

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INCLUSIVEVIDPOSE: BRIDGING THE POSE ESTIMATION GAP FOR INDIVIDUALS WITH LIMB DEFICIENCIES IN VIDEOS

Anonymous authors

Paper under double-blind review

Figure 1: **Demonstration of InclusiveVidPose Dataset.** The top row depicts a subject with left upper and lower limb deficiency across frames, and the bottom row depicts a subject with right upper limb deficiency. Unlike existing pose estimation datasets, we focus on human pose estimation for individuals with limb deficiencies and add custom residual limb end keypoints highlighted in purple to capture anatomical variations. All the displayed keypoints are manually annotated.

ABSTRACT

Approximately 445.2 million individuals worldwide are living with traumatic amputations, and an estimated 31.64 million children aged 0–14 have congenital limb differences, yet they remain largely underrepresented in human pose estimation (HPE) research. Accurate HPE could significantly benefit this population in applications, such as rehabilitation monitoring and health assessment. However, the existing HPE datasets and methods assume that humans possess a full complement of upper and lower extremities and fail to model missing or altered limbs. As a result, people with limb deficiencies remain largely underrepresented, and current models cannot generalize to their unique anatomies or predict absent joints. To bridge this gap, we introduce **InclusiveVidPose** Dataset, the first video-based large-scale HPE dataset specific for individuals with limb deficiencies. We collect 313 videos, totaling 327k frames, and covering nearly 400 individuals with amputations, congenital limb differences, and prosthetic limbs. We adopt 8 extra keypoints at each residual limb end to capture individual anatomical variations. Under the guidance of an internationally accredited para-athletics classifier, we annotate each frame with pose keypoints, segmentation masks, bounding boxes, tracking IDs, and per-limb prosthesis status. Experiments on InclusiveVidPose highlight the limitations of the existing HPE models for individuals with limb deficiencies. We introduce a new evaluation metric, Limb-specific Confidence Consistency (LiCC), which assesses the consistency of pose estimations between residual and intact limb keypoints. We also provide a rigorous benchmark for evaluating inclusive and robust pose estimation algorithms, demonstrating that our dataset poses significant challenges. We hope InclusiveVidPose spur research toward methods that fairly and accurately serve all body types. The project website is available at: [InclusiveVidPose](#).

Figure 2: **Examples of keypoint predictions by the ViTPose base model trained the COCO dataset.** Left: prostheses are erroneously predicted as natural ankles, leading to false right-ankle detections. Middle: the model fails to localize the residual limb end and places the left-wrist keypoint on the torso. Right: pronounced asymmetry in thigh length results in the right-knee keypoint being placed at an anatomically implausible midpoint between hip and ankle. These cases show limited generalization to limb differences.

1 INTRODUCTION

According to the Global Burden of Disease (GBD) 2021 report (Institute for Health Metrics and Evaluation (IHME), 2024), approximately 445.2 million individuals worldwide are living with traumatic amputations, and an estimated 31.64 million children aged 0–14 have congenital limb differences. These people could benefit greatly from accurate human pose estimation (HPE) in applications such as rehabilitation monitoring and health assessment. Regrettably, existing HPE systems are trained on the existing datasets and are not designed for atypical anatomies or prosthetic occlusions, leaving this population unsupported.

Widely used benchmarks like MS COCO (Lin et al., 2014b) and MPII Human Pose (Andriluka et al., 2014) include only able-bodied people with complete sets of keypoints. These datasets and the methods built on them assume that every keypoint of a presented individual exists, making no provision for missing or altered limbs. As demonstrated in Figure 2, the MS COCO trained ViTPose model produces significant errors when applied to images of individuals with limb deficiencies. On the basis of these observations, we find that people with limb deficiencies are excluded from current research, and models trained on the existing datasets fail to generalize to their anatomies.

To address this gap, we introduce InclusiveVidPose, the first video-based HPE dataset focused on individuals with limb deficiencies. We collect 313 videos, totaling 327k frames, from 398 participants who have amputations, congenital limb differences, and prosthetic limbs. Developing such a dataset presents unique challenges. As illustrated in Figures 1, impairments vary widely across individuals, including differences in the appearance and length of residual limbs, their anatomical location, and the effects of different types of prostheses. In the existing keypoint schema, there is no predefined sequence that accommodates these anatomical variations. To more accurately represent these cases, we adopt additional keypoints at the ends of residual limbs.

Unlike single-image datasets, InclusiveVidPose leverages video context to disambiguate occluded limbs from truly absent ones, ensuring precise residual-limb end annotations across frames. We ensure the annotation quality through guidance from an internationally accredited para-athletics classifier and verification by multiple trained annotators. For each frame, we provide standard and residual-limb keypoints, segmentation masks, subject tracking IDs, bounding boxes, and the prosthesis status of each residual limb.

InclusiveVidPose not only demonstrates the limitations of standard HPE models when applied to people with limb deficiencies but also provides a rigorous benchmark for developing more inclusive HPE algorithms. We evaluate six methods on InclusiveVidPose and find that they produce unreliable predictions for missing or prosthetic limbs. Since existing HPE metrics (*i.e.*, OKS (Lin et al., 2014a)) do not account for a model’s ability to recognize missing limbs, we propose a new metric, namely Limb-specific Confidence Consistency (LiCC), to quantify this effect. LiCC measures how well the predictions adhere to anatomical exclusion rules. Our results highlight the need for techniques that yield well-calibrated pose estimations and generalize across all body types.

108
 109 **Table 1: Comparison of existing datasets for human pose estimation.** InclusiveVidPose offers
 110 unique and richer annotations than previous datasets. It is also the first pose estimation dataset to
 111 focus on individuals with limb deficiencies and to include keypoints at the ends of residual limbs.
 112

Dataset	#Image/ Frames	#Pose	Segmentation Mask	Bounding Box	Tracking ID	Individuals with Limb Deficiencies	Residual Limb End Annotations	Prosthetic Info
MPII Human Pose Andriluka et al. (2014)	25k	40k						
MS COCO Lin et al. (2014b)	200k	250k	✓	✓				
CrowdPose Li et al. (2019)	20k	80k		✓				
OCHuman Zhang et al. (2019)	4.7k	8k	✓	✓				
ExlPose Lee et al. (2023)	2.5k	14k		✓				
Human-Art Ju et al. (2023)	50k	123k		✓				
PoseTrack2018 Andriluka et al. (2018)	46k	144k		✓	✓			
PoseTrack21 Doering et al. (2022)	66k	177k	✓	✓	✓			
InclusiveVidPose (Ours)	327k	309k	✓	✓	✓	✓	✓	✓

2 RELATED WORK

2.1 HUMAN POSE DATASETS

123 High-quality pose datasets are foundational to progress in human pose estimation (HPE), with nu-
 124 merous recent releases offering varied formats and focusing on scale, activity diversity, and visual
 125 complexity. Among 2D image-based datasets, MSCOCO (Lin et al., 2014b) is widely used for
 126 its large-scale annotations, while MPII Human Pose (Andriluka et al., 2014) emphasizes action
 127 diversity. CrowdPose (Li et al., 2019) and OCHuman (Zhang et al., 2019) focus crowded scenes.
 128 Domain-specific datasets include HumanArt (Ju et al., 2023) for natural-artificial scene bridging,
 129 LSP (Johnson & Everingham, 2011) for sports, and ExLPose (Lee et al., 2023) for extreme lighting
 130 conditions. Video-based datasets like PoseTrack2018 (Andriluka et al., 2018) and PoseTrack21 (Do-
 131 ering et al., 2022) provide per-frame body keypoint annotations. Additionally, 3D datasets such as
 132 Human3.6M (Ionescu et al., 2014), GoPose (Ren et al., 2022), and FreeMan (Wang et al., 2024)
 133 support depth-aware modeling for 3D pose estimation. While these datasets address various chal-
 134 lenges in HPE, they consistently operate under the assumption of anatomically intact individuals,
 135 overlooking individuals with limb deficiencies. This gap raises concerns around fairness, inclusivity,
 136 and limits the generalizability of existing HPE models in real-world diverse populations.
 137

138 Compared to the datasets in Table 1, InclusiveVidPose uniquely centers on individuals with limb
 139 deficiencies, providing a large-scale, video-based resource. The participants cover a wide range of
 140 anatomical variations and prosthetic types, including differences in the shape of residual limbs and the
 141 appearance of prostheses. InclusiveVidPose covers a wide range of limb difference types, including
 142 acquired amputations and congenital conditions. Furthermore, we leverage temporal continuity to
 143 improve residual limb keypoint annotation, addressing ambiguity common in image-based datasets.
 144 We provide rich annotations including 2D poses, segmentation masks, bounding boxes, and tracking
 145 IDs, supporting tasks such as pose estimation, pose tracking, and motion analysis.
 146

2.2 HUMAN POSE ESTIMATION MODELS

147 With increasing demand for real-world applications, human pose estimation has rapidly advanced,
 148 with diverse models emerging to optimize accuracy, efficiency, and robustness. Accuracy-oriented
 149 models include ViTPose (Xu et al., 2022), which leverages Vision Transformers, AlphaPose (Fang
 150 et al., 2022), known for robust multi-task performance, OpenPose (Cao et al., 2019), a pioneering
 151 bottom-up approach, DWPose(Yang et al., 2023) which employs a two-stage distillation strategy with
 152 depth prediction. Lightweight models, such as YOLOPose (Maji et al., 2022) and RTMPose (He
 153 et al., 2024), are designed for real-time deployment, prioritizing efficiency and fast inference. In
 154 addition, DEKR (Geng et al., 2021) introduces decoupled keypoint regression to improve efficiency
 155 in multi-person pose estimation. SAPIENs (Khirodkar et al., 2024) have demonstrated the benefits of
 156 synthetic data integration, improving generalization across diverse real-world contexts.
 157

2.3 HUMAN POSE ESTIMATION FOR HEALTHCARE

158 Millions globally live with limb deficiencies, facing physical and psychological challenges such as
 159 limited mobility, reduced independence, and mental health impacts (Martin, 2013; Day et al., 2019).
 160

Figure 3: **Demonstration of Our Keypoint Schema.** Our extended pose definition is built on the MS COCO keypoint schema by adding eight residual limb end keypoints (17 through 24). The left panel shows the full skeleton: original COCO keypoints are connected by solid lines, and the eight new residual limb end keypoints are marked as **purple circles**. The right panel presents, for each residual limb end keypoint, a cropped view of a subject with the corresponding amputation and a matching view of the same subject wearing a prosthetic device.

Advances in assistive technologies including prosthetics (Farina et al., 2023; Andersen et al., 2005; Olsen et al., 2021), motion tracking and analysis tools (Zhou & Hu, 2008; Parks et al., 2019), have improved quality of life. Meanwhile, pose estimation has gained traction in healthcare for applications like rehabilitation and mobility assessment, such as (Alruwaili et al., 2023; 2024; Zhang et al., 2024). Efforts like WheelPose (Huang et al., 2024), which uses synthetic data, and WheelPoser (Li et al., 2024), which leverages IMU signals, have aimed to support pose estimation for marginalized groups. ProGait (Yin et al., 2025) is a 2025 published dataset focus on transfemoral prosthesis users and explicitly focused on lower-limb gait. Compared with these datasets, ours covers more limb deficiency types beyond transfemoral gait, includes whole-body and residual limb keypoints with personalized schema, and adds frame-level prosthesis status, segmentation, boxes, and tracking on videos.

3 INCLUSIVEVIDPOSE: FIRST VIDEO POSE DATASET FOR LIMB DEFICIENCIES

3.1 EMERGING CHALLENGES OF HPE FOR INDIVIDUALS WITH LIMB DEFICIENCIES

Human pose estimation for individuals with limb deficiencies introduces fundamental challenges that are not addressed by existing models and datasets. Existing keypoint-based systems rely on the presence of anatomical keypoints (*e.g.*, wrists, ankles) that may be absent, altered, or anatomically nonstandard in this population, often resulting in invalid or anatomically implausible pose predictions. Prosthetic limbs further complicate estimation due to their wide variability in geometry, material, articulation, and movement patterns, which are unseen in prior training data. As illustrated in Figure 2, state-of-the-art models frequently fail when encountering missing joints or prosthetic replacements.

In addition, annotation schemes designed for able-bodied subjects do not generalize to limb deficiencies. Missing joints must be modeled explicitly, and residual limbs require alternative keypoints. A single fixed skeleton cannot capture this diversity, motivating flexible per-individual schemas and a dedicated video-based dataset.

3.2 DATA COLLECTION

Why do we build our dataset from videos instead of curated images? In a single image, an occluded limb can appear identical to a missing one, creating ambiguity in annotation. Video sequences provide temporal continuity and changing viewpoints. By observing motion or shifts in perspective, annotators can distinguish a limb that is simply hidden from a limb that is truly absent.

Figure 4: **Overview of frame-by-frame annotations.** Consecutive video frames are shown on the top. For each individual with limb deficiency on every frame, we provide a **pixel-level segmentation mask**, a **bounding box**, a set of **body keypoints**, a **prosthesis status label**, and a **tracking ID**.

This capability leads to precise labeling of residual-limb end keypoints and reduces errors in pose estimation for individuals with limb deficiencies.

Data sourcing. We collect raw footage from archival materials from the International Paralympic Committee (IPC) and YouTube videos. For IPC materials, we have gathered the permission to store and distribute the content for academic research. Our data collected from YouTube meet the standard for the fair use (U.S.) and fair dealing for research and study (Australia). Furthermore, the project was approved by the institutional Human Research Ethics Committee in September 2024, with approval valid until September 2029. All frames are annotated at the highest available resolution. We preserve associated metadata for traceability, including upload date, user handle, and caption. We plan ongoing maintenance, including periodic refreshes and corrections to annotations.

Data filtering and curation. We manually review all collected data and extract segments that center on individuals with limb deficiencies. We remove clips with severe motion blur or heavy occlusion, such as splashing water, whenever annotators could not agree on keypoint placement. This process yields 313 high-quality videos that span diverse actions, backgrounds and lighting conditions. These curated video segments form the core of our InclusiveVidPose dataset.

3.3 HUMAN BODY KEYPOINT SCHEMA FOR INDIVIDUALS WITH LIMB DEFICIENCIES

Necessity of specialized human body keypoint schema. Current pose estimation task uses fixed keypoint sets that fail to capture anatomical variation in individuals with limb deficiencies. Models trained on existing datasets often incorrectly predict complete limbs even when these structures are absent or replaced by prostheses. This mismatch yields invalid outputs and reduces reliability. The core issue is the lack of a schema that adapts to residual anatomy. Without keypoints at residual-limb endpoints, methods cannot represent true motion. In light of this, adopting a specialized set of keypoints would address this gap by aligning keypoint definitions with individual anatomy. This alignment is essential to deliver accurate, relevant, and robust pose estimates for individuals with limb deficiencies.

Design of an extended keypoint schema. As seen in Figure 3, we adopt a keypoint schema that builds on the COCO format’s 17 keypoints by adding 8 residual-limb points. These eight keypoints lie at the anatomical endpoints of residual limbs (left/right above and below the elbow, left/right above and below the knee) and explicitly exclude any prosthetic or assistive device. In this way, the schema focuses on human anatomy rather than device geometry: residual-limb endpoints are annotated as stable anatomical landmarks, while prosthesis shape and contact with the environment are represented through pixel-level segmentation masks and per-limb prosthesis status. Standard pose-estimation models lack a mechanism to represent missing or truncated anatomy, so they often try to localize non-existent joints or collapse output when a limb is absent. By incorporating endpoints that correspond to the actual residual anatomy, our 25-keypoint protocol gives models clear, semantically meaningful targets that distinguish between intact and residual structures.

Figure 5: **Overview of our InclusiveVidPose dataset.** Sample frames show individuals with a range of limb-difference anatomies, including upper-body impairments, lower-body impairments, single residual limbs, and multiple residual limbs. Meanwhile, our dataset covers indoor and outdoor environments and a wide variety of activities such as rehabilitation training, sports competition, and everyday interactions. All residual limb points and corresponding skeletons are highlighted in purple.

3.4 DATA ANNOTATION PROCEDURE

We annotate every individual with five label types: pixel-level segmentation masks, bounding boxes, a persistent tracking ID, limb-deficient body keypoints, and prosthesis limbs, as illustrated in Figure 4.

Annotation team training. We recruit 12 annotators through a professional data labeling service. All had prior experience with human body keypoint annotation. Before beginning work, each annotator completed a focused training session led by an internationally accredited para-athletics classifier. This preparation ensured that every team member understood the anatomical variation found in individuals with limb deficiencies and the requirements of our extended keypoint schema.

Bounding box, segmentation mask and tracking ID. We use the open-source platform X-AnyLabeling (Wang, 2023) together with Segment Anything 2 promptable segmentation to generate initial masks. For each individual, annotators first merge all segmentation masks sharing the same tracking ID in a given frame and compute the tightest enclosing bounding box around that merged mask. They then refine a pixel-accurate segmentation mask and confirm the persistent tracking ID. SAM2’s ability to generalize zero-shot to unseen residual-limb shapes cuts mask-drawing time by over 50%. To maintain high quality, we enforce an 80% accuracy threshold: after one annotator finishes a batch, a second annotator cross-checks it. Any batch with more than twenty percent of masks showing clear errors is returned for revision.

Human body keypoint annotation process. To capture each subject’s unique anatomy, two trained annotators and one accredited para-athletics classifier review all 398 individuals’ disability profiles and agree on a personalized 25-keypoint schema. Each schema is represented by a 25-element presence mask that indicates which of the 25 keypoints apply to that individual. Annotators then label every frame according to that schema, marking each keypoint’s image coordinates. We leverage temporal cues to enforce cross-frame consistency and smooth annotations over frames. In addition,

Figure 6: Overview of Participant Distribution by Deficiency Type, Gender, and Prosthesis. (a) Distribution of limb-deficiency types, with single-site deficiencies and multi-site cases. (b) Gender Distribution. (c) Distribution of individuals with and without prosthetic limbs.

for every frame, we record a prosthesis status label that specifies which limb or limbs are fitted with a prosthesis. We follow the COCO visibility convention: any keypoint that is within the frame but occluded receives a visibility flag of 1. We require an 80% point-level agreement rate between annotators on 5% of sampled data, where “agreement” means no visually apparent errors in keypoint placement. If more than 20% of sampled points in a batch fall below this threshold, the original annotator must correct the entire batch. This structured, expert-guided workflow ensures unambiguous placement of residual-limb keypoints and delivers highly reliable pose data.

3.5 DATASET STATISTICS

Our dataset comprises 313 video sequences, capturing the motion of 398 unique individuals. In total, we annotate 327,235 frames and produce 308,533 pose estimates. As shown in Figure 5, our dataset encompasses a broad spectrum of limb deficiencies. As illustrated in Figure 6, (a) the most prevalent single-site deficiencies are located above the left knee (16.74%), below the left elbow (15.25%), and below the right knee (12.26%); Multi-site limb differences account for 16.72% of the population, highlighting the complexity of representation beyond isolated cases and the necessity of modeling diverse impairment patterns for robust performance. The co-occurrence matrix further demonstrates that upper- and lower-limb deficiencies frequently overlap across different body sides, reflecting realistic clinical patterns. The gender breakdown in (b) is nearly balanced (51% female, 49% male), ensuring that learned pose models do not inherit a strong gender bias. Finally, the prosthetic-usage chart in (c) shows an even split between subjects with and without prostheses, indicating that the dataset equally represents natural residua and prosthetic-assisted movements. Together, these statistics demonstrate that the dataset provides a representative and diverse sample of limb-deficiency conditions, gender, and assistive-device usage, which is critical for developing generalizable human-pose estimation algorithms.

Data use and license. The annotations and all website content for the InclusiveVidPose dataset are © 2025 InclusiveVidPose Consortium and are released under the Creative Commons BY-NC-SA 4.0 license. We will continue to maintain the dataset and release versioned updates with changelogs.

4 EXPERIMENTS

4.1 EXPERIMENT DETAILS

We benchmark our InclusiveVidPose dataset on a single-frame pose estimation task. Single-frame evaluation highlights exactly where models struggle with residual-limb endpoints, guiding targeted improvements in keypoint localization and confidence calibration. As the first pose-estimation dataset dedicated to individuals with limb deficiencies, this image-based evaluation establishes clear baselines for residual-limb detection and ensures fair comparison across models by using identical single-frame inputs and metrics, while also informing future extensions to multi-frame pose estimation.

378 Table 2: **Main experimental results on pose estimation algorithms.** We evaluate models including
 379 Swin-based top-down heatmap networks (Liu et al., 2021a), ViTPose (Xu et al., 2022), and
 380 RTMPose (He et al., 2024), as well as the bottom-up model DEKR (Geng et al., 2021), the detector-
 381 based single-stage model YOLOX-Pose (Maji et al., 2022), and the video-based ViPNAS (Xu et al.,
 382 2021). “InclusiveVidPose → InclusiveVidPose” reports training on our training set and evaluation
 383 on our validation and test splits. “COCO → InclusiveVidPose” reports training only on COCO
 384 and evaluation on our InclusiveVidPose validation and test splits. “InclusiveVidPose + COCO →
 385 InclusiveVidPose/COCO” reports training on both datasets, validating on our validation split and
 386 testing on our test split and COCO validation. “COCO → COCO” reports COCO training and COCO
 387 validation performance (from MPMpose).

388	Method	Backbone	Input Size	InclusiveVidPose								InclusiveVidPose + COCO								COCO							
				→ InclusiveVidPose				→ COCO				→ InclusiveVidPose				→ COCO				→ COCO							
				AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰	AR ⁷⁵	LiCC	AP	AR	AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰	AR ⁷⁵	LiCC	AP	AR	AP	AR				
390	YoloxPose	YoloxPose-T	416x416	60.1	75.3	63.9	73.3	88.0	76.0	70.7	74.0	91.1	70.3	79.8	74.1	84.9	94.5	88.0	78.7	41.7	46.9	52.6	57.1				
		YoloxPose-S	640x640	65.4	80.2	69.9	77.5	90.5	80.7	72.7	78.4	93.3	73.6	82.3	77.0	87.4	95.0	89.8	78.0	49.1	54.2	64.1	68.2				
		YoloxPose-M	640x640	65.7	80.5	70.0	76.8	89.1	80.4	69.9	79.5	94.4	74.0	83.7	77.3	86.5	95.6	90.6	72.0	59.4	74.5	69.5	89.9				
		YoloxPose-L	640x640	65.9	80.3	70.4	76.2	88.5	79.9	67.7	80.0	94.9	74.3	84.1	77.5	85.3	94.7	89.1	69.5	64.9	80.5	71.2	90.1				
393	DEKR	HRNet-w32	512x512	77.7	83.5	79.5	83.2	89.9	84.8	55.2	55.8	93.2	73.6	78.2	74.9	89.3	96.2	90.5	62.1	59.5	66.3	68.6	73.5				
		HRNet-w48	640x640	75.2	81.1	77.2	85.1	93.7	86.7	67.3	53.4	93.4	71.1	75.3	72.1	90.6	97.2	91.7	55.2	62.9	69.2	71.4	76.2				
395	ViPNAS	MobileNetV3	256x192	78.6	87.6	80.3	80.3	88.6	81.5	53.8	70.2	72.9	81.5	88.6	83.3	83.2	89.8	84.3	55.0	68.5	72.2	69.5	75.5				
		Swin-T	256x192	81.2	89.6	83.3	82.6	90.0	84.5	68.8	72.6	75.8	82.0	88.6	84.4	83.5	89.9	85.3	68.9	68.3	71.7	72.4	78.2				
		Swin-B	256x192	78.8	87.5	81.1	80.6	88.4	82.6	67.8	77.3	80.2	80.7	88.5	83.1	82.5	89.5	84.2	69.3	68.6	72.5	73.7	79.4				
		Swin-B	384x288	81.8	88.6	83.4	83.2	89.8	84.5	69.3	78.8	81.6	82.7	89.4	84.3	84.1	90.4	85.4	74.6	70.6	74.7	75.9	81.1				
		Swin-L	256x192	79.5	88.4	81.1	81.8	89.5	82.3	68.7	77.1	79.9	80.0	88.4	82.1	81.9	89.2	83.9	68.2	65.2	69.3	74.3	79.8				
		Swin-L	384x288	80.7	88.6	82.5	82.0	89.4	83.6	72.1	78.4	81.4	81.5	88.6	83.5	82.8	89.2	84.5	72.7	66.0	70.7	76.3	81.4				
399	RTMPose	RTMPose-T	256x192	75.2	83.1	76.2	76.4	84.9	77.9	65.3	66.5	68.8	80.2	89.7	82.5	81.6	90.5	83.7	73.1	67.6	70.9	68.2	73.6				
		RTMPose-S	256x192	79.3	84.5	77.3	80.7	86.4	78.7	74.1	71.8	74.0	83.6	90.8	85.6	84.8	91.2	96.3	71.4	72.2	75.1	71.6	76.8				
		RTMPose-M	256x192	82.2	88.8	83.6	83.3	89.9	84.3	69.5	75.2	77.7	82.5	89.6	83.4	83.7	90.2	84.7	60.8	71.9	74.7	74.6	79.5				
		RTMPose-L	256x192	82.2	89.7	83.5	83.2	90.1	84.1	69.1	76.2	78.7	81.9	89.6	83.2	83.5	90.1	84.6	60.8	72.6	75.5	75.8	80.6				
		ViT-S	256x192	82.5	89.7	84.4	84.1	90.7	85.7	67.1	72.5	75.2	82.1	88.4	84.2	93.7	90.0	85.0	70.6	70.2	73.7	73.9	79.2				
402	ViTPose	ViT-B	256x192	82.5	89.6	84.2	84.1	90.2	85.6	70.3	77.4	80.0	83.3	89.5	85.4	84.9	90.4	86.5	72.0	74.3	77.6	75.7	81.0				
		ViT-L	256x192	85.5	90.7	86.5	86.8	91.6	87.3	73.8	79.9	82.5	86.0	91.6	87.4	87.4	92.1	88.4	75.1	78.4	81.2	78.2	83.4				
		ViT-H	256x192	86.3	90.8	87.5	87.6	91.8	88.7	73.6	81.5	83.8	86.5	91.7	87.5	87.9	92.4	88.9	74.0	79.1	82.1	78.8	83.9				

405 Beyond this image-based setting, we further build a video-based benchmark by adapting the PoseTrack
 406 evaluation protocol to InclusiveVidPose. We evaluate two representative multi-frame pose estimators,
 407 DCPose (Liu et al., 2021b) and DSTA (He & Yang, 2024), and report PoseTrack-style AP for
 408 standard joints and for our residual-limb groups. This video-based evaluation tests whether temporal
 409 aggregation helps track residual-limb endpoints across time and offers the first reference results for
 410 video pose estimation on individuals with limb deficiencies.

411 Specifically, we sample one frame every 60 frames from each video. We then split the dataset at the
 412 video level into training, validation and test splits in a ratio of 7 : 1 : 2. All sampled frames from the
 413 same video are kept together in one split. Therefore, no individual appears in more than one split to
 414 prevent any data leakage. Furthermore, we believe that a good pose estimator must serve all users
 415 rather than a single group. In light of this, we measure performance on both able-bodied and limb-
 416 difference anatomies. We train and evaluate models on COCO dataset alongside InclusiveVidPose
 417 under the same settings. This dual-dataset approach provides a fair comparison of how different
 418 algorithms handle standard and disability-aware keypoint estimation. By benchmarking across both
 419 COCO and InclusiveVidPose, we ensure our evaluations drive improvements that benefit everyone,
 420 from able-bodied individuals to those with limb deficiencies. **All models in Table 2 are initialized**
 421 **from their official COCO-pretrained weights.**

423 4.2 EVALUATION METRICS

424 **COCO metric** are used to evaluate overall pose estimation performance. We report average precision
 425 (AP) and average recall (AR) at OKS thresholds 0.50 and 0.75, *i.e.*, AP, AP⁵⁰, AP⁷⁵, AR, AR⁵⁰, and
 426 AR⁷⁵. These metrics follow the COCO protocol and measure keypoint localization accuracy.

427 **PoseTrack metrics** are used to evaluate video-based pose estimation on InclusiveVidPose. Following
 428 the PoseTrack protocol, we compute keypoint average precision (AP) over all frames and report AP
 429 for each joint category as well as the mean AP over all keypoints. On our benchmark, we further
 430 report AP for the four residual-limb groups (ArmUp, ArmLow, LegUp, LegLow), which aggregate
 431 our residual-limb endpoints and quantify localization performance on disability-related regions.

432
 433 Table 3: **PoseTrack-style keypoint AP on InclusiveVidPose.** We report AP (%) of DCPose (Liu
 434 et al., 2021b) and DSTA (He & Yang, 2024) on standard joints and residual-limb groups (ArmUp,
 435 ArmLow, LegUp, LegLow), together with the mean over all keypoints.

	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	ArmUp	ArmLow	LegUp	LegLow	Mean
DCPose (Liu et al., 2021b)	28.1	72.0	69.7	79.3	73.2	72.4	72.9	1.6	0.2	12.2	16.0	43.2
DSTA (He & Yang, 2024)	28.9	72.2	70.4	81.9	72.7	71.9	72.0	0.6	0.0	14.3	17.3	43.7

436
 437
 438
 439 **Limb-specific Confidence Consistency (LiCC)** is introduced to measure whether a pose-estimation
 440 model can correctly distinguish intact limbs from residual or missing limbs. This capability is critical
 441 for assessing the inclusiveness of pose-estimation systems on data that includes individuals with
 442 limb deficiencies. Let V be the set of all ground-truth keypoints with visibility $v \geq 1$, and for
 443 each keypoint $i \in V$, denote by $M(i)$ the set of mutually exclusive keypoints. For example, if
 444 the residual wrist keypoint is visible, then both the residual elbow keypoint and the normal wrist
 445 landmark cannot be present. Denote by s_i the predicted confidence for keypoint i , and by $\max_{j \in M(i)} s_j$
 446 the highest confidence among its mutually exclusive partners. LiCC is defined as the average fraction
 447 of keypoints whose confidence exceeds that of any exclusive keypoint:

$$448 \quad \text{LiCC} = \frac{1}{|V|} \sum_{i \in V} \mathbf{1}(s_i > \max_{j \in M(i)} s_j), \quad (1)$$

449 where $\mathbf{1}(\cdot)$ is the indicator function. A higher LiCC indicates stronger consistency: visible keypoints
 450 are assigned higher confidence than any impossible alternatives. Pseudocode for computing LiCC is
 451 provided in the supplementary materials.

452 4.3 BENCHMARK RESULTS

453 **Single-frame pose estimation.** As shown in Table 2, when we train on InclusiveVidPose and evaluate
 454 on InclusiveVidPose, large backbones like HRNet-w48, Swin-L, and ViTPose (ViT-H/L) get higher
 455 AP scores on visible points. However, LiCC is still low for most methods, about 60% in many cases.
 456 This means many residual keypoints are predicted wrongly. Existing models assume that all keypoints
 457 exist, so they often predict high confidence for impossible points. DEKR and ViPNAS have good
 458 COCO AP but low LiCC, so they do not tell intact joints from residual endpoints well. In contrast,
 459 YOLOX-Pose, which uses confidence learning, gets higher LiCC scores because it separates intact
 460 and residual cases better.

461 To make the distribution shift between COCO and InclusiveVidPose explicit, Table 2 also reports
 462 a *COCO*→*InclusiveVidPose* setting. We train all models only on COCO and evaluate them on
 463 our validation and test splits, using a 17-keypoint version of InclusiveVidPose that keeps only the
 464 COCO joints and ignores the 8 residual endpoints. Compared with *COCO*→*COCO* under the same
 465 17-keypoint label space, many methods show lower AP or AR and their ranking changes, which
 466 indicates that InclusiveVidPose presents a different and more challenging test distribution. At the
 467 same time, strong models such as ViTPose-H and YOLOX-Pose-L still reach high AP and AR (e.g.,
 468 81.5 AP / 83.8 AR and 80.0 AP / 94.9 AR in the *COCO*→*InclusiveVidPose* setting), which shows that
 469 COCO-trained models can transfer reasonably well to our 17 keypoint annotations. This behaviour is
 470 more consistent with a real distribution shift between COCO and InclusiveVidPose, combined with
 471 different generalization strengths across architectures, than with inconsistent keypoint annotations in
 472 our dataset.

473 Furthermore, we add COCO to training. This helps large backbones on InclusiveVidPose, but
 474 it hurts small models like YOLOX-Pose-T and RTMPose-T on people with limb differences.
 475 A fair comparison under a fixed label space therefore compares *COCO*→*InclusiveVidPose* to
 476 *COCO*→*COCO* to measure dataset shift, and compares *InclusiveVidPose*→*InclusiveVidPose* and
 477 *InclusiveVidPose*+*COCO*→*InclusiveVidPose* to understand what in-domain training can achieve on
 478 the same 17 standard keypoints. *COCO*→*COCO* also drops compared with a COCO-only baseline
 479 that predicts only 17 keypoints, because the head must now predict eight extra residual-limb keypoints.
 480 The output space is larger, and the capacity moves away from the original 17 points. Additional
 481 results on the endpoints are in Appendix §D, including results on 8 endpoints and 17 keypoints.

482 Overall, LiCC is low across most methods. On InclusiveVidPose, many models are around 60%
 483 LiCC. In many frames, the model gives higher confidence to an anatomically impossible point than

Figure 7: **Case study of ViTPose (ViT-B) predictions trained on InclusiveVidPose.** We highlight incorrect keypoints and skeleton segments in bold, demonstrating the challenges introduced InclusiveVidPose. Residual-limb endpoints appear in **purple**, and all other keypoints appear in **green**.

to the true residual point. This shows that current pose estimators do not handle missing or altered limbs. Our dataset and the LiCC metric make this problem clear and give a target for better methods.

Case study. As demonstrated in Figure 7, these results show that existing methods fail to generalize effectively to individuals with limb deficiencies. More than half of the visible keypoint instances exhibit conflicting predictions, underscoring the importance of our dataset for developing and evaluating algorithms that can handle anatomies with missing or altered limbs. These errors occur across activities and views, showing that InclusiveVidPose is challenging and calling for new, more inclusive models that can reason about absent joints and residual endpoints.

Multi-frame pose estimation. Table 3 reports PoseTrack-style keypoint AP on InclusiveVidPose for two representative video pose estimators, DCPose and DSTA. Both models keep relatively high AP on standard joints: shoulders, elbows, wrists, hips, knees, and ankles all stay around the low to mid 70s, and DSTA gives slightly higher scores than DCPose on most of these joints, especially the wrist. Head AP is much lower for both methods, around 28 AP, which is consistent with frequent occlusion, cropping, and motion blur in our videos.

In contrast, performance on the four residual-limb groups is very poor. For ArmUp and ArmLow, AP is almost zero for both methods, and even for LegUp and LegLow, AP remains in the low to mid teens. The mean AP over all keypoints only increases from 43.2 for DCPose to 43.7 for DSTA, which shows that small gains on intact joints and lower limbs do not close the large gap on residual-limb regions. These results indicate that state-of-the-art video pose estimators, which are mainly trained and tuned on intact-body datasets, do not transfer to our residual-limb keypoints, even after we aggregate eight endpoints into four coarse groups. InclusiveVidPose therefore defines a new evaluation regime where models need to reason about diverse amputation levels, prosthetic shapes, and asymmetric limb geometry. By making this failure mode measurable in a realistic video benchmark, our dataset supports both scientific progress toward more general human motion understanding and practical advances in inclusive analysis for rehabilitation, sports, and everyday activities of people with limb differences.

5 CONCLUSION

In summary, we introduce InclusiveVidPose, the first large-scale video-based human pose estimation dataset focused on individuals with limb deficiencies, addressing a critical gap left by existing benchmarks that only represent able-bodied anatomies. By capturing diverse anatomical variations with precise annotations, including novel residual-limb end keypoints and leveraging video context to disambiguate occlusions from absent limbs, our dataset enables more accurate modeling of this underserved population. Our evaluation of state-of-the-art methods reveals their limitations in handling missing or prosthetic limbs, motivating our proposed Limb-specific Confidence Consistency (LiCC) metric to better assess confidence calibration. We believe InclusiveVidPose and LiCC will drive the development of more inclusive and robust pose estimation algorithms, benefiting applications in rehabilitation, health assessment, and assistive technologies.

540 ETHICS STATEMENT
541

542 This work uses publicly available videos from YouTube and archival materials from the International
543 Paralympic Committee (IPC). No new data are collected from human subjects, and no interventions
544 are conducted. Use of YouTube content follows fair use in the United States and fair dealing for
545 research and study in Australia (see §3.2). We obtained guidance from the institutional copyright
546 officer and approval from the institutional Human Research Ethics Committee in September 2024,
547 valid until September 2029.

548 We release annotations and documentation. We do not redistribute YouTube videos. For YouTube
549 content, we provide links and provenance only. For IPC materials, we are authorized to store and
550 distribute the content for academic research. We remove content upon substantiated takedown
551 requests. We retain only information already public on the source platforms (e.g., upload date and
552 user handle) for traceability.

553 This work aims to advance inclusive human pose estimation. By curating representative video data
554 and releasing carefully documented annotations, we enable more reliable benchmarking and model
555 development for individuals with limb deficiencies. The dataset supports fairer evaluation, fosters
556 methodological innovation on non-standard anatomies, and facilitates downstream applications in
557 rehabilitation analytics, accessible sports technology, and safety-critical monitoring. We expect these
558 resources to help the community design models that better reflect human diversity and improve
559 real-world accessibility.

560 We document known limitations, report disaggregated metrics where applicable (§4). Annotations
561 and website content are released under CC BY-NC-SA 4.0 (see §3.5), and downstream users must
562 follow applicable laws and institutional ethics requirements. The authors declare no conflicts of
563 interest and no sponsorship that influenced the study.

564
565 REPRODUCIBILITY STATEMENT
566

567 We aim to make all experiments reproducible. Data sourcing and licensing are described in §3.2 and
568 §3.5. Dataset construction, annotation protocol, and quality controls are detailed in §3.4. [Dataset](#)
569 [statistics and splits are provided in §3.5 and §4.1](#). The benchmark tasks, metrics, and evaluation
570 protocol appear in §4. We release an anonymized repository with training and evaluation scripts,
571 configuration files, hyperparameters, model variants, seeds, and environment specifications at [code](#).
572

573 REFERENCES
574

575 Madallah Alruwaili, Muhammad Nouman Atta, Muhammad Hameed Siddiqi, Abdullah Khan,
576 Asfandyar Khan, Yousef Alhwaiti, and Saad Alanazi. Deep learning-based yolo models for the
577 detection of people with disabilities. *IEEE Access*, 12:2543–2566, 2023.

578 Madallah Alruwaili, Muhammad Hameed Siddiqi, Muhammad Nouman Atta, and Mohammad Arif.
579 Deep learning and ubiquitous systems for disabled people detection using yolo models. *Computers
580 in Human Behavior*, 154:108150, 2024.

582 Richard A Andersen, Sam Musallam, Joel W Burdick, and Jorge G Cham. Cognitive based neural
583 prosthetics. In *Proceedings of the 2005 IEEE International Conference on Robotics and Automation*,
584 pp. 1908–1913. IEEE, 2005.

585 Mykhaylo Andriluka, Leonid Pishchulin, Peter V. Gehler, and Bernt Schiele. 2d human pose
586 estimation: New benchmark and state of the art analysis. In *2014 IEEE Conference on Computer
587 Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014*, pp. 3686–
588 3693. IEEE Computer Society, 2014. doi: 10.1109/CVPR.2014.471. URL <https://doi.org/10.1109/CVPR.2014.471>.

591 Mykhaylo Andriluka, Umar Iqbal, Eldar Insafutdinov, Leonid Pishchulin, Anton Milan,
592 Juergen Gall, and Bernt Schiele. Posetrack: A benchmark for human pose estimation
593 and tracking. In *2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, pp. 5167–5176.

594 Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
 595 2018.00542. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Andriluka_PoseTrack_A_Benchmark_CVPR_2018_paper.html.

596

597 Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: Realtime
 598 multi-person 2d pose estimation using part affinity fields. *IEEE transactions on pattern analysis
 599 and machine intelligence*, 43(1):172–186, 2019.

600

601 Melissa Catherine Day, Ross Wadey, and Siobhan Strike. Living with limb loss: everyday experiences
 602 of “good” and “bad” days in people with lower limb amputation. *Disability and rehabilitation*, 41
 603 (20):2433–2442, 2019.

604

605 Andreas Doering, Di Chen, Shanshan Zhang, Bernt Schiele, and Juergen Gall. Posetrack21: A
 606 dataset for person search, multi-object tracking and multi-person pose tracking. In *IEEE/CVF
 607 Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
 608 June 18-24, 2022*, pp. 20931–20940. IEEE, 2022. doi: 10.1109/CVPR52688.2022.02029. URL
 609 <https://doi.org/10.1109/CVPR52688.2022.02029>.

610

611 Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi Zhu, Yuliang Xiu, Yong-Lu Li, and
 612 Cewu Lu. Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time.
 613 *IEEE transactions on pattern analysis and machine intelligence*, 45(6):7157–7173, 2022.

614

615 Dario Farina, Ivan Vujaklija, Rickard Bränemark, Anthony MJ Bull, Hans Dietl, Bernhard Graimann,
 616 Levi J Hargrove, Klaus-Peter Hoffmann, He Huang, Thorvaldur Ingvarsson, et al. Toward higher-
 617 performance bionic limbs for wider clinical use. *Nature biomedical engineering*, 7(4):473–485,
 618 2023.

619

620 Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, and Jingdong Wang. Bottom-up human
 621 pose estimation via disentangled keypoint regression. In *IEEE Conference on Computer Vi-
 622 sion and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 14676–14686.
 623 Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01444.
 624 URL https://openaccess.thecvf.com/content/CVPR2021/html/Geng_Bottom-Up_Human_Pose_Estimation_via_Disentangled_Keypoint_Regression_CVPR_2021_paper.html.

625

626 Jijie He and Wenwu Yang. Video-based human pose regression via decoupled space-time aggregation.
 627 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
 628 USA, June 16-22, 2024*, pp. 1022–1031. IEEE, 2024. doi: 10.1109/CVPR52733.2024.00103. URL
 629 <https://doi.org/10.1109/CVPR52733.2024.00103>.

630

631 Shichun He, Meiqi Wei, Deyu Meng, Zongnan Lv, Hongzhi Guo, Guang Yang, and Ziheng Wang.
 632 Adversarially trained rtmpose: A high-performance, non-contact method for detecting genu valgum
 633 in adolescents. *Comput. Biol. Medicine*, 183:109214, 2024. doi: 10.1016/J.COMPBIOMED.2024.
 634 109214. URL <https://doi.org/10.1016/j.combomed.2024.109214>.

635

636 William Huang, Sam Ghahremani, Siyou Pei, and Yang Zhang. Wheelpose: Data synthesis techniques
 637 to improve pose estimation performance on wheelchair users. In *Proceedings of the 2024 CHI
 638 Conference on Human Factors in Computing Systems*, pp. 1–25, 2024.

639

640 Institute for Health Metrics and Evaluation (IHME). Global burden of disease 2021: Findings from
 641 the gbd 2021 study. Technical report, Institute for Health Metrics and Evaluation (IHME), Seattle,
 642 WA, 2024.

643

644 Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale
 645 datasets and predictive methods for 3d human sensing in natural environments. *IEEE Transactions
 646 on Pattern Analysis and Machine Intelligence*, 36(7):1325–1339, jul 2014.

647

648 Sam Johnson and Mark Everingham. Learning effective human pose estimation from inaccurate
 649 annotation. In *Proceedings of Computer Vision and Pattern Recognition (CVPR) 2011*, 2011.

650

651 Xuan Ju, Ailing Zeng, Jianan Wang, Qiang Xu, and Lei Zhang. Human-art: A versatile human-
 652 centric dataset bridging natural and artificial scenes. In *IEEE/CVF Conference on Computer Vision
 653 and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 618–629.

648 IEEE, 2023. doi: 10.1109/CVPR52729.2023.00067. URL <https://doi.org/10.1109/CVPR52729.2023.00067>.
649
650

651 Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter Selednik,
652 Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models. In *European
653 Conference on Computer Vision*, pp. 206–228. Springer, 2024.

654 Sohyun Lee, Jaesung Rim, Boseung Jeong, Geonu Kim, Byungju Woo, Haechan Lee, Sunghyun
655 Cho, and Suha Kwak. Human pose estimation in extremely low-light conditions. In *IEEE/CVF
656 Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
657 June 17-24, 2023*, pp. 704–714. IEEE, 2023. doi: 10.1109/CVPR52729.2023.00075. URL
658 <https://doi.org/10.1109/CVPR52729.2023.00075>.
659

660 Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Haoshu Fang, and Cewu Lu. Crowdpose: Efficient
661 crowded scenes pose estimation and a new benchmark. In *IEEE Conference on Computer
662 Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp.
663 10863–10872. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01112.
664 URL http://openaccess.thecvf.com/content_CVPR_2019/html/Li_CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_Benchmark_CVPR_2019_paper.html.
665
666

667 Yunzhi Li, Vimal Mollyn, Kuang Yuan, and Patrick Carrington. Wheelposer: Sparse-imu based body
668 pose estimation for wheelchair users. In *Proceedings of the 26th International ACM SIGACCESS
669 Conference on Computers and Accessibility*, pp. 1–17, 2024.
670

671 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
672 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–
673 ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, proceedings,
674 part v 13*, pp. 740–755. Springer, 2014a.

675 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
676 Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In David J.
677 Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision - ECCV 2014
678 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V*,
679 volume 8693 of *Lecture Notes in Computer Science*, pp. 740–755. Springer, 2014b. doi: 10.1007/
680 978-3-319-10602-1\48. URL https://doi.org/10.1007/978-3-319-10602-1_48.
681
682

683 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
684 Swin transformer: Hierarchical vision transformer using shifted windows. In *2021 IEEE/CVF
685 International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
686 10-17, 2021*, pp. 9992–10002. IEEE, 2021a. doi: 10.1109/ICCV48922.2021.00986. URL <https://doi.org/10.1109/ICCV48922.2021.00986>.
687

688 Zhenguang Liu, Haoming Chen, Runyang Feng, Shuang Wu, Shouling Ji, Bailin Yang, and Xun
689 Wang. Deep dual consecutive network for human pose estimation. In *IEEE Conference on
690 Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 525–534.
691 Computer Vision Foundation / IEEE, 2021b. doi: 10.1109/CVPR46437.2021.00059. URL
692 http://openaccess.thecvf.com/content/CVPR2021/html/Liu_Deep_Dual_Consecutive_Network_for_Human_Pose_Estimation_CVPR_2021_paper.html.
693
694

695 Debapriya Maji, Soyeb Nagori, Manu Mathew, and Deepak Poddar. Yolo-pose: Enhancing YOLO
696 for multi person pose estimation using object keypoint similarity loss. In *IEEE/CVF Conference
697 on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans,
698 LA, USA, June 19-20, 2022*, pp. 2636–2645. IEEE, 2022. doi: 10.1109/CVPRW56347.2022.00297.
699 URL <https://doi.org/10.1109/CVPRW56347.2022.00297>.
700

701 Jeffrey J Martin. Benefits and barriers to physical activity for individuals with disabilities: a social-
702 relational model of disability perspective. *Disability and rehabilitation*, 35(24):2030–2037, 2013.

702 Jennifer Olsen, Sarah Day, Sigrid Duman, Kianoush Nazarpour, and Matthew Dyson. 3d-printing and
 703 upper-limb prosthetic sockets: promises and pitfalls. *IEEE Transactions on Neural Systems and*
 704 *Rehabilitation Engineering*, 29:527–535, 2021.

705

706 Melissa T Parks, Zhuo Wang, and Ka-Chun Siu. Current low-cost video-based motion analysis
 707 options for clinical rehabilitation: a systematic review. *Physical therapy*, 99(10):1405–1425, 2019.

708

709 Yili Ren, Zi Wang, Yichao Wang, Sheng Tan, Yingying Chen, and Jie Yang. Gopose: 3d human pose
 710 estimation using wifi. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous*
 711 *Technologies*, 6(2):1–25, 2022.

712

713 Jiong Wang, Fengyu Yang, Bingliang Li, Wenbo Gou, Danqi Yan, Ailing Zeng, Yijun Gao, Junle
 714 Wang, Yanqing Jing, and Ruimao Zhang. Freeman: Towards benchmarking 3d human pose
 715 estimation under real-world conditions. In *Proceedings of the IEEE/CVF Conference on Computer*
 716 *Vision and Pattern Recognition*, pp. 21978–21988, 2024.

717

Wei Wang. Advanced auto labeling solution with added features. <https://github.com/CVHub520/X-AnyLabeling>, 2023.

718

Lumin Xu, Yingda Guan, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo, Wanli Ouyang, and Xiaogang
 719 Wang. Vipnas: Efficient video pose estimation via neural architecture search. In *IEEE Conference*
 720 *on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 16072–
 721 16081. Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01581. URL
 722 https://openaccess.thecvf.com/content/CVPR2021/html/Xu_ViPNAS_Efficient_Video_Pose_Estimation_via_Neural_Architecture_Search_CVPR_2021_paper.html.

723

Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision
 724 transformer baselines for human pose estimation. In Sanmi Koyejo, S. Mohamed,
 725 A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-*
 726 *formation Processing Systems 35: Annual Conference on Neural Information Process-*
 727 *ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
 728 *2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/fbb10d319d44f8c3b4720873e4177c65-Abstract-Conference.html.

729

Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
 730 two-stages distillation. In *Proceedings of the IEEE/CVF International Conference on Computer*
 731 *Vision*, pp. 4210–4220, 2023.

732

Xiangyu Yin, Boyuan Yang, Weichen Liu, Qiya Xue, Abrar Alamri, Goeran Fiedler, and Wei Gao.
 733 Progait: A multi-purpose video dataset and benchmark for transfemoral prosthesis users. *arXiv*
 734 *preprint arXiv:2507.10223*, 2025.

735

Song-Hai Zhang, Ruilong Li, Xin Dong, Paul L. Rosin, Zixi Cai, Xi Han, Dingcheng
 736 Yang, Haozhi Huang, and Shi-Min Hu. Pose2seg: Detection free human instance
 737 segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 889–898. Computer Vi-
 738 sion Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00098. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html.

739

Weijia Zhang, Yulin Li, Shaomin Cai, Zhaowei Wang, Xue Cheng, Nutapong Somjit, Dongqing Sun,
 740 and Feiyu Chen. Combined mediapipe and yolov5 range of motion assessment system for spinal
 741 diseases and frozen shoulder. *Scientific Reports*, 14(1):15879, 2024.

742

Huiyu Zhou and Huosheng Hu. Human motion tracking for rehabilitation—a survey. *Biomedical*
 743 *signal processing and control*, 3(1):1–18, 2008.

744

745

746

747

748

749

750

751

752

753

754

755

756 **A STATEMENT ON LLM USAGE**
757758 We use a large language model only for language polishing. Its role is limited to grammar, spelling,
759 punctuation, and minor wording edits. It does not contribute to research ideation, study design, data
760 analysis, result interpretation, or substantive writing. All technical content and claims originate from
761 the authors, and every edit receives author review and approval.
762763 **B DATASET WEBSITE**
764765 All information related to the dataset is available on our anonymous project website [Q InclusiveVid-
766 Pose.](#)
767768 **C BOARDER IMPACT**
769770 The InclusiveVidPose dataset and accompanying evaluation benchmark aim to address a critical gap
771 in human pose estimation (HPE) research by centering on individuals with limb deficiencies, an
772 underrepresented and clinically important population. We anticipate the following broader impacts:
773774 **C.1 POSITIVE BENEFITS TO COMMUNITY**
775776 **Fairness and Exclusivity in AI Development** By providing a large-scale, anatomically diverse
777 video dataset, we encourage the community to move beyond able-bodied assumptions. This can
778 catalyze new model architectures and training paradigms that generalize across a wider spectrum of
779 human bodies, helping to reduce algorithmic biases in downstream applications (e.g., surveillance
780 and sports analytics).
781782 **Assistive Technologies and Rehabilitation** Models trained and validated on InclusiveVidPose can
783 be integrated into physical-therapy monitoring tools, prosthetic calibration systems, and home-based
784 exercise feedback platforms for individuals with limb deficiencies. This integration enhances the
785 independence and improves the quality of life for users with limb loss or congenital differences.
786787 **Research Resource** The dataset includes rich annotations, *i.e.*, keypoints, segmentation masks,
788 bounding boxes, and tracking IDs. These annotations serve as a valuable resource for developing
789 novel pose estimation and biomechanics algorithms and for teaching best practices in inclusive model
790 evaluation.791 We hope our work draws greater attention to individuals with disabilities and empowers them to
792 benefit from advancements in technology.
793794 **C.2 POTENTIAL RISKS**
795796 **Privacy and Misuse** Although we only share YouTube URLs and anonymized keypoint data,
797 improper downloading or re-identification attempts could compromise personal privacy. To mitigate
798 this, we require strict anonymization standards and a Data Use Agreement (DUA) that forbids
799 deanonymization, re-identification, and commercial exploitation without consent.800 **Unintended Bias in Applications** Models fine-tuned on limb-deficient data could be misapplied in
801 contexts where missing-joint detection is erroneously interpreted as injury or non-compliance (e.g.,
802 automated safety monitoring). We recommend clear documentation of model limitations and ethical
803 training for practitioners deploying these technologies.
804805 **D FURTHER ANALYSIS OF RESIDUAL ENDPOINTS**
806808 In Table 4, we extend the study by reporting ViTPose-H on InclusiveVidPose with 8, 17, and 25
809 keypoints under two training settings: InclusiveVidPose only and InclusiveVidPose plus COCO, both
evaluated on InclusiveVidPose. Under InclusiveVidPose-only training, AP on the 17 standard joints

810
 811 Table 4: **ViTPose-H results on InclusiveVidPose for 8 residual endpoints and 17 standard joints.**
 812 We report performance on three keypoint sets: the 8 residual endpoints, the standard 17 COCO
 813 joints, and the extended 25-keypoint schema. The left block (InclusiveVidPose* → InclusiveVidPose)
 814 trains ViTPose-H from scratch on InclusiveVidPose without COCO pretraining. The middle block
 815 (InclusiveVidPose → InclusiveVidPose) initializes from COCO weights and fine-tunes only on
 816 InclusiveVidPose. The right block (InclusiveVidPose+COCO → InclusiveVidPose) jointly trains on
 817 COCO and InclusiveVidPose before evaluation on InclusiveVidPose. AP on the 17 standard keypoints
 818 is consistently higher than AP on the 8 residual endpoints, which suggests that residual endpoints are
 819 harder to localize. Adding COCO, either as initialization or as extra training data, mainly helps the
 820 17-keypoint subset, while accuracy on the 8 residual endpoints changes little.

Keypoints	InclusiveVidPose* → InclusiveVidPose						InclusiveVidPose → InclusiveVidPose						InclusiveVidPose+COCO → InclusiveVidPose					
	AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰	AR ⁷⁵	AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰	AR ⁷⁵	AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰	AR ⁷⁵
8	82.4	90.1	85.4	85.2	91.6	87.2	84.2	92.2	86.3	86.7	93.1	88.0	82.2	92.0	84.7	85.7	93.1	87.3
17	85.2	89.6	86.3	86.6	90.9	87.4	86.7	90.8	87.5	87.9	91.8	88.6	87.0	91.6	87.4	88.3	92.3	88.8
25	84.8	90.6	86.3	86.3	91.1	89.4	86.3	90.8	87.5	87.6	91.8	88.7	86.5	91.6	87.5	87.9	92.4	88.9

825
 826 Table 5: **ViTPose-H performance on 17 COCO keypoints by limb-deficiency group.** We report
 827 COCO-style AP and AR on InclusiveVidPose using a 17-keypoint subset and group clips into Arm
 828 Left, Arm Right, Leg Left, Leg Right residual-limb cases and Intact clips, showing consistent
 829 annotation of the shared joints across limb-deficiency types.

	AP	AP ⁵⁰	AP ⁷⁵	AR	AR ⁵⁰	AR ⁷⁵
Arm Left	84.7	88.4	85.9	86.6	89.9	87.4
Arm Right	82.3	86.1	82.9	86.2	89.7	86.8
Leg Left	92.3	95.9	92.9	93.0	96.1	93.7
Leg Right	87.5	91.9	88.6	88.7	93.0	89.1
Intact	75.7	84.1	76.4	81.5	88.1	83.0

830
 831 is 86.7, while AP on the 8 residual endpoints is 84.2, which suggests that the standard joints are
 832 easier. This is because most subjects have only one or two residual endpoints, their appearance varies
 833 across individuals, and occlusion near amputation sites is common. When COCO is added to training,
 834 the main gains appear on the 17-joint subset (AP increases to 87.0 and AR to 88.3). The 8-endpoint
 835 subset does not improve (AP decreases to 82.2 and AR to 85.7), and the unified 25-keypoint set
 836 changes only slightly (AP moves from 86.3 to 86.5). These results suggest that large general datasets
 837 mainly strengthen common joints, while the residual endpoints still need targeted data and modeling.

838
 839 To isolate the effect of COCO pretraining, we add an “InclusiveVidPose* → InclusiveVidPose” setting,
 840 where ViTPose-H is trained from scratch on InclusiveVidPose without any COCO initialization.
 841 Comparing this baseline with “InclusiveVidPose → InclusiveVidPose” shows that COCO pretraining
 842 brings consistent gains across all keypoint sets: AP/AR improve from 82.4/85.2 to 84.2/86.7 on the
 843 8 residual endpoints, from 85.2/86.6 to 86.7/87.9 on the 17 standard joints, and from 84.8/86.3 to
 844 86.3/87.6 on the full 25-keypoint schema. The improvements are similar in magnitude for residual
 845 endpoints and standard joints, which suggests that pretraining on a large intact-body dataset provides
 846 a useful generic pose prior without harming residual-endpoint localization. Combined with the
 847 joint-training results, these trends indicate that COCO mainly acts as a strong initialization that
 848 stabilizes common body structure, while closing the remaining gap between standard joints and
 849 residual endpoints still requires targeted InclusiveVidPose-style data and modeling.

850
 851 We further evaluate ViTPose-H on a 17-keypoint version of InclusiveVidPose and group clips into five
 852 categories: Arm Left, Arm Right, Leg Left, Leg Right, and Intact. As shown in Table X, ViTPose-H
 853 achieves high AP and AR for all four limb-deficiency groups (around 82–85 AP for residual-arm
 854 clips and 87–92 AP for residual-leg clips), while the Intact group is noticeably lower (75.7 AP and
 855 81.5 AR). This is expected because, for limb-deficiency clips, keypoints on the missing limb are
 856 marked with visibility = 0 and are ignored when COCO metrics are computed, so the evaluation
 857 only covers the visible standard joints. In contrast, intact clips include a larger set of visible joints,
 858 including more occluded and fast-moving points that are harder to localize. The gap between arm and
 859 leg groups suggests that upper-limb joints near the torso remain more challenging than lower-limb

Figure 8: **Failure cases of DSTA on InclusiveVidPose.** Each frame shows two rows: the top row visualizes the ground truth keypoints and the bottom row shows predictions from DSTA. All examples come from the InclusiveVidPose test split. Even when the overall pose looks roughly plausible, DSTA often places residual endpoints and nearby joints at anatomically implausible locations relative to the clearly shortened limbs and prostheses in the ground truth.

Figure 8: **Failure cases of DSTA on InclusiveVidPose.** Each frame shows two rows: the top row visualizes the ground truth keypoints and the bottom row shows predictions from DSTA. All examples come from the InclusiveVidPose test split. Even when the overall pose looks roughly plausible, DSTA often places residual endpoints and nearby joints at anatomically implausible locations relative to the clearly shortened limbs and prostheses in the ground truth.

Figure 8: **Failure cases of DSTA on InclusiveVidPose.** Each frame shows two rows: the top row visualizes the ground truth keypoints and the bottom row shows predictions from DSTA. All examples come from the InclusiveVidPose test split. Even when the overall pose looks roughly plausible, DSTA often places residual endpoints and nearby joints at anatomically implausible locations relative to the clearly shortened limbs and prostheses in the ground truth.

E FURTHER ANALYSIS OF MULTI-FRAME POSE ESTIMATION

In the main paper, we evaluate both image-based pose estimators and recent multi-frame video models, including DCPose (Liu et al., 2021b) and DSTA (He & Yang, 2024), on InclusiveVidPose. For the video benchmark we follow a PoseTrack style evaluation protocol and report mAP over keypoints. All reported numbers use the same 25 keypoint skeleton, the same training split of InclusiveVidPose.

Head joints. The behavior of head keypoints on InclusiveVidPose differs from PoseTrack style benchmarks. Many InclusiveVidPose sequences center on the torso and residual limbs, for example rehabilitation training or prosthesis demonstrations, so the head is often near the crop boundary or partially out of frame. In contrast, PoseTrack videos usually show full body, upright people with clear heads near the image center Andriluka et al. (2018). In addition, facial keypoints are annotated in fewer instances than most torso and leg joints. Each head joint appears only on the order of one hundred thousand labeled instances in our video annotations, which is roughly about half of the supervision frequency that standard lower body joints receive. As a result, all models see noticeably fewer positive examples for the head than for knees, hips, and ankles during training, and head AP is lower than for better supported joints.

Residual endpoints and temporal assumptions. The larger gap on residual limb endpoints comes mainly from how current video pose models are designed. DCPose and DSTA are built to exploit temporal continuity in videos where every subject has a complete skeleton. They always predict a fixed set of joints for each person in every frame, and they aggregate neighboring frames to smooth short term occlusions, blur, or defocus (Liu et al., 2021b; He & Yang, 2024). On PoseTrack this assumption holds, because there are no limb deficiencies and occlusions are usually temporary. In

918 InclusiveVidPose, residual limbs are structural rather than temporary. Many participants have only
 919 one or two residual endpoints and the rest of the limb is truly absent. When a model that assumes a
 920 full limb sees such a sequence, it tends to hallucinate a complete arm or leg and gradually pull the
 921 residual endpoint toward a typical wrist or ankle location. Once this happens near the beginning of
 922 a clip, the temporal module propagates and stabilizes the wrong configuration across many frames.
 923 Residual endpoints then follow a smooth but systematically shifted trajectory and receive low AP
 924 under per frame evaluation.

925 The image baselines instead make independent predictions at each frame. They still struggle near
 926 residual limbs, but early mistakes do not automatically propagate in time, so they can recover on
 927 frames where the stump is well visible. Consistent with this interpretation, intact joints such as knees
 928 and ankles remain in the 70+ AP range in our video benchmark, which is close to what comparable
 929 architectures report on PoseTrack under related settings (Liu et al., 2021b; He & Yang, 2024).

930
 931
 932
 933 **Failure cases on InclusiveVidPose.** Figure 8 illustrates typical failure cases of DSTA on InclusiveVidPose. In these sequences the global pose is roughly plausible and the temporal aggregation
 934 produces visually coherent predictions across frames, yet the residual endpoints and nearby joints
 935 are often placed at anatomically implausible locations relative to the clearly shortened limbs and
 936 prostheses in the ground truth. These examples support our quantitative finding that existing multi
 937 frame architectures, which are tuned for intact body benchmarks and fixed skeletons, do not yet
 938 capture residual limb anatomy even when trained on the same annotations. The fact that intact joints
 939 reach normal AP while residual endpoints remain much harder to localize reinforces our main claim
 940 that InclusiveVidPose provides a demanding but realistic testbed for developing temporal pose models
 941 that explicitly represent limb deficiencies.

943 F DISCUSSION AND FUTURE WORK

944 **Limitation** Even with a careful multi-annotator process and video, telling an occluded limb from
 945 an absent limb is sometimes unclear. This can add small noise to labels and make training a bit harder.
 946 We also see that current pose models on our data sometimes give unreliable confidence for missing or
 947 prosthetic limbs. These points suggest clear next steps for better guidelines and better models.

948
 949
 950
 951
 952
 953 **Opportunities for prosthesis-aware modeling.** Beyond benchmarking, our annotations are de-
 954 signed to support inclusive model design. First, while the current keypoint schema focuses on human
 955 anatomy and does not include prosthesis-tip joints, our pixel-level masks and per-limb prosthesis
 956 status naturally enable future work that introduces prosthesis end-effectors for applications requiring
 957 precise contact modeling with the environment (e.g., gait analysis or object manipulation). Second,
 958 the per-limb prosthesis status can be used by future pose estimators through conditional keypoint
 959 heads, adaptive skeleton graphs, or curriculum training schemes that explicitly condition on prosthesis
 960 presence.

961 **Privacy-preserving synthetic data augmentation.** In future work, we will explore the use of
 962 synthetic data to protect participant privacy while enriching the InclusiveVidPose dataset. Real-
 963 world videos may raise privacy and ethical concerns and can be difficult or impractical to collect
 964 for rare limb-deficiency cases. Crucially, the success of any synthetic-data pipeline depends on a
 965 high-quality base of real examples. In our case, our InclusiveVidPose corpus provides the anatomical
 966 diversity and motion variability needed to guide realistic synthesis. To overcome the scarcity of
 967 certain amputation scenarios, we will generate motion sequences of limb-deficient subjects by
 968 combining advanced human-body simulators with generative adversarial networks. These synthetic
 969 clips will span uncommon amputation levels, diverse prosthesis designs, and challenging viewpoints
 970 or occlusions. We will then integrate them with our real footage. Finally, domain-adaptation and
 971 style-transfer techniques will harmonise appearance and temporal dynamics across synthetic and real
 972 data, ensuring that models trained on the hybrid dataset generalize robustly to in-the-wild videos.

972 **Algorithm 1** LiCC: Limb-specific Confidence Consistency

973 **Require:** Ground-truth annotations G , keypoint predictions D , number of keypoints K , rules \mathcal{R}

974 **Ensure:** LiCC score

975 1: $c \leftarrow 0$ ▷ correct comparisons

976 2: $N \leftarrow 0$ ▷ total comparisons

977 3: **for all** (g, d) in $\text{zip}(G, D)$ **do**

978 4: $\text{gt} \leftarrow \text{reshape}(g.\text{keypoints}, K, 3)$

979 5: $\text{pred} \leftarrow \text{reshape}(d.\text{keypoints}, K, 3)$

980 6: **for all** rule $\in \mathcal{R}$ **do**

981 7: $i \leftarrow \text{rule.main_kp_idx}$

982 8: $\mathcal{C} \leftarrow \text{rule.compare_kp_indices}$

983 9: $v \leftarrow \text{gt}[i, 2]$ ▷ ground-truth visibility

984 10: **if** $v \in \{1, 2\}$ **then**

985 11: $N \leftarrow N + 1$

986 12: $m \leftarrow \text{pred}[i, 2]$

987 13: $\text{mc} \leftarrow \{ \text{pred}[j, 2] : j \in \mathcal{C}, 0 \leq j < K \}$

988 14: $q \leftarrow \max(\text{mc})$

989 15: **if** $m > q$ **then**

990 16: $c \leftarrow c + 1$

991 17: **end if**

992 18: **end if**

993 19: **end for**

994 20: **end for**

995 21: **return** $\frac{c}{N}$ **if** $N > 0$ **else** 0

996

997

998 **Multimodal data for individuals with limb deficiencies.** While the current dataset focuses on

999 RGB video frames with 2D keypoint and segmentation annotations, extending the data modalities

1000 could unlock richer biomechanical and temporal analyses. In particular, incorporating depth maps or

1001 multi-view camera streams would provide 3D pose ground truth and enable reconstruction-based

1002 methods to handle occlusions more robustly. Additionally, fusing inertial measurement unit (IMU)

1003 data from wearable sensors could offer complementary kinematic signals for smoother tracking

1004 of residual limbs. Finally, exploring audio-visual cues, for example, gait-associated sounds or

1005 speech commands, may facilitate multimodal models that better understand the context and intent of

1006 individuals with limb deficiencies during natural activities.

1007

1008

G IMPLEMENTATION DETAILS

1011 **Experimental Setup** All experiments were run on a workstation equipped with two NVIDIA

1012 RTX 4090 GPUs and an AMD Ryzen Threadripper PRO 3955WX CPU. The system software

1013 environment is Ubuntu 24.04.2 LTS, Python 3.11.11, PyTorch 2.5.1 with CUDA 12.4. Our imple-

1014 mentation is based on the MMPOSE library¹). For data preprocessing, augmentation, and training

1015 hyperparameters, we used the default settings of each method as provided by MMPOSE. All training

1016 configurations, including exact config files and command-line instructions, have been released in

1017 the [InclusiveVidPose](#).

1018

1019

1020 **Limb-specific Confidence Consistency(LiCC) Pseudocode Explanation** As shown in Algo-

1021 rithm 1, we denote G as the set of all ground-truth annotations, D as the set of corresponding pose

1022 estimation results, K as the total number of keypoints, and \mathcal{R} as the collection of mutual-exclusion

1023

1024

1¹<https://github.com/open-mmlab/mmpose>

1026 rules. In our case,
 1027

$$\begin{aligned}
 \mathcal{R} = \Big\{ & \underbrace{(7, \{17\}), (9, \{17, 19\}), (17, \{7, 9\}), (19, \{9\}),}_{\text{Left Upper Extremity}} \\
 & \underbrace{(8, \{18\}), (10, \{18, 20\}), (18, \{8, 10\}), (20, \{10\}),}_{\text{Right Upper Extremity}} \\
 & \underbrace{(13, \{21\}), (15, \{21, 23\}), (21, \{13, 15\}), (23, \{15\}),}_{\text{Left Lower Extremity}} \\
 & \underbrace{(14, \{22\}), (16, \{22, 24\}), (22, \{14, 16\}), (24, \{16\})}_{\text{Right Lower Extremity}} \Big\},
 \end{aligned}$$

1039 where each tuple $(i, \{j, \dots\})$ enforces that, whenever keypoint i is visible in the ground truth, its
 1040 predicted confidence must strictly exceed the maximum confidence among the mutually-exclusive
 1041 indices $\{j, \dots\}$. The algorithm maintains two counters, c for correct comparisons and N for total
 1042 comparisons. For each pair $(g, d) \in \text{zip}(G, D)$, we skip if g is empty; otherwise we reshape
 1043 $g.\text{keypoints}$ into $\text{gt} \in \mathbb{R}^{K \times 3}$ (visibility in column 3) and $d.\text{keypoints}$ into $\text{pred} \in \mathbb{R}^{K \times 3}$, extracting
 1044 its third column as the predicted confidence vector. We then iterate over every $(i, \mathcal{C}) \in \mathcal{R}$: ensure
 1045 $i \in [0, K]$, read visibility $v = \text{gt}[i, 2]$, and if $v \in \{1, 2\}$ increment N , set $m = \text{pred}[i]$, gather
 1046 $\{\text{pred}[j] \mid j \in \mathcal{C}\}$ into mc , skip if empty, else let $q = \max(\text{mc})$ and if $m > q$ increment c . Finally,
 1047 we return c/N when $N > 0$, or 0 otherwise. This LiCC metric thus measures how consistently a
 1048 visible keypoint's confidence surpasses that of all its mutually exclusive counterparts.
 1049

1050 H TERMS OF USE

1051 H.1 ANNOTATIONS AND WEBSITE

1054 The annotations and all website content for the InclusiveVidPose dataset are (c) 2025 InclusiveVidPose
 1055 Consortium, and are released under the Creative Commons BY-NC-SA 4.0 license ©.
 1056

1057 H.2 INFRINGEMENT

1059 If you believe any material in this dataset infringes your rights, please contact the authors. We will
 1060 promptly review and remove the infringing content.
 1061

1062 H.3 VIDEOS AND FRAMES

1064 All videos referenced in this dataset are publicly available YouTube videos or YouTube Shorts. We do
 1065 not host or distribute the video files or extracted frames, instead, each annotation record includes the
 1066 corresponding publicly accessible YouTube URL. Any use of these videos or frames (e.g., viewing,
 1067 downloading, processing, or redistributing) must fully comply with YouTube's Terms of Service
 1068 (<https://www.youtube.com/t/terms>) as well as any additional restrictions imposed by the
 1069 original content creators or channels. Downstream users assume sole responsibility for ensuring that
 1070 their use of this material conforms to all applicable copyright, privacy, and publicity laws.
 1071

1072 Under both Australian and U.S. copyright law, academic researchers may, under certain conditions,
 1073 use publicly available media, including YouTube videos, for research and study. In Australia, the
 1074 Copyright Act 1968 provides fair dealing exceptions that permit the use of copyright material for
 1075 research or study where the use is fair. In the United States, Section 107 of the Copyright Act
 1076 codifies fair use and explicitly identifies scholarship and research as purposes that can qualify under
 1077 this doctrine. Our own collection and internal use of source videos falls within these research-
 1078 focused exceptions; however, this dataset only distributes derived annotations (e.g., keypoints and
 1079 segmentation masks), not the underlying video content. Users remain responsible for ensuring that
 any use of the source videos complies with applicable copyright law and the terms of service of the
 hosting platforms.

1080
1081

H.4 ETHICS ADDENDUM

1082
1083
1084

By accessing, downloading, or using the InclusiveVidPose dataset (the “Dataset”), any downstream user (“You”) must agree to and abide by the following additional ethical obligations, which supplement the Dataset’s base license terms:

1085

- **Anonymization Standards**

1086
1087
1088

You may not distribute, publish, or otherwise reveal any video frames or metadata in a form that could identify any individual, minor or adult, either directly or by inference.

1089

- **Prohibition on Re-Identification**

1090
1091
1092

You shall not attempt, by any means, to re-identify any person depicted in the Dataset.

You shall not augment the Dataset with external data or use deanonymization algorithms to recover or expose personal identities.

1093

- **Non-Commercial, Ethical Research Use Only**

1094
1095
1096

You shall use the Dataset solely for non-commercial, research-oriented activities that comply with all applicable laws, institutional review board (IRB) approvals or exemptions, and recognized ethical norms for human-subjects research.

1097
1098
1099

Any form of commercial exploitation, product development, or profit-driven application of the Dataset is expressly prohibited without the prior written consent of the Dataset’s custodians.

1100

- **Breach and Remedies**

1101
1102
1103
1104
1105

Violation of any provision in this Addendum constitutes a material breach of your rights to use the Dataset, and may result in immediate termination of your license and access privileges. The Dataset custodians reserve the right to pursue any and all available legal and equitable remedies in the event of non-compliance.

1106
1107

H.5 DATA USE AGREEMENT (DUA)

1108
1109
1110
1111
1112

As a prerequisite for accessing the InclusiveVidPose dataset, all prospective users must complete a Data Use Agreement and submit it for review. Each agreement will be examined by the dataset administrators to ensure that proposed uses comply with our ethical and legal guidelines. Only after the DUA has been approved will access credentials be issued. A scanned copy of the signed agreement is provided in the supplementary materials.

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133