plausible variations to the equations.

Figure 9 provides examples of problems from the LSR-Synth. These examples demonstrate the dataset’s design, which
combines well-established mathematical and scientific expressions with novel, domain-specific variations to create chal-
lenging models that address the trivial LLM memorization. Each equation is composed of both known and synthetic terms
(highlighted in red). Known terms are terms that are commonly found in scientific equations and are well-documented in the
literature for that domain and specific problem. For example, terms like —C A(t) and —C A(t)? are typical in chemistry
reactions as the first-order and second-order kinetics. These terms are included to ensure that the problems remain grounded
in the established scientific context, providing a foundation for the LLM-based methods to build upon for equation discovery
related to each scientific problem. On the other hand, synthetic terms are introduced to create novel variations in the
problems to avoid trivial LLM memorization. For instance, terms like sin (1/A(t)) and cos (log (A(t) + 1)) in chemistry
reaction kinetics are designed to challenge the LLM-based discovery models by introducing non-linearities and interactions
that are not commonly seen in standard models. These terms are critical for testing the ability of LLM-based equation
discovery models to generalize beyond memorization of standard known formulations and discover new patterns from
data-driven reasoning and refinement. The combination of known and synthetic terms in LSR-Synth creates a dataset that is
both challenging and representative of established scientific problems. This approach enables rigorous evaluation of models’
capabilities in interpreting and discovering complex scientific equations, striking a balance between domain familiarity and
innovative data-driven reasoning. To generate these known and synthetic terms across various domains, we leverage LLM
(GPT-40) by providing problem domain context and descriptions, prompting it to generate candidate terms. These suggested
terms and equations are then filtered based on solvability and novelty criteria, followed by domain expert validation.

Figure 10 provides an analysis of the complexity of the problems in the LSR-Synth dataset. Similar to Figure 8, complexity
is quantified as the number of nodes in the expression tree. This figure highlights the diverse nature of the LSR-Synth dataset,
with complexity levels ranging from simple expressions to highly complex ones. By spanning a wide range of domains
(chemistry, physics, biology, and material science) and hypothesis complexities, LSR-Synth serves as a comprehensive
dataset for evaluating the capabilities of LLMs in scientific equation discovery.

Once the structure of equations is generated, their parameters (coefficients) are sampled randomly from specified and
scientifically valid ranges, and then data are generated through different solution methods depending on the domain. For
dynamical systems (chemical reactions, population dynamics, and physical oscillators), we employ numerical integration
using SciPy’s solve_ivp with the RK45 method, while static relationships (material stress-strain) are evaluated directly
over predetermined input ranges. For each domain, we generate 5000 evenly spaced samples. In dynamical systems, these
samples span the time interval ¢ € [0, 60], while for material stress-strain relationships, the samples cover strain € € [0, 0.6]
and temperature T € [273,573] K. To evaluate out-of-distribution (OOD) generalization, for time-dependent systems, we
designate the last 500 time points as the out-of-domain (OOD) test set, with the remaining 4500 points used for in-domain
(ID) training and validation. Similarly, for the stress-strain domain, the OOD test set comprises the last 500 points based

13

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Example of LSR-Synth Problems with Known and Synthetic Terms

(—CO.A(t) — Cy.sin (\/A(t)) Chemistry:

Reaction rate with respect to

—Co. A(£)? — Cy.exp(—Cy. t) + C3.sin(C4.A(t)) Time and Concentration

Known Terms
Synthetic Terms

—Co. A(t)? — C;.\JA(t) — C,.cos(log(A(t) + 1))

((1_@

r KD

J
Biology: \

Growth rate with respect to
Time and Population size

P(t)?
“aP(t) +1

).P(t) +7
r.P(t)+r (1 - ?) .P(t) + BP(t)sin(wt)
0

\T <1 = %).P(t) + r(l = %) . <—1 + ?).P(t) +7.(1—exp(—yP()).P(t) /
0 0
[CO.sin(t) — Cy.x(t) — Cp.x.exp(—|x(t)]) Physics: \
Acceleration with respect to
ime, Displacement, and Velocity

Co-sin(t) — Cy.x(8)* — Cy.sin(x (1)) . v(t) — Cs. sin(v(t)}r

Co.sin(t) — Cy.v(t) — C,. sin(x(t)) v(t) + C3.x(£)%.v(t) — Cq x(b). exp(—|x(t)])

Co- (1= Cy.(T = Tp))-€ + Cy.exp(—(T — Tp)?).€ Material Science: \
Stress with respect to Strain
Co. (1 = C1.(T = T))- € = Co(T = To) + Ca. (T = To):log(e + 1)) ndTemperatiire

€,
Co- (1= C,.(T = Tp)).€ + Cy. €. exp(— C_4T) + Cg.exp(—(T — Tp)?).€
5

J

Figure 9. Examples of LLM-SRBench (LSR-Synth) problems with known and synthetic terms across different domains. Each problem
presents a target equation as the hypothesis to be discovered which is composed of known terms and synthetic terms (in blue).

on temperature values, maintaining a consistent evaluation framework across all domains. The data generation process
incorporates the same quality control criteria used in equation generation. Generated solutions must satisfy: (1) solvability
within specified numerical tolerance, (2) meaningful physical behavior (avoiding divergence or constant solutions), and (3)
uniqueness compared to existing solutions (using RMSE thresholds). These criteria ensure that the final dataset contains
diverse, physically meaningful, and numerically stable solutions suitable for benchmarking equation discovery methods.

B. Evaluation Details
B.1. Data Fidelity

We evaluate the data-driven performance of discovered equations through multiple complementary metrics focusing on
both predictive accuracy and generalization capability. The primary metrics include Accuracy to Tolerance (Acc,), and
Normalized Mean Squared Error (NMSE). The Acc, metric provides a binary assessment of prediction accuracy based
on point-wise relative error. An equation is considered accurate if the maximum relative error across all test tolerance 7.

Formally:
< T)

where ¢; represents the predicted value, y; is the true value, and Nyg is the number of test samples. The indicator function
1(-) returns 1 if the condition is satisfied and 0 otherwise. This metric is particularly useful for cases where maintaining
a consistent level of accuracy across all predictions is crucial, as it identifies equations that might have occasional but
significant deviations from the true values. NMSE also provides a continuous measure of the overall prediction quality,
normalized by the scale of the true values:

Ui — Vi
Yi

Ace, =1 (max

1<i< Niest

14

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

LSR-Synth Domains
Chemistry
Biology
0.10 - B Physics
Material Science

o
)
@

Fraction of Dataset

o o
S 2
2 2
| [||
I N
||

o4 B
0.02 - i I

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44
Complexity

Figure 10. Distribution of problem complexity in LLM-SRBench (LSR-Synth) datasets across scientific domains.

Ntest (o, \2
NMSE — Zz:tl - (yl :gl)
it (i — Ui)?

This normalization makes the metric scale-invariant, allowing meaningful comparisons across different datasets and equation
types. The NMSE ranges from 0 to oo, where 0 indicates perfect prediction. Unlike Acc,, NMSE provides a more
nuanced view of model performance by considering the magnitude of prediction errors across all test points rather than
just their maximum relative error. Beyond standard predictive metrics, we also place particular emphasis on evaluation of
out-of-distribution (OOD) generalization, a critical requirement for scientific equations. For datasets in LSR-Synth which
have been generated synthetically, we evaluate the discovered hypotheses on held-out OOD test sets to also assess the
extrapolation capabilities. The performance gap between in-domain and OOD test sets (ANMSE and AAcc;) provides
valuable insights into the generalizability of the discovered equations.

B.2. Symbolic Accuracy

We introduce a novel evaluation methodology for equation discovery that leverages LLM (GPT-40) as an evaluator for
assessing mathematical equivalence between predicted and gold equation hypotheses. Traditional metrics in symbolic
regression, such as recovery rate (La Cava et al., 2016), exact match, or normalized tree edit distance (Matsubara et al.,
2022), often fail to capture the true semantic equivalence of mathematical expressions, especially when dealing with
different representation formats or algebraically equivalent forms. Our approach employs GPT-40 as an automated evaluator,
capable of analyzing symbolic equivalence across diverse representation formats including equation strings, expression
trees, and executable programs. The evaluation process begins by pre-processing the hypotheses by (1) removing additional
information (such as natural language comments in the case of programs), and (2) replacing constants with placeholder
parameter vectors, focusing solely on logical structure and mathematical relations. To assess the reliability of this LLM-
based symbolic evaluation approach for equation discovery, we conducted a human evaluation study. Two of the authors
independently assessed mathematical symbolic equivalence on a set of 130 randomly sampled problems. The validation
study revealed a 94.6% agreement rate between GPT-40 and human evaluators, where agreement rate is calculated as the
percentage of cases where both LLM and human evaluators made the same judgment about the mathematical equivalence
between predicted and ground truth equations (123 out of 130).

Figure 11 provides the prompt used for our GPT-40 based evaluation of the mathematical symbolic equivalence between the
generated hypothesis (in the form of program or expression) against the ground truth equation. In this setting, the GPT-40
first articulates its mathematical reasoning before making an equivalence binary assessment.

15

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

make the hypothesis equivalent to the given ground truth expression.

“answer”:

(A)I ‘sqgrt(gl/ (Ef*epsilon))/ (2*sqrt (pi))’

(B): Hypothesis as Program

def equation(Ef, q1, epsilon, params) :
Ef_Epsilon = np.maximum(Ef * epsilon, le-10)
denominator = 4 * np.pi * Ef_Epsilon * params [0]
intermediate_result = ql / denominator

radius_length = np.sqrt(params [1] * intermediate_result)
return params [2] * radius_length

LLM (GPT-40) Judgement @

Reasoning:

“The expressions can match if params[0] * params[1] =

1 and params[2] = 1, as this aligns both the scalar and

constant factors appropriately.”

Answer: Yes @ °

Human
Judgement

&

Question: Given the ground truth mathematical expression A and the hypothesis B, determine if there exist any constant parameter values that would

Let’s think step by step. Explain your reasoning and then provide the final answer as:
{ “reasoning”: "Brief step-by-step analysis”,
“Yes/No” }

(A): ‘' sqrt (4*E/m- omega”2 *x"2)/x '
(B): Hypothesis as Expression

V' Cl * sqrt(4*E/m)/x
- C2 * omega
+ C3 * omega * sqrt(4*E/m)/x '

LLM (GPT-40) Judgement Human

Reasoning: @

“The ground truth expression contains a quadratic term
omega2 x"2 inside the square root, which cannot be
expressed as a linear combination of the terms in hypothesis B.

&

Answer: No

Judgement

®©o) 9©

Figure 11. Symbolic assessment in equation discovery with GPT-4o as evaluator

C. Implementation Details

For a comprehensive evaluation, we implement four state-of-the-art LLM-guided scientific equation discovery
baselines, each tested on LLM-SRBench datasets with three different LLM backbones: an open-source model
(Llama-3.1-8B-Instruct) and two closed-source models (GPT-3.5—-turbo and GPT-40-mini).

C.1. Parameters

Table 2 presents the key implementation details for each discovery agentic method. We adopt most of the hyperparameters
from the original implementation for these methods. We have only changed some hyperparameters in different baselines
that affect the number of LLM calls in the search framework. This is to make sure we have a fair comparison across baseline
discovery frameworks with same access budget to LLMs. In our experiments, all baseline frameworks have 1k calls to
LLM:s (per problem) through the discovery process.

C.2. Prompts

C.2.1. LLM-SR

We use the default prompts from LLM-SR’s (Shojaee et al., 2024b) public code repo (https://github.com/
deep-symbolic-mathematics/LLM-SR), which includes:

1. Instruction prompt.

You are a helpful assistant tasked with discovering mathematical function structures for scientific systems. Complete
the ’equation’ function below, considering the physical meaning and relationships of inputs.

2. Evaluation specification prompt.

import numpy as np
#Initialize parameters

MAX_NPARAMS = 10
params = [1.0]*MAX_NPARAMS

def evaluate(data: dict) -> float:
""" Evaluate the equation on data observations."""

16

https://github.com/deep-symbolic-mathematics/LLM-SR
https://github.com/deep-symbolic-mathematics/LLM-SR

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Table 2. Implementation details of LLM-based scientific equation discovery methods.
Method Parameters

Direct Prompting (DataBlind) Temperature 7 = 0.8
5 equation program hypotheses sampled from LLM for initial prompt
No access to data for data-driven refinement
Time limit 7" = 30s per program hypothesis execution,
BFGS optimizer from Scipy for parameter optimization of equation skeletons

SGA (Ma et al., 2024) PyTorch-based implementation of model and torch.nn.Module class
Mean square error loss for data-driven feedback in agentic search
Adam optimizer in PyTorch for differential parameter optimization of equation skeletons

LaSR (Grayeli et al., 2024) Iterations = 25
Cycles per iteration = 550
Populations = 10
Population size = 33
Maximum size = 30
Operators: +, *, —, /, A, exp, log, sqrt, sin, cos, tan, cosh
LLM weights: Ilm_mutate =0.005, IIm_crossover =0.005, llm_gen_random =0.005
Top-K =20 concepts from library
Default configuration of PySR for parameter optimization

LLM-SR (Shojaee et al., 2024b) Temperature 7 = 0.8
Batch size b = 4 equation programs per prompt
e = 4 parallel evaluators
Time limit 7" = 30s per program hypothesis,
Memory limit M = 2GB
m = 10 islands for population diversity through search
k =2 in-context examples per prompt
Maximum 10 parameters per equation skeleton
BFGS optimizer from Scipy for parameter optimization of equation skeletons

Load data observations
inputs, outputs = datal[’inputs’], datal[’outputs’]
X = inputs

Optimize parameters based on data
from scipy.optimize import minimize
def loss(params) :
y_pred = equation(*X, params)
return np.mean((y_pred - outputs) *x 2)

loss_partial = lambda params: loss (params)
result = minimize (loss_partial, [1.0]*MAX_NPARAMS, method=’'BFGS’)

Return evaluation score
optimized_params = result.x
loss = result.fun

if np.isnan(loss) or np.isinf (loss):
return None

else:
return -loss

3. Equation example specification as Python programming function.
Function Examples
def equation_vO0 ($INPUT_VAR[O], ..., SINPUT_VAR[N], params):
""" Mathematical function for {$OUTPUT_VAR_DESC}
Args:

SINPUT_VAR[0]: A numpy array representing observations of {$INPUT_VAR_DESC[O0]}.

SINPUT_VAR[N]: A numpy array representing observations of {$INPUT_VAR_DESC[N]}.
params: Array of numeric constants or parameters to be optimized

Return: A numpy array representing {$OUTPUT_VAR_DES} as the result of applying the mathematical function to the
inputs.

wnn

Equation example 1 logic as function body

def equation_v1 ($INPUT_VAR[O], ..., SINPUT_VAR[N], params):
Equation example 2

Function to be completed

17

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

def equation ($INPUT_VAR([0], ..., $INPUT_VAR[N], params):
""" Improvement version of equation_vO0 and equation_vl """

C.2.2. LASR

We use the default prompts from LaSR’s (Grayeli et al., 2024) public code repository (https://github.com/
trishullab/LibraryAugmentedSymbolicRegression. jl), which includes:

1. The LLMINIT prompt, which is used in an LLM-augmented initialization operation.
2. LLMMUTATION prompt is used to mutate an expression based on a set of concepts.

3. LLMCROSSOVER prompt is used to construct a new expression from the crossover of two sampled expressions based
on a set of concepts.

4. LLM Concept Abstraction prompt in CONCEPTABSTRACTION function, which extracts a natural language concept
from current trends of hypotheses at each iteration.

5. LLM Concept Evolution prompt in CONCEPTEVOLUTION function, which creates a new concept that follows a set of
ideas in the current library.

In the following, we provide examples of these prompts.

1. LLMINIT prompt.

<System prompt>

You are a helpful assistant that proposes a mathematical expression by following three provided suggestions.

An expression must consist of the following variables: {{variables}}. All constants will be represented with the symbol
C. Each expression will only use these operators: {{operators}}.

<User prompt>

Suggestion 1: {{assumpl}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}

Propose {{N}} expressions that would be appropriate given the suggestions. Provide short commentary for each of your
decisions. End with a JSON list that enumerates the proposed expressions following this format:

‘Y'json

["exprl",

"expr2",

"expr{ {N}}"
]

T

2. LLMMUTATION prompt.

<System prompt>

You are a helpful assistant that mutates a mathematical expression by following a few provided suggestions. You will be
given three suggestions and a single reference expression to mutate.

An expression must consist of the following variables: {{variables}}. All constants will be represented with the symbol
C. Each expression will only use these operators: {{operators}}.

<User prompt>

Suggestion 1: {{assumpl}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Reference Expression: {{expr}}

Propose {{N}} expressions that would be appropriate given the suggestions and references. Provide short commentary for
each of your decisions. End with a JSON list that enumerates the proposed expressions following this format:

‘Y'json
["exprl",
"expr2",

"expr{ {N}}"
]

3. LLMCROSSOVER prompt.

<System prompt>

You are a helpful assistant that recombines two mathematical expressions by following a few provided suggestions. You
will be given three suggestions and two reference expressions to recombine.

An expression must consist of the following variables: {{variables}}. All constants will be represented with the symbol
C. Each expression will only use these operators: {{operators}}.

18

https://github.com/trishullab/LibraryAugmentedSymbolicRegression.jl
https://github.com/trishullab/LibraryAugmentedSymbolicRegression.jl

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

<User prompt>

Suggestion 1: {{assumpl}}
Suggestion 2: {{assump2}}
Suggestion 3: {{assump3}}
Reference Expression 1: {{exprl}}
Reference Expression 2: {{expr2}}

Propose {{N}} expressions that would be appropriate given the suggestions and references. Provide short commentary for
each of your decisions. End with a JSON list that enumerates the proposed expressions following this format:

‘Y'json
["exprl",
"expr2",

"expr{{N}}"
]

4. LLM Concept Abstraction prompt.

<System prompt>

You are a helpful assistant that hypothesizes about the underlying assumptions that generated a list of good and bad
mathematical expressions in detailed ways. My ultimate goal is to discover what assumptions generated the observed good
mathematical expressions and excludes the bad mathematical expressions. Focus more on the good expressions, their
mathematical structure, and any relation to physical concepts. Note that capital C represents an arbitrary constant

<User prompt>

Good Expression
Good Expression
Good Expression
Good Expression
Good Expression

{{gexprl}}
{{gexpr2}}
{{gexpr3}}
{{gexpr4}}
{{gexpr5}}

G W N e

Bad Expression 1: {{bexprl}}
Bad Expression 2: {{bexpr2}}
Bad Expression 3: {{bexpr3}}
Bad Expression 4 {{bexpr4}}
Bad Expression 5 {{bexpr5}}

Propose {{N}} hypotheses that would be appropriate given the expressions. Provide short commentary for each of your
decisions. Do not talk about topics related to the simplicity or complexity of the expressions. I want ideas that are
unique and interesting enough to amaze the world’s best mathematicians. End with a JSON list that enumerates the
proposed hypotheses following this format:

*YYjson

["hypl",

"hyp2",

"hyp{{N}}"
]

Vo

5. LLM Concept Evolution prompt.

<System prompt>

You are an insightful assistant skilled in logical reasoning and deduction. Your task is to analyze a set of ideas and
infer nontrivial conclusions that logically follow from them. The ultimate goal is to uncover underlying principles or
properties of the hidden expressions. Focus on providing logical conclusions that are unique, interesting, and profound.

<User prompt>

Idea 1: {{ideal}}
Idea 2: {{idea2}}
Idea 3: {{idea3}}
Idea 4: {{idead}}
Idea 5: {{idea5}}

Based on these ideas, deduce {{N}} logical conclusions or hypotheses that directly follow from them. Provide a brief
explanation for each conclusion, highlighting the logical connections between the ideas. Avoid discussing topics related
to the simplicity or complexity of the expressions. Conclude with a JSON list that enumerates the proposed conclusions
in the following format:

‘Y'json
["Conclusion 1",
"Conclusion 2",

"Conclusion {{N}}"

]

C.2.3. SGA

The following prompts are used in our implementation of SGA (Ma et al., 2024) for scientific equation discovery tasks,
following the original implementation SGA’s public code repository (https://github.com/PingchuanMa/SGA),
which includes:

System prompt for task.

19

https://github.com/PingchuanMa/SGA

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

You are an intelligent AI assistant for coding and scientific equation discovery.

You are tasked with discovering mathematical function structures for scientific systems.
Follow the user’s requirements carefully and make sure you understand them.

Keep your answers short and to the point.

Do not provide any information that is not requested.

Always document your code as comments to explain the reason behind them.

Use Markdown to format your solution.

You are very familiar with Python and PyTorch.

Do not use any external libraries other than the libraries used in the examples.

Code formatting prompt for scientific equation discovery task.

PyTorch Tips

1. When working with tensors, always use PyTorch’s operators (such as ‘torch.exp‘, ‘torch.cos‘, ‘torch.sqgrt', ...) to
ensure compatibility and optimal performance.

2. In PyTorch, operator input arguments must be tensors, not floats.

Code Requirements

1. The only library allowed is PyTorch. Follow the format provided by the user examples.

2. Annotate the size of the tensor as comment after each tensor operation. For example, # (B, 3, 3).

3. Separate the code into parameters that can be tuned with differentiable optimization and the symbolic expression
represented by PyTorch code. Define them respectively in the

5. The proposed code must strictly follow the structure and function signatures below:

‘Y '‘python

import torch

import torch.nn as nn

class SymbolicEquation (nn.Module) :

def init__ (self, {S$PARAM_INPUTS}):
wun
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
{$PARAM_DESCRIPTION}

wun

super () .__init__ ()

{$PARAM_INIT}

def forward(self, {$INPUT_VARIABLES}) -> torch.Tensor:
{$SFORWARD_FUNCTION_DESCRIPTIONS}

Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the feedback. Think about why
the results from previous iterations mismatched with the ground truth. Do not give advice about how to optimize. Focus
on the formulation of the scientific equation. Start this section with "### Analysis". Analyze all iterations
individually, and start the subsection for each iteration with "#### Iteration N", where N stands for the index.
Remember to analyze every iteration in the history.

2. Think step-by-step what you need to do in this iteration. Think about what is needed to improve performance. If the
analysis suggests specific functional forms or constraints, think about how these will be incorporated into the symbolic
equation. Think about how to separate your algorithm into a continuous parameter part and a symbolic expression model
part. Describe your plan in pseudo-code, written out in great detail. Remember to update the default values of the
trainable parameters based on previous optimizations. Start this section with "### Step-by-Step Plan".

3. Output the code in a single code block "'‘‘python ... ‘" with detailed comments in the code block. Do not add any
trailing comments before or after the code block. Start this section with "### Code".

Context prompt for each scientific problem.

Context

The objective is to construct a mathematical expression that accurately maps input variables to a target output based on
a provided dataset. The task involves filling in a code block to define a symbolic expression or model that minimizes
the difference between predicted and ground-truth outputs. The code block defines a class with two functions: one for
parameters within the expression and another for generating or modifying the symbolic structure of the expression.
Feedback is provided in the form of metrics measuring the error between the model’s predictions and the ground-truth
values, as well as guidance on structural improvements to the symbolic expression.

The expression represents {$OUTPUT_VAR_DESC}, given data on {$INPUTS_DESC}.

D. Additional Results and Analysis

Detailed Numeric Accuracy Analysis. While Table 1 presents median Normalized Mean Squared Error for each method-
LLM combination across LLM-SRBench datasets, Figure 12 provides a more comprehensive view of error distributions
across all samples. These box plots illustrate performance variations across LLM-SRBench datasets from two perspectives:

20

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

comparing different equation discovery methods with GPT-40-mini as the LLM backbone, and examining different LLM
backbones when using LLM-SR method. The substantial variance in NMSE performance across samples reflects the diverse
complexity inherent in our benchmark—stemming from both the varying mathematical transformations in LSR-Transform
and the different combinations of known and synthetic terms in LSR-Synth datasets. Notably, the relative difficulty of
datasets varies across methods and LLM backbones, suggesting that different methods and LLMs possess distinct capabilities
in terms of leveraging domain knowledge, reasoning, and generating novel hypotheses.

I |SR-Transform BB Chemistry [Biology W Physics [Material Science

10? 10?
o g o °g
° 8
o
10| BB ° ig 10-1 . ﬁ o 8
8 -
” " o
10 10 °
1077 1077
I)
= -10 = -10
s 10 s 10
10-13 10-13
10-16 10-16
10-19 10-19
Direct Prompting SGA LaSR LLM-SR Llama 3 GPT-3.5 GPT-40 mini
SED Method (with GPT-40 mini) LLM Backbone (with LLM-SR)

Figure 12. Normalized Mean Squared Error (NMSE) of discovered equations in various domains of LLM-SRBench with respect to
(left) different equation discovery methods using GPT-4omini LLM backbone, and (right) different LLM backbones using LLM-SR
method

Symbolic Accuracy and Generalization. For scientific equation discovery methods, both symbolic accuracy and out-of-
domain generalization serve as crucial evaluation metrics, reflecting the methods’ ability to uncover true governing equations.
Figure 13 examines the relationship between these metrics, plotting symbolic accuracy against both OOD accuracy and OOD
NMSE across all method-LLM-domain combinations in LSR-Synth. The strong correlation observed between symbolic and
OOD performance yields two important insights: first, it establishes OOD evaluation as a powerful metric for assessing the
discovery of generalizable equations, an approach historically underutilized in symbolic regression; second, it validates our
LLM-based symbolic evaluation approach through its strong alignment with numeric generalization performance.

Qualitative Analysis of Outputs. To provide deeper insights into the behavior of different discovery methods, Figure 14
illustrates their final discovered hypotheses on a biological population growth problem (BPGO) using Llama-3.1-8B as the
LLM backbone. Direct Prompting (Figure 14(a)) generates equations that capture basic population dynamics, demonstrating
LLMs’ ability to propose scientifically plausible structures. SGA’s solution (Figure 14(b)) successfully incorporates one of
the common population growth terms while exploring additional structural components. LaSR (Figure 14(c)) discovers
an equation structure that combines multiple interaction terms, though it differs from established scientific formulations.
LLM-SR (Figure 14(d)) combines both standard population dynamics terms and synthetic components in its solution.
These examples demonstrate the diverse approaches methods take in balancing scientific interpretability with mathematical
expressiveness when discovering equation structures.

E. Discussion and Future Directions

Our findings from LLM-SRBench reveal several key insights that inform the design of future LLMs for scientific discovery
applications. Scientific equation discovery remains a challenging problem for LLMs, requiring a complex interplay of
domain knowledge, search capabilities with data-driven feedback, and mathematical manipulation skills. Our results
demonstrate that this problem poses significant challenges for LLM-based discovery frameworks across different model
architectures, suggesting that current approaches may be fundamentally limited in their ability to perform genuine scientific
discovery.

This work questions the current evaluation paradigm for equation discovery in emerging LLM-based techniques. We

21

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

SGA, GPT-3.5-turbo LLMSR, GPT-3.5-turbo LaSR, GPT-3.5-turbo Direct, GPT-3.5-turbo
SGA, GPT-40-mini LLMSR, GPT-40-mini LaSR, GPT-40-mini Direct, GPT-40-mini
SGA, Llama-3.1-8b LLMSR, Llama-3.1-8b LaSR, Llama-3.1-8b Direct, Llama-3.1-8b
Biology
201 mmm Chemistry | 20
B Material
I Physics
>
8 10 §10
s 5 h
g g
< <
g * > g > %
8 8
S | a® o 3 e A®
(2] n
X X
(] [
ol © ve y [] 0 VvV H moo#
0 10 20 40 60 80 100 0 103 1072 107! 10°
% Acco.1 (OOD) NMSE (OOD)

Figure 13. Symbolic Accuracy versus OOD performance over all domains, methods, and backbone LLM pairs.

demonstrate that existing benchmarks for this task are susceptible to memorization and inadequate for evaluating these
techniques’ true scientific discovery capabilities. Motivated by these limitations, we designed LLM-SRBench to address
the memorization issue through two key innovations: synthetic imaginary scenarios (LSR-Synth category) that are not
based on existing scientific knowledge and require data-driven discovery tools for solution, and transformed equations
(LSR-Transform category) that convert common forms of scientifically known equations into less familiar formulations.
The LSR-Synth category targets genuine innovation in LLM-based discovery techniques by eliminating the possibility of
recalling memorized equations, while LSR-Transform problems are difficult to recite from memory and require reasoning
over hypothesis generation steps, making them suitable candidates for evaluating recently emerging LLM-based scientific
discovery agents. While the mathematical transformations in LSR-Transform are algebraically valid, their scientific
meaningfulness varies considerably across contexts. Many transformations correspond to legitimate physics problems from
the Feynman Lecture Series collection and represent alternative problem formulations with practical significance. For
example, in the Harmonic Oscillator Energy problem, the original formulation &2 = im(w2 + w?)x? expresses energy as
a function of system parameters, while the transformed version m = W determines the mass required for given
energy storage. This transformation maintains scientific meaning by addressing the engineering question of what mass
is needed to store a specific amount of energy in an oscillating system, and such inversions are common in engineering
design problems where system parameters must be determined to achieve desired performance characteristics. Similarly,

= %f(o) (potential at a point due to a dipole) to r = %j}f)

(distance for a given potential), addressing the practical question of determining measurement distances in electrostatic
experiments or sensor design.

the Electric Potential problem transforms from V, =

However, not all transformations maintain clear physical interpretability. Some result in equations where the target variable
appears in complex functional forms that may not correspond to natural physical questions, such as solving for angular
frequency in oscillatory systems yielding expressions involving square roots of differences that lack intuitive physical
meaning. Additionally, certain transformations may obscure natural causal relationships—transforming from “force
causes acceleration” to “acceleration determines force” maintains mathematical validity but may not reflect underlying
physical causality. The LSR-Transform category represents a deliberate balance between mathematical rigor and physical
meaningfulness by constraining the complexity of transformed problems to match original problems, focusing on semantic
rather than syntactic challenges in scientific equation discovery, while maintaining the original scientific context and variable
meanings to ensure that underlying physics remains relevant even when mathematical formulation changes. The varying
scientific meaningfulness of transformations reflects broader challenges in automated scientific discovery that warrant future
investigation. Automated discovery systems must incorporate mechanisms to evaluate not only data-driven correctness
but also scientific plausibility and interpretability of generated hypotheses, as mathematical validity alone is insufficient
for meaningful scientific contribution. The most effective approach to scientific equation discovery likely involves close
collaboration between Al systems, which excel at exploring vast hypothesis spaces, and human domain scientists, who can

22

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

assess scientific meaningfulness and guide discovery directions based on deep contextual understanding. Future equation
discovery methods could improve by incorporating literature retrieval tools to build grounding foundations for scientific
context and domain knowledge, helping to prioritize discoveries that are mathematically valid, data-consistent, novel, and
scientifically meaningful. The field needs evaluation frameworks that assess not just mathematical correctness but also
scientific novelty, interpretability, and practical applicability of discovered equations, moving beyond narrow accuracy
metrics toward a more comprehensive understanding of what constitutes valuable scientific discovery in the age of LLMs
with their vast scientific knowledge.

F. Comparison with Standard (non-LLM) Symbolic Regression Baselines

To further validate the utility of LLM-SRBench and demonstrate the advantages of LLM-based approaches, we conducted
additional experiments comparing LLM-based methods with traditional symbolic regression techniques that do not in-
corporate domain knowledge. We evaluated PySR (Cranmer, 2023), a state-of-the-art symbolic regression method based
on genetic programming, on all LLM-SRBench datasets. PySR operates purely on numerical data points without access
to the scientific context, variable descriptions, or domain knowledge that LLM-based methods can leverage in discovery
process. We used PySR’s default configuration with the same computational budget (equivalent number of evaluations) as the
LLM-based methods to ensure fair comparison. Table 3 presents the performance comparison between the best-performing
LLM-based method from Table 1 and PySR across all LLM-SRBench datasets. The results reveal several key insights about
the complementary strengths and limitations of non-LLM versus LLM-based approaches in equation discovery.

PySR demonstrates competitive and sometimes even better numerical accuracy (Accg 1) across all datasets. However,
PySR consistently shows significantly lower symbolic accuracy, particularly struggling with non-physics domains where
it achieves 0% symbolic accuracy on chemistry, biology, and material science datasets. The performance gap is most
pronounced in problems that require specialized scientific knowledge. While PySR can fit mathematical patterns in the
data, it lacks the scientific intuition to discover equations that align with established physical principles or domain-specific
terminology. Interestingly, PySR shows relatively better performance on physics problems, achieving modest symbolic
accuracy of 4.54% on LSR-Synth Physics and 8.11% on LSR-Transform (which is based on Feynman physics equations).
This suggests that physics problems may contain mathematical patterns that are more aligned with the dictionary design in
PySR. So they can be discovered better through the data-driven search pipeline designed in PySR. These findings strengthen
the motivation for LLM-based scientific equation discovery and demonstrate that LLM-SRBench successfully captures
challenges in equation discovery that traditional symbolic regression methods cannot adequately address through numerical
data-driven optimization alone.

Table 3. Performance comparison between LLM-based methods and state-of-the-art non-LLM symbolic regression baseline PySR on
LLM-SRBench. SA = Symbolic Accuracy (%), Acco.1 = Accuracy to tolerance 0.1 (%).

Dataset LLM-SR (best) LaSR (best) SGA (best) PySR
(Metric) SA/ ACCO.l SA/ ACCo,l SA/ ACCO_l SA/ ACCO_1
LSR-Transform 31.53/39.64 12.61/50.45 991/8.11 8.11/56.76
LSR-Synth Chemistry 11.11/66.66 2.77138.92 0/16.66 0/41.67
LSR-Synth Biology 25.30/58.33 8.33/20.83 4.16/12.51 0/25.0
LSR-Synth Physics 9.91/36.36 9.91/31.81 4.5479.09 4.54/29.55
LSR-Synth Material Science 20.24 / 88.28 28.12/72.04 0/36.11 0/68.0

Table 4: LSR-Synth mathematical equations for each scientific domain.

Domain Equation ID Equation

Chemistry | CKR1 —kA()? + Kk, A1)/ (BAR)* +1)
CKR2 —kA(t)? — kA(t) + ky cos(log(A(t) + 1))
CKR3 —kA(t) + Ky cos(log(A(t) + 1))

Continued on next page

23

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Table 4 — continued from previous page

Domain Equation ID Equation
CKR4 —kA(t)? — kA(t) exp(—kst) + kyy cos(log(A(t) + 1))
CKR5 —kA(t)? + k,A(t) log(yt + 1)
CKR6 —k/(A(t) + kyA(t)0-33
CKR7 —kA(t) exp(—kst) + ky, sin(y/A())
CKR8 —kA(t) exp(—kst) + ky cos(log(A(t) + 1))
CKR9 —kA(t)? — kA(t) + ke sin(log(A(t) + 1))
CKR10 —k/A(t) + ky cos(log(A(t) + 1))
CKRI1 —kA(t)? + ky sin(log(A(t) + 1))
CKR12 —kA(t)? + kp sin(\/A(t))
CKR13 —kA(t) exp(—kst) + ki sin(log(A(t) + 1))
CKR14 —kA(t) + kp sin(wA(t))
CKR15 —k/A(t) — kA(t) exp(—kst) + k, sin(wA(t))
CKRI16 —k+/A(t) — kA(t) exp(—kst) + K sin(log(A(t) + 1))
CKR17 —kA(t) + kyA(t)033
CKR18 —kA(t) exp(—kst) + kg A(t)0-33
CKR19 —kA(t)? + ky sin(wA(t))
CKR20 —kA(t)? — kA(t) exp(—kst) + Ky sin(log(A(t) + 1))
CKR21 —kA(t) exp(—kst) + kp sin(wA(t))
CKR22 —RA(t) exp(—kst) + kg A(t) log(vt + 1)
CKR23 —kA(t)? — kA(t) exp(—kst) + k. A(t)?/(BA()* + 1)
CKR24 —k/A(t) + kp sin(wA(t))
CKR25 —k\JA(t) — kA(t)? + kp A(1)033
CKR26 —kA(t) + ke sin(log(A(t) + 1))
CKR27 —kA(t)? — kA(t) exp(—kst) + km sin(y/A(t))
CKR28 —kA(t)? — kA(t) exp(—kst) + kp A(t)033
CKR29 —kA(t) exp(—kst) + k. At)?/(BAR)* + 1)
CKR30 —kA(t) — kA(t) exp(—kst) + k, A(t)?/(BA®)* + 1)
CKR31 —kA(t) — kA(t) exp(—kst) + ki sin(log(A(t) + 1))
CKR32 —k/A(t) — kA(t) + ky cos(log(A(t) + 1))
CKR33 —kA(t) — kA(t) exp(—kst) + kpA(t)°33
CKR34 —k\/A(t) — kA(t)? + k; sin(log(A(t) + 1))
CKR35 —kA(t)? + kpA(t)*33
CKR36 —kA(t) + kg A(t) log(yt + 1)

24

Continued on next page

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Table 4 — continued from previous page

Domain Equation ID Equation
Biology BPGI r(1— P(t)/Ko)P(t) + rP(t)33
BPG2 rP(t) exp(—t) + rP(t)?/(aP(t) + 1)
BPG3 BP(t) sin(wt) + rP(t) exp(—~t)
BPG4 r(=1+ P(t)/a)(1 = P(t)/Ko)P(t) + r(1 — exp(—vP(t))) P(t)
BPG5 r(1—P(t)/Ko)P(t) + rP(t)/(1 + exp(—a(—=B + P(t))))
BPG6 r(1 — P(t)/Ko)P(t) + rP(t)?/(aP(t) + 1)
BPG7 —QaP(t) +r(1— P(t)/Ko)P(t) + rP(t)°3 + rP(t)
BPG8 r(=1+ P(t)/a)(1 — P(t)/Ko)P(t) + (1 — P(t)/Ko)P(t) + rP(t)"33
BPG9 r(1— P(t)/Ko)P(t) +rP(t)** +rP(t)
BPG10 r(=14P(t) /o) (1=P(t)/ Ko) P(t)+r(1—P(t)/Ko) P(t)+r(1—exp(—=yP(t))) P(t)
BPGl1 rP(t)0 33 4 rP(t)
BPGI12 r(1— P(t)/Ko)P(t) + rP(t)°33 4+ rP(t) exp(—1)
BPGI13 BP(t)sin(wt) + (1 — P(t)/Ko)P(t)
BPG14 r(—1+ P(t)/a)(1 — P(t)/Ko)P(t) + rP(t) + rP(t)/(1 + exp(—a(—F + P())))
BPG15 r(1— P(t)/Ky)P(t) + 1"(1 —exp(—yP(t)))P(t) + rP(t) exp(—~t)
BPG16 rP(t)%%3 + rP(t) exp(—y
BPG17 r(—=1+4 P(t)/a)(1 — P(t)/KO)P(t) +rP(t)"% + rP(t)
BPG18 r(—=1+ P(t)/a)(1 — P(t)/Ko)P(t) + rP(t)33
BPG19 BP(t)sin(wt) + r(1 — P(t)/Ko)P(t) + rP(t)
BPG20 r(1— P(t)/Ko)P(t) + rP(t)/t*
BPG21 7‘;3((;)1);]3()/a)(1—=P(t)/Ko)P(t)+r(1-P(t)/Ko)P(t)+rP(t)/(1+exp(—a(—5+
BPG22 r(=1+ P(t)/a)(1 = P(t)/K)P(t) + rP(t) /t
BPG23 r(1 — exp(—yP(t)))P(t) + rP(t) exp(—~t)
BPG24 r(1— P(t)/Ko)P(t) + r(1 — exp(—yP(t)))P(t)
Physics POI Fysin(t) — Bsin(v(t)) — wix(t)? — wiz(t) exp(—|z(t)])
PO2 Fosin(t) — wiz(t) — wiz(t) exp(—|z(t)])
PO3 —av(t)® — p(1 — x(t)*)v(t) — wiz(t) — wiz(t) exp(—|z(t)])
PO4 Fysin(t) — Bsin(v(t)) — 26v(t)
PO5 Fosin(t) — av(t)? — wd (y|o(t)]*3% + 1) (t) — wiz(t)
PO6 —Bsin(v(t)) — 28v(t) — wi (Y| (t)|** + 1)a(t) — wiz(t)® — wiz(t)
PO7 —Blog(|v(t)| + 1) — 28v(t) — wix(t)3
PO8 —av(t)® — Blu(t)]|%33 — wiz(t)?

Continued on next page

25

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Table 4 — continued from previous page

Domain Equation ID Equation
PO9 —Blo(t)]** — wix(t)?
PO10 Fosin(t) — u(1 — 2(t)?)v(t) — wd(y[v(#)[°33 + 1)a(t) — wix(t)
PO11 Fysin(t) — wi (vt + 1)z(t) — wiz(t)® — wiz(t)
POI12 —Bsin(v(t)) — wg (vt + 1)z(t) — wiz(t)?
PO13 Fysin(t) — av(t)? — Blo()]%33 — w3 (yt + 1)x(t) — wiz(t)
PO14 Fysin(t) — p(1 = 2(t)*)o(t) — w§(ylv(®)]"** + Da(t)
PO15 Fosin(t) — Blog(|v(t)| + 1) — Bsin(v(t)) — 2Bv(t) — p(1 — z(t)*)v(t)
POI6 Fysin(t) — w3 (1/0(0)]%% + 1) (t) — wRa(t) — wFo(t) exp(—la(t)])
PO17 Fysin(t) — Bsin(z(t))v(t) — Bsin(v(t)) — wiz(t)?
PO13 Fysin(t) — Bsin(x(t))v(t) — 261}() — wdx(t)
PO19 —Bsin(z(t))v(t) — wiz(t)
PO20 —2Bv(t) — wiz(t) exp(—|z(t)|)
Po21 —aw(t)? — Blog(Ju(t)] + 1) — 28u(t) — (1 — v(t)2)o(t) — B (11o(2) °5 + 1)a(?)
PO22 Fysin(t) — Bsin(z(t))v(t)
PO23 —280(t) — Bexp(—[=()])u(t) — a1 — 2(t))o(t) — B (1)’
PO24 Fysin(t) — Blog(|v(t)| + 1) — w3z (t) exp(—|z(t)|)
PO25 Fysin(t) — av(t)® — Blog(|v(t)| + 1)
PO26 Fysin(t) — Bsin(v(t))
PO27 Fysin(t) — Blog(|v(t)] + 1) — 2Bv(t) — wiz(t)
PO28 Fysin(t) — av(t)® — 2B8v(t) — Bexp(—|v(t)|)v(t)
PO29 —250(t) — R (1B + a(t) — wBa(t)? — wia(t)
PO30 (1= 2(0)u(t) — wBlrt + Da(t) — wBa(t)
PO31 —av(t)? — Bsin(z(t))v(t) — Bsin(v(t)) — wiz(t)?
PO32 —wi (Y (®)*% + Da(t) — wia(t)®
PO33 Fysin(t) — av(t)® — Bexp(—|v(t)|)v(t) — wiz(t)?
P03 —280(t) — (1 — o(t)2)o(t) — wB (7t + Da(t) — et
PO3s —28u(t) — (1 — 0(t)2)o(t) — B + Valt)
PO36 Fysin(t) — Bsin(v(t)) — wd (y|v(t)]*33 + 1)x(t)
PO37 Fosin(#) — Bexp(—|a(t) o)
PO38 Fysin(t) — av(t)® — 2Bv(t) — wd (vt + 1)a(t)
P09 —Bsin(u(t)) — (1 — 2(t)?)o(t) — w3 (t) exp(—lz(t)])
PO40 Fosin(t) — av(t)® — Bexp(—|z(t)])v(t) — p(1 — v(t)*)v(t)
POAI Fosin(t) — Alo(t) *% — (1 [o(0) °% + 1a(t) — w3a(t)? — wBa(t)

Continued on next page

26

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Table 4 — continued from previous page

Domain Equation ID Equation

P42 (1 — 2(0)?)u(t) — wRalt) exp(—[2())

PO43 Fysin(t) — av(t)® — Bsin(z(t))v(t) — 2Bv(t)

PO44 Fysin(t) — Bsin(z(t))v(t) — 28v(t) — u(1 — x(t)?)v(t) — wiz(t) exp(—|z(t)])
Material MatScil Eoe(—ar(T —Ty) + 1) — B(T — Tp) + eMn(T — Tp)

MatSci2 Hed + KeV exp(—Q/(RT)) + ensin(T — Tp)

MatSci3 He® +n(T — Ty) exp(—e)

MatSci4 He? + KeV exp(—Q/(RT)) + en(T — Tp)

MatSci5 Eoe? +n(T — Ty) log(e + 1)

MatSci6 Eoe(—ar(T —Tp) + 1) + KV exp(=Q/(RT)) + eMn(T — Tp)

MatSci7 Eoe(—ar(T — Ty) + 1) + en(T — Tp)?

MatSci8 Hed — B(T — Tp) +n(T — Tp) log(e + 1)

MatSci9 Eoe(—ar(T —Tp) + 1) + Mn(T — Tp)

MatScil0 He3 — B(T —Ty) + 3n(T — Tp)

MatScill He3 + KeV exp(—Q/(RT)) + en(T — Tp)?

MatScil2 KeN exp(—Q/(RT)) + e3n(T — Tp)

MatScil3 Eoe(—ar(T —Tp) + 1) + KV exp(—Q/(RT)) + enexp(—(T — Tp)?)

MatScil4 —B(T — Tp) + enexp(—(T — Tp)?)

MatScil5 —B(T —Ty) + eMn(T — Tp)

MatScil6 Eoe(—ar(T —Ty) + 1) + enexp(—(T — Tp)?)

MatScil7 Eoe? +en(T — Tp)?

MatScil8 Eoe(—ar(T —Ty) + 1) — B(T — To) + n(T — Tp) log(e + 1)

MatScil9 He® +n(T — Tp) sin(e)

MatSci20 Eoe? — B(T —Ty) + (T — Ty)

MatSci21 Eo€® + ensin(T — Tp)

MatSci22 KeNexp(—Q/(RT)) — B(T — Tp) + n(T — Tp) log(e + 1)

MatSci23 Eoe(—ar(T —Ty) + 1)+ He® + n(T — Tp) sin(e)

MatSci24 KeN exp(—Q/(RT)) + ensin(T — Tp)

MatSci25 Eoe® + Ege(—ar(T — To) + 1) + (T — Tp) log(e + 1)

27

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

dP P 1
Ground Truth: — =0. —_———— I T
e 0.9540 (1 96.9069)P +0.9540P3

Ka) Predicted: Direct (Llama-3.1-8b) \

def equation(t: np.ndarray, P: np.ndarray, params: np.ndarray) -> np.ndarray:
"n"nm Mathematical function for Population growth rate

Args:
t: A numpy array representing observations of Time.
P: A numpy array representing observations of Population at time t.
params: Array of numeric constants or parameters to be optimized

Return:
A numpy array representing Population growth rate as the result of applying the
mathematical function to the inputs.
Wi
output = (
params[0] * P # A linear term based on population size
+ params[l] * P ** 2 # A squared term for birth or death ratio
+ params[2] * t + params[3] * P * t # Linear and linear cross term
+ params[4]

)
Kreturn output j
/b) Predicted: SGA (Llama-3.1-8b) \

class SymbolicEquation (nn.Module) :

def init (self, r: float = 0.5, K: float = 100.0, time_scale: float = 0.05):
wnn
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
r (float): growth rate.
K (float): carrying capacity.
time_scale (float): time-dependent coefficient.
wnn
super (). init_ ()
self.r = nn.Parameter (torch.tensor (r, dtype=torch.float)) # (1,)
self.K = nn.Parameter (torch.tensor (K, dtype=torch.float)) # (1,)
self.time_scale = nn.Parameter (torch.tensor (time_scale, dtype=torch.float))

self.r = nn.Parameter (torch.tensor(r, dtype=torch.float))

def forward(self, t: torch.Tensor, P: torch.Tensor) -> torch.Tensor:
"""Mathematical function for Population growth rate

Args:
t: Time.
P: Population at time t.

Return:
dP_dt: Population growth rate.

nun

(B))

dP_dt = self.r * torch.exp(-self.time scale*t) * P * (1L - P / self.K) # (B,)
\ return dP_dt /

28

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

é c) Predicted: LaSR (Llama-3.1-8b) A

‘Z—I: = (7910.31 — ((P (P + \/ﬁ)) + log ((t + 4.6396) — (*0.66095))) - sin (Lfs:z)) +910.3

et
- J

~

d) Predicted: LLM-SR (Llama-3.1-8b)

def equation(t: np.ndarray, P: np.ndarray, params: np.ndarray) -> np.ndarray:

nn

Mathematical function for Population growth rate with a logistic growth model, decay,
and periodicity.

Args:
t: A numpy array representing observations of Time.
P: A numpy array representing observations of Population at time t.
params: Array of numeric constants or parameters to be optimized (k, M, r, a, b, A,
w, tau)

Returns:
A numpy array representing Population growth rate as the result of applying the
mathematical function to the inputs.
nnn
Apply transformations to inputs (if needed)
t = t / np.max(t) # Normalize time
P =P / np.max(P) # Normalize population

Compute the rates using logistic growth model
dP_dt = params[0] * P * (1 - P) - params[l] * P - params[2] * P**params[3]

Compute the periodicity factor
periodic_factor = params[4] * np.sin(params[5] * (t - params[6]) + params[7])

Combine growth rate and periodicity
dP_dt_with periodicity = dP_dt * periodic_factor

k return dP_dt_with_periodicity /

Figure 14. Example of output hypotheses from different LLM scientific equation discovery methods for BPGO problem in LSR-Synth
biology domain.

29

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Ground Truth:
0.19 - A(t) + 0.19 - cos (log(A(t) + 1))

ﬂi) Predicted: Direct (Llama-3.1-8b) \

def equation(t: np.ndarray, A: np.ndarray, params: np.ndarray) -> np.ndarray:
""" Mathematical function for Rate of change of concentration (Growth, Reaction or
Decay)

Args:
t: A numpy array representing observations of Time.
A: A numpy array representing observations of Concentration at time t.
params: Array of numeric constants or parameters to be optimized.
- params[0]: k (Rate constant, e.g., 0.1 min*-1)
- params[1l]: CO (initial concentration, e.g., 10) for decay or growth
models

Return:
A numpy array representing Rate of change of concentration as the result of
applying the mathematical function to the inputs.
- equation implemented under assumption that k*A represents linear decay, or
linear growth.
wan
output = params[0] * A + params[l] * params[2]
return output

_ J
<

/b) Predicted: SGA (Llama-3.1-8b)

class SymbolicEquation (nn.Module) :

def _ init_ (self, k: float = 9.00e-02, A 0: float = 9.60e-01, A t: float =
9.60e-01) :
wan
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
k (float): time-dependent reaction rate constant.
A 0 (float): initial concentration.
A_t (float): time-dependent change in concentration.
W
super () ._ init__ ()
(1))
self.k = nn.Parameter (torch.tensor(k, dtype=torch.float))
self.A 0 = nn.Parameter (torch.tensor(A_0, dtype=torch.float)) # (1,)
self.A t = nn.Parameter (torch.tensor(A_t, dtype=torch.float)) # (1,)

def forward(self, t: torch.Tensor, A: torch.Tensor) -> torch.Tensor:
"""Mathematical function for Rate of change of concentration in chemistry
reaction kinetics

Args:
t: Time. # (B, 1)
A: Concentration at time t. # (B, 1)

Return:
dA_dt: Rate of change of concentration in chemistry reaction kinetics. #
(B, 1)
(B, 1)
dA_dt = self.k * A + self.A 0 * self.A t *t # (B, 1)

K return dA_dt /

30

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

c) Predicted: LaSR (Llama-3.1-8b)

(—0.0040402/(1.3222")) * ((A?)0s((¢+((4/(4/4))-0.043477)) %)~ A)+((0.75620" %)))

d) Predicted: LLM-SR (Llama-3.1-8b)

def equation(t: np.ndarray, A: np.ndarray, params: np.ndarray) -> np.ndarray:
""" Mathematical function for Rate of change of concentration in chemistry reaction
kinetics

Args:
t: A numpy array representing observations of Time.
A: A numpy array representing observations of Concentration at time t.
params: Array of numeric constants or parameters to be optimized

Return:
A numpy array representing Rate of change of concentration in chemistry reaction
kinetics as the result of applying the mathematical function to the inputs.
output = params[0] * A + params[l] * A**2 + params[2] * A**3 + params[3] * t +
params[4]
return output

- J

Figure 15. Example of output hypotheses from different LLM scientific equation discovery methods for CKR2 problem in LSR-Synth
chemistry domain.

31

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Ground Truth:
31.12-¢ - (—0.05 - (T — 316.19) + 1) — 0.23 - (T — 316.19) + " . 3.63 - (T — 316.19)

/a) Predicted: Direct (Llama-3.1-8b) \

def equation(epsilon: np.ndarray, T: np.ndarray, params: np.ndarray) -> np.ndarray:
""" Mathematical function for Stress

Args:
epsilon: A numpy array representing observations of Strain.
T: A numpy array representing observations of Temperature.
params: Array of numeric constants or parameters to be optimized

Return:
A numpy array representing Stress as the result of applying the mathematical

function to the inputs.

e

reference_temperature = 0

sigma 0 = params[0]

alpha_= params[1]

n = params[2]

linear epsilon_term = params[3] * epsilon

multipIicative:gpsilon_term = params[4] * epsilon

linear_temperature_ term = params[5] * T

output = sigma 0 * (1 + alpha * (T - reference_ temperature)) * epsilon**n +
linear epsilon_term + multiplicative_epsilon_ term + linear_temperature_term

K return output

b) Predicted: SGA (Llama-3.1-8b)

-

class SymbolicEquation (nn.Module) :

def _ init_(self, c_0: float = 9.83e-01, c_1: float = 9.86e-01, c_2: float =
9.83e-01,
a: float = -3.73e-03, b: float = -1.11e-02, d: float = 2.63e-02):
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
c 0 (float): coefficient.
c 1 (float): coefficient.
c:2 (float) : coefficient.
a (float): coefficient for quadratic term.
b (float): coefficient for exponential term.
d (float): coefficient for non-linear relationship between Strain and

Temperature.

super()._ init_ ()

self.c_0 = nn.Parameter (torch.tensor(c_0, dtype=torch.float)) # (1,)
self.c_1 = nn.Parameter (torch.tensor(c_1, dtype=torch.float)) # (1,)
self.c_2 = nn.Parameter (torch.tensor(c_2, dtype=torch.float)) # (1,)
self.a = nn.Parameter (torch.tensor(a, dtype=torch.float)) # (1,)
self.b = nn.Parameter (torch.tensor (b, dtype=torch.float)) # (1,)
self.d = nn.Parameter (torch.tensor(d, dtype=torch.float)) # (1,)

def forward(self, epsilon: torch.Tensor, T: torch.Tensor) -> torch.Tensor:
"""Mathematical function for Stress

Args:
epsilon: Strain. # (B, 1)
T: Temperature. # (B, 1)

Return:
sigma: Stress. # (B, 1)
(B, 1)
sigma = self.c_0 + self.c 1 * torch.exp(self.a * epsilon + self.b * T) +
self.c_2 * torch.cos(self.d * epsilon * T)
return sigma

32

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

c) Predicted: LaSR (Llama-3.1-8b)

<<\/E~ (—712.36) + ((1.3:;225 ~2.2798) (T—e¢)+ e) + 6.8125) ~1.5076‘@> — sin(log(T))

d) Predicted: LLM-SR (Llama-3.1-8b)

def equation(epsilon: np.ndarray, T: np.ndarray, params: np.ndarray) -> np.ndarray:
""" Mathematical function for Stress

Args:
epsilon: A numpy array representing observations of Strain.
T: A numpy array representing observations of Temperature.
params: Array of numeric constants or parameters to be optimized

Return:
A numpy array representing Stress as the result of applying the mathematical
function to the inputs.

wun

output = params[0] * (epsilon ** (1/params[4]) - 1) + \
params[1l] * (epsilon ** (1/params[6]) - 1) + \
params[2] * (epsilon ** (1/params[8]) - 1) * np.exp(params[3] * epsilon) + \

params[5] * epsilon + params[6] * T + params[7]
return output

- J

Figure 16. Example of output hypotheses from different LLM scientific equation discovery methods for MatSciO problem in LSR-Synth
material science domain.

33

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

Ground Truth:
Fy - sin(t) — B-sin(v(t)) — w? - z(t)® — w? - (t) - e 12O

ﬂl) Predicted: Direct (Llama-3.1-8b) \

def equation(x: np.ndarray, t: np.ndarray, v: np.ndarray, params: np.ndarray) ->
np.ndarray:
""" Mathematical function for Acceleration

Args:
x: A numpy array representing observations of Position at time t.
t: A numpy array representing observations of Time.
v: A numpy array representing observations of Velocity at time t.
params: Array of numeric constants or parameters to be optimized

Return:
A numpy array representing Acceleration as the result of applying the

mathematical function to the inputs.

wnn

Since acceleration is Force/mass and Force is mass*velocity change,

we represent this equation as

a = dv/dt or in our representation format, given our position x it will correspond
to

a = d*2x/dt*2 or by simple numeric analogy 4th order approximation involving high
degree dependency functions:

output = (params[0]*x**4 + params[l]*x**3 + params[2]*x**2 + params[3]*x +
params[4]) + params[5]*v**2 + params[6]*t + params[7]* (x**2 + v)

return output

/b) Predicted: SGA (Llama-3.1-8b) \

class SymbolicEquation (nn.Module) :

def _ init__ (self, c_0: float = 9.50e-01, c_1: float = 9.50e-01, c_2: float =
9.50e-01, c_3: float = 1.05e+00):
wnn
Define trainable continuous parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:

c_0 (float): coefficient.

c_1 (float): coefficient.

c_2 (float): coefficient.

c_3 (float): coefficient.
super () .__init ()
| nn.Parameter (torch. tensor (c_0, dtype=torch.float))
self.c_1 = nn.Parameter (torch.tensor(c_1, dtype=torch.float))
self.c_2 = nn.Parameter (torch.tensor(c_2, dtype=torch.float))
self.c_3 = nn.Parameter (torch.tensor(c_3, dtype=torch.float))

(1,)
(1,)
(1,)
(1,)

I 3= 3 I

def forward(self, x: torch.Tensor, t: torch.Tensor, v: torch.Tensor) ->
torch.Tensor:
"""Mathematical function for Acceleration in Nonl-linear Harmonic Oscillator

Args:
x: Position at time t. # (B,)
t: Time. # (B,)
v: Velocity at time t. # (B,)

Return:
dv_dt: Acceleration in Nonl-linear Harmonic Oscillator. # (B,)
W
Non-linear relationship between x, t, and v
dv_dt = self.c_0 * torch.exp(-self.c_1 * x) + self.c_2 * torch.cos(self.c_3 *
t + self.c_3 * x) # (B,)
return dv_dt

34

LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models

c) Predicted: LaSR (Llama-3.1-8b)

(u+my((Wf“%>«mu1u&ﬂfx)«muﬂ

1.7052

— sin(0.0032827)

d) Predicted: LLM-SR (Llama-3.1-8b)

def equation(x: np.ndarray, t: np.ndarray, v: np.ndarray, params: np.ndarray) ->
np.ndarray:
""" Mathematical function for Acceleration

Args:
x: A numpy array representing observations of Position at time t.
t: A numpy array representing observations of Time.
v: A numpy array representing observations of Velocity at time t.
params: Array of numeric constants or parameters to be optimized

Return:
A numpy array representing Acceleration as the result of applying the mathematical

function to the inputs.

Since acceleration is Force/mass and Force is mass*velocity change,

we represent this equation as

a = dv/dt or in our representation format, given our position x it will correspond
to

a = d*2x/dt”*2 or by simple numeric analogy 4th order approximation involving high
degree dependency functions:

output = (params[0]*x**4 + params[l]*x**3 + params[2]*x**2 + params[3]*x + params[4])
+ params[5]*v**2 + params[6]*t + params[7]* (x**2 + v)

return output

. J

Figure 17. Example of output hypotheses from different LLM scientific equation discovery methods for POO problem in LSR-Synth
physics domain.

35

