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Figure 1: Demonstration of InclusiveVidPose Dataset. The top row depicts a subject with left
upper and lower limb deficiency across frames, and the bottom row depicts a subject with right upper
limb deficiency. Unlike existing pose estimation datasets, we focus on human pose estimation for
individuals with limb deficiencies and add custom residual limb end keypoints highlighted in purple
to capture anatomical variations. All the displayed keypoints are manually annotated.

ABSTRACT

Approximately 445.2 million individuals worldwide are living with traumatic am-
putations, and an estimated 31.64 million children aged 0–14 have congenital limb
differences, yet they remain largely underrepresented in human pose estimation
(HPE) research. Accurate HPE could significantly benefit this population in ap-
plications, such as rehabilitation monitoring and health assessment. However, the
existing HPE datasets and methods assume that humans possess a full complement
of upper and lower extremities and fail to model missing or altered limbs. As a
result, people with limb deficiencies remain largely underrepresented, and current
models cannot generalize to their unique anatomies or predict absent joints. To
bridge this gap, we introduce InclusiveVidPose Dataset, the first video-based
large-scale HPE dataset specific for individuals with limb deficiencies. We col-
lect 313 videos, totaling 327k frames, and covering nearly 400 individuals with
amputations, congenital limb differences, and prosthetic limbs. We adopt 8 extra
keypoints at each residual limb end to capture individual anatomical variations.
Under the guidance of an internationally accredited para-athletics classifier, we
annotate each frame with pose keypoints, segmentation masks, bounding boxes,
tracking IDs, and per-limb prosthesis status. Experiments on InclusiveVidPose
highlight the limitations of the existing HPE models for individuals with limb
deficiencies. We introduce a new evaluation metric, Limb-specific Confidence
Consistency (LiCC), which assesses the consistency of pose estimations between
residual and intact limb keypoints. We also provide a rigorous benchmark for
evaluating inclusive and robust pose estimation algorithms, demonstrating that
our dataset poses significant challenges. We hope InclusiveVidPose spur research
toward methods that fairly and accurately serve all body types. The project website
is available at: � InclusiveVidPose.
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Figure 2: Examples of keypoint predictions by the ViTPose base model trained the COCO
dataset. Left: prostheses are erroneously predicted as natural ankles, leading to false right-ankle
detections. Middle: the model fails to localize the residual limb end and places the left-wrist keypoint
on the torso. Right: pronounced asymmetry in thigh length results in the right-knee keypoint being
placed at an anatomically implausible midpoint between hip and ankle. These cases show limited
generalization to limb differences.

1 INTRODUCTION

According to the Global Burden of Disease (GBD) 2021 report (Institute for Health Metrics and
Evaluation (IHME), 2024), approximately 445.2 million individuals worldwide are living with
traumatic amputations, and an estimated 31.64 million children aged 0–14 have congenital limb
differences. These people could benefit greatly from accurate human pose estimation (HPE) in
applications such as rehabilitation monitoring and health assessment. Regrettably, existing HPE
systems are trained on the existing datasets and are not designed for atypical anatomies or prosthetic
occlusions, leaving this population unsupported.

Widely used benchmarks like MS COCO (Lin et al., 2014b) and MPII Human Pose (Andriluka
et al., 2014) include only able-bodied people with complete sets of keypoints. These datasets and
the methods built on them assume that every keypoint of a presented individual exists, making no
provision for missing or altered limbs. As demonstrated in Figure 2, the MS COCO trained ViTPose
model produces significant errors when applied to images of individuals with limb deficiencies. On
the basis of these observations, we find that people with limb deficiencies are excluded from current
research, and models trained on the existing datasets fail to generalize to their anatomies.

To address this gap, we introduce InclusiveVidPose, the first video-based HPE dataset focused on
individuals with limb deficiencies. We collect 313 videos, totaling 327k frames, from 398 participants
who have amputations, congenital limb differences, and prosthetic limbs. Developing such a dataset
presents unique challenges. As illustrated in Figures 1, impairments vary widely across individuals,
including differences in the appearance and length of residual limbs, their anatomical location, and
the effects of different types of prostheses. In the existing keypoint schema, there is no predefined
sequence that accommodates these anatomical variations. To more accurately represent these cases,
we adopt additional keypoints at the ends of residual limbs.

Unlike single-image datasets, InclusiveVidPose leverages video context to disambiguate occluded
limbs from truly absent ones, ensuring precise residual-limb end annotations across frames. We
ensure the annotation quality through guidance from an internationally accredited para-athletics
classifier and verification by multiple trained annotators. For each frame, we provide standard
and residual-limb keypoints, segmentation masks, subject tracking IDs, bounding boxes, and the
prosthesis status of each residual limb.

InclusiveVidPose not only demonstrates the limitations of standard HPE models when applied to
people with limb deficiencies but also provides a rigorous benchmark for developing more inclusive
HPE algorithms. We evaluate six methods on InclusiveVidPose and find that they produce unreliable
predictions for missing or prosthetic limbs. Since existing HPE metrics (i.e., OKS (Lin et al., 2014a))
do not account for a model’s ability to recognize missing limbs, we propose a new metric, namely
Limb-specific Confidence Consistency (LiCC), to quantify this effect. LiCC measures how well the
predictions adhere to anatomical exclusion rules. Our results highlight the need for techniques that
yield well-calibrated pose estimations and generalize across all body types.

2
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Table 1: Comparison of existing datasets for human pose estimation. InclusiveVidPose offers
unique and richer annotations than previous datasets. It is also the first pose estimation dataset to
focus on individuals with limb deficiencies and to include keypoints at the ends of residual limbs.

Dataset #Image/
Frames #Pose Segmentation

Mask
Bounding

Box
Tracking

ID

Individuals
with Limb

Deficiencies

Residual
Limb End

Annotations

Prosthesis
Info

MPII Human Pose Andriluka et al. (2014) 25k 40k
MS COCO Lin et al. (2014b) 200k 250k ✓ ✓
CrowdPose Li et al. (2019) 20k 80k ✓
OCHuman Zhang et al. (2019) 4.7k 8k ✓ ✓
ExlPose Lee et al. (2023) 2.5k 14k ✓
Human-Art Ju et al. (2023) 50k 123k ✓
PoseTrack2018 Andriluka et al. (2018) 46k 144k ✓ ✓
PoseTrack21 Doering et al. (2022) 66k 177k ✓ ✓

InclusiveVidPose (Ours) 327k 309k ✓ ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

2.1 HUMAN POSE DATASETS

High-quality pose datasets are foundational to progress in human pose estimation (HPE), with nu-
merous recent releases offering varied formats and focusing on scale, activity diversity, and visual
complexity. Among 2D image-based datasets, MSCOCO (Lin et al., 2014b) is widely used for
its large-scale annotations, while MPII Human Pose (Andriluka et al., 2014) emphasizes action
diversity. CrowdPose (Li et al., 2019) and OCHuman (Zhang et al., 2019) focus crowded scenes.
Domain-specific datasets include HumanArt (Ju et al., 2023) for natural-artificial scene bridging,
LSP (Johnson & Everingham, 2011) for sports, and ExLPose (Lee et al., 2023) for extreme lighting
conditions. Video-based datasets like PoseTrack2018 (Andriluka et al., 2018) and PoseTrack21 (Do-
ering et al., 2022) provide per-frame body keypoint annotations. Additionally, 3D datasets such as
Human3.6M (Ionescu et al., 2014), GoPose (Ren et al., 2022), and FreeMan (Wang et al., 2024)
support depth-aware modeling for 3D pose estimation. While these datasets address various chal-
lenges in HPE, they consistently operate under the assumption of anatomically intact individuals,
overlooking individuals with limb deficiencies. This gap raises concerns around fairness, inclusivity,
and limits the generalizability of existing HPE models in real-world diverse populations.

Compared to the datasets in Table 1, InclusiveVidPose uniquely centers on individuals with limb
deficiencies, providing a large-scale, video-based resource. The participants cover a wide range of
anatomical variations and prosthetic types, including differences in the shape of residual limbs and the
appearance of prostheses. InclusiveVidPose covers a wide range of limb difference types, including
acquired amputations and congenital conditions. Furthermore, we leverage temporal continuity to
improve residual limb keypoint annotation, addressing ambiguity common in image-based datasets.
We provide rich annotations including 2D poses, segmentation masks, bounding boxes, and tracking
IDs, supporting tasks such as pose estimation, pose tracking, and motion analysis.

2.2 HUMAN POSE ESTIMATION MODELS

With increasing demand for real-world applications, human pose estimation has rapidly advanced,
with diverse models emerging to optimize accuracy, efficiency, and robustness. Accuracy-oriented
models include ViTPose (Xu et al., 2022), which leverages Vision Transformers, AlphaPose (Fang
et al., 2022), known for robust multi-task performance, OpenPose (Cao et al., 2019), a pioneering
bottom-up approach, DWPose(Yang et al., 2023) which employs a two-stage distillation strategy with
depth prediction. Lightweight models, such as YOLOPose (Maji et al., 2022) and RTMPose (He
et al., 2024), are designed for real-time deployment, prioritizing efficiency and fast inference. In
addition, DEKR (Geng et al., 2021) introduces decoupled keypoint regression to improve efficiency
in multi-person pose estimation. SAPIENs (Khirodkar et al., 2024) have demonstrated the benefits of
synthetic data integration, improving generalization across diverse real-world contexts.

2.3 HUMAN POSE ESTIMATION FOR HEALTHCARE

Millions globally live with limb deficiencies, facing physical and psychological challenges such as
limited mobility, reduced independence, and mental health impacts (Martin, 2013; Day et al., 2019).

3
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Figure 3: Demonstration of Our Keypoint Schema. Our extended pose definition is built on the MS
COCO keypoint schema by adding eight residual limb end keypoints (17 through 24). The left panel
shows the full skeleton: original COCO keypoints are connected by solid lines, and the eight new
residual limb end keypoints are marked as purple circles. The right panel presents, for each residual
limb end keypoint, a cropped view of a subject with the corresponding amputation and a matching
view of the same subject wearing a prosthetic device.

Advances in assistive technologies including prosthetics (Farina et al., 2023; Andersen et al., 2005;
Olsen et al., 2021), motion tracking and analysis tools (Zhou & Hu, 2008; Parks et al., 2019), have
improved quality of life. Meanwhile, pose estimation has gained traction in healthcare for applications
like rehabilitation and mobility assessment, such as (Alruwaili et al., 2023; 2024; Zhang et al., 2024).
Efforts like WheelPose (Huang et al., 2024), which uses synthetic data, and WheelPoser (Li et al.,
2024), which leverages IMU signals, have aimed to support pose estimation for marginalized groups.
ProGait (Yin et al., 2025) is a 2025 published dataset focus on transfemoral prosthesis users and
explicitly focused on lower-limb gait. Compared with these datasets, ours covers more limb deficiency
types beyond transfemoral gait, includes whole-body and residual limb keypoints with personalized
schema, and adds frame-level prosthesis status, segmentation, boxes, and tracking on videos.

3 INCLUSIVEVIDPOSE: FIRST VIDEO POSE DATASET FOR LIMB
DEFICIENCIES

3.1 EMERGING CHALLENGES OF HPE FOR INDIVIDUALS WITH LIMB DEFICIENCIES

Human pose estimation for individuals with limb deficiencies introduces fundamental challenges
that are not addressed by existing models and datasets. Existing keypoint-based systems rely on the
presence of anatomical keypoints (e.g., wrists, ankles) that may be absent, altered, or anatomically
nonstandard in this population, often resulting in invalid or anatomically implausible pose predictions.
Prosthetic limbs further complicate estimation due to their wide variability in geometry, material,
articulation, and movement patterns, which are unseen in prior training data. As illustrated in Figure 2,
state-of-the-art models frequently fail when encountering missing joints or prosthetic replacements.

In addition, annotation schemes designed for able-bodied subjects do not generalize to limb deficien-
cies. Missing joints must be modeled explicitly, and residual limbs require alternative keypoints. A
single fixed skeleton cannot capture this diversity, motivating flexible per-individual schemas and a
dedicated video-based dataset.

3.2 DATA COLLECTION

Why do we build our dataset from videos instead of curated images? In a single image, an
occluded limb can appear identical to a missing one, creating ambiguity in annotation. Video
sequences provide temporal continuity and changing viewpoints. By observing motion or shifts in
perspective, annotators can distinguish a limb that is simply hidden from a limb that is truly absent.

4
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Figure 4: Overview of frame-by-frame annotations. Consecutive video frames are shown on the
top. For each individual with limb deficiency on every frame, we provide a pixel-level segmentation
mask, a bounding box, a set of body keypoints, a prosthesis status label, and a tracking ID.

This capability leads to precise labeling of residual-limb end keypoints and reduces errors in pose
estimation for individuals with limb deficiencies.

Data sourcing. We collect raw footage from archival materials from the International Paralympic
Committee (IPC) and YouTube videos. For IPC materials, we have gathered the permission to store
and distribute the content for academic research. Our data collected from YouTube meet the standard
for the fair use (U.S.) and fair dealing for research and study (Australia). Furthermore, the project was
approved by the institutional Human Research Ethics Committee in September 2024, with approval
valid until September 2029. All frames are annotated at the highest available resolution. We preserve
associated metadata for traceability, including upload date, user handle, and caption. We plan ongoing
maintenance, including periodic refreshes and corrections to annotations.

Data filtering and curation. We manually review all collected data and extract segments that center
on individuals with limb deficiencies. We remove clips with severe motion blur or heavy occlusion,
such as splashing water, whenever annotators could not agree on keypoint placement. This process
yields 313 high-quality videos that span diverse actions, backgrounds and lighting conditions. These
curated video segments form the core of our InclusiveVidPose dataset.

3.3 HUMAN BODY KEYPOINT SCHEMA FOR INDIVIDUALS WITH LIMB DEFICIENCIES

Necessity of specialized human body keypoint schema. Current pose estimation task uses fixed
keypoint sets that fail to capture anatomical variation in individuals with limb deficiencies. Models
trained on existing datasets often incorrectly predict complete limbs even when these structures are
absent or replaced by prostheses. This mismatch yields invalid outputs and reduces reliability. The
core issue is the lack of a schema that adapts to residual anatomy. Without keypoints at residual-limb
endpoints, methods cannot represent true motion. In light of this, adopting a specialized set of
keypoints would address this gap by aligning keypoint definitions with individual anatomy. This
alignment is essential to deliver accurate, relevant, and robust pose estimates for individuals with
limb deficiencies.

Design of an extended keypoint schema. As seen in Figure 3, we adopt a keypoint schema that
builds on the COCO format’s 17 keypoints by adding 8 residual-limb points. These eight keypoints
lie at the anatomical endpoints of residual limbs (left/right above and below the elbow, left/right
above and below the knee) and explicitly exclude any prosthetic or assistive device. In this way,
the schema focuses on human anatomy rather than device geometry: residual-limb endpoints are
annotated as stable anatomical landmarks, while prosthesis shape and contact with the environment
are represented through pixel-level segmentation masks and per-limb prosthesis status. Standard pose-
estimation models lack a mechanism to represent missing or truncated anatomy, so they often try to
localize non-existent joints or collapse output when a limb is absent. By incorporating endpoints that
correspond to the actual residual anatomy, our 25-keypoint protocol gives models clear, semantically
meaningful targets that distinguish between intact and residual structures.

5
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Figure 5: Overview of our InclusiveVidPose dataset. Sample frames show individuals with a
range of limb-difference anatomies, including upper-body impairments, lower-body impairments,
single residual limbs, and multiple residual limbs. Meanwhile, our dataset covers indoor and outdoor
environments and a wide variety of activities such as rehabilitation training, sports competition, and
everyday interactions. All residual limb points and corresponding skeletons are highlighted in purple.

3.4 DATA ANNOTATION PROCEDURE

We annotate every individual with five label types: pixel-level segmentation masks, bounding boxes, a
persistent tracking ID, limb-deficient body keypoints, and prosthesis limbs, as illustrated in Figure 4.

Annotation team training. We recruit 12 annotators through a professional data labeling service. All
had prior experience with human body keypoint annotation. Before beginning work, each annotator
completed a focused training session led by an internationally accredited para-athletics classifier. This
preparation ensured that every team member understood the anatomical variation found in individuals
with limb deficiencies and the requirements of our extended keypoint schema.

Bounding box, segmentation mask and tracking ID. We use the open-source platform X-
AnyLabeling (Wang, 2023) together with Segment Anything 2 promptable segmentation to generate
initial masks. For each individual, annotators first merge all segmentation masks sharing the same
tracking ID in a given frame and compute the tightest enclosing bounding box around that merged
mask. They then refine a pixel-accurate segmentation mask and confirm the persistent tracking ID.
SAM2’s ability to generalize zero-shot to unseen residual-limb shapes cuts mask-drawing time by
over 50%. To maintain high quality, we enforce an 80% accuracy threshold: after one annotator
finishes a batch, a second annotator cross-checks it. Any batch with more than twenty percent of
masks showing clear errors is returned for revision.

Human body keypoint annotation process. To capture each subject’s unique anatomy, two trained
annotators and one accredited para-athletics classifier review all 398 individuals’ disability profiles
and agree on a personalized 25-keypoint schema. Each schema is represented by a 25-element
presence mask that indicates which of the 25 keypoints apply to that individual. Annotators then
label every frame according to that schema, marking each keypoint’s image coordinates. We leverage
temporal cues to enforce cross-frame consistency and smooth annotations over frames. In addition,

6
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Figure 6: Overview of Participant Distribution by Deficiency Type, Gender, and Prosthesis. (a)
Distribution of limb-deficiency types, with single-site deficiencies and multi-site cases. (b) Gender
Distribution. (c) Distribution of individuals with and without prosthetic limbs.

for every frame, we record a prosthesis status label that specifies which limb or limbs are fitted
with a prosthesis. We follow the COCO visibility convention: any keypoint that is within the frame
but occluded receives a visibility flag of 1. We require an 80% point-level agreement rate between
annotators on 5% of sampled data, where “agreement” means no visually apparent errors in keypoint
placement. If more than 20% of sampled points in a batch fall below this threshold, the original
annotator must correct the entire batch. This structured, expert-guided workflow ensures unambiguous
placement of residual-limb keypoints and delivers highly reliable pose data.

3.5 DATASET STATISTICS

Our dataset comprises 313 video sequences, capturing the motion of 398 unique individuals. In
total, we annotate 327,235 frames and produce 308,533 pose estimates. As shown in Figure 5, our
dataset encompasses a broad spectrum of limb deficiencies. As illustrated in Figure 6, (a) the most
prevalent single-site deficiencies are located above the left knee (16.74%), below the left elbow
(15.25%), and below the right knee (12.26%); Multi-site limb differences account for 16.72% of the
population, highlighting the complexity of representation beyond isolated cases and the necessity
of modeling diverse impairment patterns for robust performance. The co-occurrence matrix further
demonstrates that upper- and lower-limb deficiencies frequently overlap across different body sides,
reflecting realistic clinical patterns. The gender breakdown in (b) is nearly balanced (51% female,
49% male), ensuring that learned pose models do not inherit a strong gender bias. Finally, the
prosthetic-usage chart in (c) shows an even split between subjects with and without prostheses,
indicating that the dataset equally represents natural residua and prosthetic-assisted movements.
Together, these statistics demonstrate that the dataset provides a representative and diverse sample
of limb-deficiency conditions, gender, and assistive-device usage, which is critical for developing
generalizable human-pose estimation algorithms.

Data use and license. The annotations and all website content for the InclusiveVidPose dataset are
© 2025 InclusiveVidPose Consortium and are released under the Creative Commons BY-NC-SA 4.0
license �. We will continue to maintain the dataset and release versioned updates with changelogs.

4 EXPERIMENTS

4.1 EXPERIMENT DETAILS

We benchmark our InclusiveVidPose dataset on a single-frame pose estimation task. Single-frame
evaluation highlights exactly where models struggle with residual-limb endpoints, guiding targeted
improvements in keypoint localization and confidence calibration. As the first pose-estimation dataset
dedicated to individuals with limb deficiencies, this image-based evaluation establishes clear baselines
for residual-limb detection and ensures fair comparison across models by using identical single-frame
inputs and metrics, while also informing future extensions to multi-frame pose estimation.
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Table 2: Main experimental results on pose estimation algorithms. We evaluate models includ-
ing Swin-based top-down heatmap networks (Liu et al., 2021a), ViTPose (Xu et al., 2022), and
RTMPose (He et al., 2024), as well as the bottom-up model DEKR (Geng et al., 2021), the detector-
based single-stage model YOLOX-Pose (Maji et al., 2022), and the video-based ViPNAS (Xu et al.,
2021). “InclusiveVidPose → InclusiveVidPose” reports training on our training set and evaluation
on our validation and test splits. “COCO → InclusiveVidPose” reports training only on COCO
and evaluation on our InclusiveVidPose validation and test splits. “InclusiveVidPose + COCO →
InclusiveVidPose/COCO” reports training on both datasets, validating on our validation split and
testing on our test split and COCO validation. “COCO → COCO” reports COCO training and COCO
validation performance (from MMPose).

Method Backbone Input Size
InclusiveVidPose COCO InclusiveVidPose + COCO COCO

→ InclusiveVidPose → InclusiveVidPose → COCO → COCO

AP AP50 AP75 AR AR50 AR75 LiCC AP AR AP AP50 AP75 AR AR50 AR75 LiCC AP AR AP AR

YoloxPose

YoloxPose-T 416x416 60.1 75.3 63.9 73.3 88.0 76.0 70.7 74.0 91.1 70.3 79.8 74.1 84.9 94.5 88.0 78.7 41.7 46.9 52.6 57.1
YoloxPose-S 640x640 65.4 80.2 69.9 77.5 90.5 80.7 72.7 78.4 93.3 73.6 82.3 77.0 87.4 95.0 89.8 78.0 49.1 54.2 64.1 68.2
YoloxPose-M 640x640 65.7 80.5 70.0 76.8 89.1 80.4 69.9 79.5 94.4 74.0 83.7 77.3 86.5 95.6 90.6 72.0 59.4 74.5 69.5 89.9
YoloxPose-L 640x640 65.9 80.3 70.4 76.2 88.5 79.9 67.7 80.0 94.9 74.3 84.1 77.5 85.3 94.7 89.1 69.5 64.9 80.5 71.2 90.1

DEKR HRNet-w32 512x512 77.7 83.5 79.5 83.2 89.9 84.8 55.2 55.8 93.2 73.6 78.2 74.9 89.3 96.2 90.5 62.1 59.5 66.3 68.6 73.5
HRNet-w48 640x640 75.2 81.1 77.2 85.1 93.7 86.7 67.3 53.4 93.4 71.1 75.3 72.1 90.6 97.2 91.7 55.2 62.9 69.2 71.4 76.2

ViPNAS MobileNetV3 256x192 78.6 87.6 80.3 80.3 88.6 81.5 53.8 70.2 72.9 81.5 88.6 83.3 83.2 89.8 84.3 55.0 68.5 72.2 69.5 75.5

Swin
Transformer

Swin-T 256x192 81.2 89.6 83.3 82.6 90.0 84.5 68.8 72.6 75.8 82.0 88.6 84.4 83.5 89.9 85.3 68.9 68.3 71.7 72.4 78.2
Swin-B 256x192 78.8 87.5 81.1 80.6 88.4 82.6 67.8 77.3 80.2 80.7 88.5 83.1 82.5 89.5 84.2 69.3 68.6 72.5 73.7 79.4
Swin-B 384x288 81.8 88.6 83.4 83.2 89.8 84.5 69.3 78.8 81.6 82.7 89.4 84.3 84.1 90.4 85.4 74.6 70.6 74.7 75.9 81.1
Swin-L 256x192 79.5 88.4 81.1 81.1 89.5 82.3 68.7 77.1 79.9 80.0 88.4 82.1 81.9 89.2 83.9 68.2 65.2 69.3 74.3 79.8
Swin-L 384x288 80.7 88.6 82.5 82.0 89.4 83.6 72.1 78.4 81.4 81.5 88.6 83.5 82.8 89.2 84.5 72.7 66.0 70.7 76.3 81.4

RTMPose

RTMPose-T 256x192 75.2 83.1 76.2 76.4 84.9 77.9 65.3 66.5 68.8 80.2 89.7 82.5 81.6 90.5 83.7 73.1 67.6 70.9 68.2 73.6
RTMPose-S 256x192 79.3 84.5 77.3 80.7 86.4 78.7 74.1 71.8 74.0 83.6 90.8 85.6 84.8 91.2 96.3 71.4 72.2 75.1 71.6 76.8
RTMPose-M 256x192 82.2 88.8 83.6 83.3 89.9 84.3 69.5 75.2 77.7 82.5 89.6 83.4 83.7 90.2 84.7 60.8 71.9 74.7 74.6 79.5
RTMPose-L 256x192 82.2 89.7 83.5 83.2 90.1 84.1 69.1 76.2 78.7 81.9 89.6 83.2 83.5 90.1 84.6 60.8 72.6 75.5 75.8 80.6

ViTPose

ViT-S 256x192 82.5 89.7 84.4 84.1 90.7 85.7 67.1 72.5 75.2 82.1 88.4 84.2 93.7 90.0 85.0 70.6 70.2 73.7 73.9 79.2
ViT-B 256x192 82.5 89.6 84.2 84.1 90.2 85.6 70.3 77.4 80.0 83.3 89.5 85.4 84.9 90.4 86.5 72.0 74.3 77.6 75.7 81.0
ViT-L 256x192 85.5 90.7 86.5 86.8 91.6 87.3 73.8 79.9 82.5 86.0 91.6 87.4 87.4 92.1 88.4 75.1 78.4 81.2 78.2 83.4
ViT-H 256x192 86.3 90.8 87.5 87.6 91.8 88.7 73.6 81.5 83.8 86.5 91.7 87.5 87.9 92.4 88.9 74.0 79.1 82.1 78.8 83.9

Beyond this image-based setting, we further build a video-based benchmark by adapting the PoseTrack
evaluation protocol to InclusiveVidPose. We evaluate two representative multi-frame pose estimators,
DCPose (Liu et al., 2021b) and DSTA (He & Yang, 2024), and report PoseTrack-style AP for
standard joints and for our residual-limb groups. This video-based evaluation tests whether temporal
aggregation helps track residual-limb endpoints across time and offers the first reference results for
video pose estimation on individuals with limb deficiencies.

Specifically, we sample one frame every 60 frames from each video. We then split the dataset at the
video level into training, validation and test splits in a ratio of 7 : 1 : 2. All sampled frames from the
same video are kept together in one split. Therefore, no individual appears in more than one split to
prevent any data leakage. Furthermore, we believe that a good pose estimator must serve all users
rather than a single group. In light of this, we measure performance on both able-bodied and limb-
difference anatomies. We train and evaluate models on COCO dataset alongside InclusiveVidPose
under the same settings. This dual-dataset approach provides a fair comparison of how different
algorithms handle standard and disability-aware keypoint estimation. By benchmarking across both
COCO and InclusiveVidPose, we ensure our evaluations drive improvements that benefit everyone,
from able-bodied individuals to those with limb deficiencies. All models in Table 2 are initialized
from their official COCO-pretrained weights.

4.2 EVALUATION METRICS

COCO metric are used to evaluate overall pose estimation performance. We report average precision
(AP) and average recall (AR) at OKS thresholds 0.50 and 0.75, i.e., AP, AP50, AP75, AR, AR50, and
AR75. These metrics follow the COCO protocol and measure keypoint localization accuracy.

PoseTrack metrics are used to evaluate video-based pose estimation on InclusiveVidPose. Following
the PoseTrack protocol, we compute keypoint average precision (AP) over all frames and report AP
for each joint category as well as the mean AP over all keypoints. On our benchmark, we further
report AP for the four residual-limb groups (ArmUp, ArmLow, LegUp, LegLow), which aggregate
our residual-limb endpoints and quantify localization performance on disability-related regions.
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Table 3: PoseTrack-style keypoint AP on InclusiveVidPose. We report AP (%) of DCPose (Liu
et al., 2021b) and DSTA (He & Yang, 2024) on standard joints and residual-limb groups (ArmUp,
ArmLow, LegUp, LegLow), together with the mean over all keypoints.

Head Shoulder Elbow Wrist Hip Knee Ankle ArmUp ArmLow LegUp LegLow Mean

DCPose (Liu et al., 2021b) 28.1 72.0 69.7 79.3 73.2 72.4 72.9 1.6 0.2 12.2 16.0 43.2
DSTA (He & Yang, 2024) 28.9 72.2 70.4 81.9 72.7 71.9 72.0 0.6 0.0 14.3 17.3 43.7

Limb-specific Confidence Consistency (LiCC) is introduced to measure whether a pose-estimation
model can correctly distinguish intact limbs from residual or missing limbs. This capability is critical
for assessing the inclusiveness of pose-estimation systems on data that includes individuals with
limb deficiencies. Let V be the set of all ground-truth keypoints with visibility v ≥ 1, and for
each keypoint i ∈ V , denote by M(i) the set of mutually exclusive keypoints. For example, if
the residual wrist keypoint is visible, then both the residual elbow keypoint and the normal wrist
landmark cannot be present. Denote by si the predicted confidence for keypoint i, and by max

j∈M(i)
sj

the highest confidence among its mutually exclusive partners. LiCC is defined as the average fraction
of keypoints whose confidence exceeds that of any exclusive keypoint:

LiCC =
1

|V |
∑
i∈V

1
(
si > max

j∈M(i)
sj
)
, (1)

where 1(·) is the indicator function. A higher LiCC indicates stronger consistency: visible keypoints
are assigned higher confidence than any impossible alternatives. Pseudocode for computing LiCC is
provided in the supplementary materials.

4.3 BENCHMARK RESULTS

Single-frame pose estimation. As shown in Table 2, when we train on InclusiveVidPose and evaluate
on InclusiveVidPose, large backbones like HRNet-w48, Swin-L, and ViTPose (ViT-H/L) get higher
AP scores on visible points. However, LiCC is still low for most methods, about 60% in many cases.
This means many residual keypoints are predicted wrongly. Existing models assume that all keypoints
exist, so they often predict high confidence for impossible points. DEKR and ViPNAS have good
COCO AP but low LiCC, so they do not tell intact joints from residual endpoints well. In contrast,
YOLOX-Pose, which uses confidence learning, gets higher LiCC scores because it separates intact
and residual cases better.

To make the distribution shift between COCO and InclusiveVidPose explicit, Table 2 also reports
a COCO→InclusiveVidPose setting. We train all models only on COCO and evaluate them on
our validation and test splits, using a 17-keypoint version of InclusiveVidPose that keeps only the
COCO joints and ignores the 8 residual endpoints. Compared with COCO→COCO under the same
17-keypoint label space, many methods show lower AP or AR and their ranking changes, which
indicates that InclusiveVidPose presents a different and more challenging test distribution. At the
same time, strong models such as ViTPose-H and YOLOX-Pose-L still reach high AP and AR (e.g.,
81.5 AP / 83.8 AR and 80.0 AP / 94.9 AR in the COCO→InclusiveVidPose setting), which shows that
COCO-trained models can transfer reasonably well to our 17 keypoint annotations. This behaviour is
more consistent with a real distribution shift between COCO and InclusiveVidPose, combined with
different generalization strengths across architectures, than with inconsistent keypoint annotations in
our dataset.

Furthermore, we add COCO to training. This helps large backbones on InclusiveVidPose, but
it hurts small models like YOLOX-Pose-T and RTMPose-T on people with limb differences.
A fair comparison under a fixed label space therefore compares COCO→InclusiveVidPose to
COCO→COCO to measure dataset shift, and compares InclusiveVidPose→InclusiveVidPose and
InclusiveVidPose+COCO→InclusiveVidPose to understand what in-domain training can achieve on
the same 17 standard keypoints. COCO→COCO also drops compared with a COCO-only baseline
that predicts only 17 keypoints, because the head must now predict eight extra residual-limb keypoints.
The output space is larger, and the capacity moves away from the original 17 points. Additional
results on the endpoints are in Appendix §D, including results on 8 endpoints and 17 keypoints.

Overall, LiCC is low across most methods. On InclusiveVidPose, many models are around 60%
LiCC. In many frames, the model gives higher confidence to an anatomically impossible point than

9
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Inclusive VidPose GT ViTPose Prediction Inclusive VidPose GT ViTPose Prediction

Figure 7: Case study of ViTPose (ViT-B) predictions trained on InclusiveVidPose. We highlight
incorrect keypoints and skeleton segments in bold, demonstrating the challenges introduced Inclu-
siveVidPose. Residual-limb endpoints appear in purple, and all other keypoints appear in green.

to the true residual point. This shows that current pose estimators do not handle missing or altered
limbs. Our dataset and the LiCC metric make this problem clear and give a target for better methods.

Case study. As demonstrated in Figure 7, these results show that existing methods fail to generalize
effectively to individuals with limb deficiencies. More than half of the visible keypoint instances
exhibit conflicting predictions, underscoring the importance of our dataset for developing and
evaluating algorithms that can handle anatomies with missing or altered limbs. These errors occur
across activities and views, showing that InclusiveVidPose is challenging and calling for new, more
inclusive models that can reason about absent joints and residual endpoints.

Multi-frame pose estimation. Table 3 reports PoseTrack-style keypoint AP on InclusiveVidPose for
two representative video pose estimators, DCPose and DSTA. Both models keep relatively high AP
on standard joints: shoulders, elbows, wrists, hips, knees, and ankles all stay around the low to mid
70s, and DSTA gives slightly higher scores than DCPose on most of these joints, especially the wrist.
Head AP is much lower for both methods, around 28 AP, which is consistent with frequent occlusion,
cropping, and motion blur in our videos.

In contrast, performance on the four residual-limb groups is very poor. For ArmUp and ArmLow, AP
is almost zero for both methods, and even for LegUp and LegLow, AP remains in the low to mid teens.
The mean AP over all keypoints only increases from 43.2 for DCPose to 43.7 for DSTA, which shows
that small gains on intact joints and lower limbs do not close the large gap on residual-limb regions.
These results indicate that state-of-the-art video pose estimators, which are mainly trained and tuned
on intact-body datasets, do not transfer to our residual-limb keypoints, even after we aggregate
eight endpoints into four coarse groups. InclusiveVidPose therefore defines a new evaluation regime
where models need to reason about diverse amputation levels, prosthetic shapes, and asymmetric
limb geometry. By making this failure mode measurable in a realistic video benchmark, our dataset
supports both scientific progress toward more general human motion understanding and practical
advances in inclusive analysis for rehabilitation, sports, and everyday activities of people with limb
differences.

5 CONCLUSION

In summary, we introduce InclusiveVidPose, the first large-scale video-based human pose estimation
dataset focused on individuals with limb deficiencies, addressing a critical gap left by existing
benchmarks that only represent able-bodied anatomies. By capturing diverse anatomical variations
with precise annotations, including novel residual-limb end keypoints and leveraging video context
to disambiguate occlusions from absent limbs, our dataset enables more accurate modeling of this
underserved population. Our evaluation of state-of-the-art methods reveals their limitations in
handling missing or prosthetic limbs, motivating our proposed Limb-specific Confidence Consistency
(LiCC) metric to better assess confidence calibration. We believe InclusiveVidPose and LiCC will
drive the development of more inclusive and robust pose estimation algorithms, benefiting applications
in rehabilitation, health assessment, and assistive technologies.
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ETHICS STATEMENT

This work uses publicly available videos from YouTube and archival materials from the International
Paralympic Committee (IPC). No new data are collected from human subjects, and no interventions
are conducted. Use of YouTube content follows fair use in the United States and fair dealing for
research and study in Australia (see §3.2). We obtained guidance from the institutional copyright
officer and approval from the institutional Human Research Ethics Committee in September 2024,
valid until September 2029.

We release annotations and documentation. We do not redistribute YouTube videos. For YouTube
content, we provide links and provenance only. For IPC materials, we are authorized to store and
distribute the content for academic research. We remove content upon substantiated takedown
requests. We retain only information already public on the source platforms (e.g., upload date and
user handle) for traceability.

This work aims to advance inclusive human pose estimation. By curating representative video data
and releasing carefully documented annotations, we enable more reliable benchmarking and model
development for individuals with limb deficiencies. The dataset supports fairer evaluation, fosters
methodological innovation on non-standard anatomies, and facilitates downstream applications in
rehabilitation analytics, accessible sports technology, and safety-critical monitoring. We expect these
resources to help the community design models that better reflect human diversity and improve
real-world accessibility.

We document known limitations, report disaggregated metrics where applicable (§4). Annotations
and website content are released under CC BY–NC–SA 4.0 (see §3.5), and downstream users must
follow applicable laws and institutional ethics requirements. The authors declare no conflicts of
interest and no sponsorship that influenced the study.

REPRODUCIBILITY STATEMENT

We aim to make all experiments reproducible. Data sourcing and licensing are described in §3.2 and
§3.5. Dataset construction, annotation protocol, and quality controls are detailed in §3.4. Dataset
statistics and splits are provided in §3.5 and §4.1. The benchmark tasks, metrics, and evaluation
protocol appear in §4. We release an anonymized repository with training and evaluation scripts,
configuration files, hyperparameters, model variants, seeds, and environment specifications at / code.
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Dario Farina, Ivan Vujaklija, Rickard Brånemark, Anthony MJ Bull, Hans Dietl, Bernhard Graimann,
Levi J Hargrove, Klaus-Peter Hoffmann, He Huang, Thorvaldur Ingvarsson, et al. Toward higher-
performance bionic limbs for wider clinical use. Nature biomedical engineering, 7(4):473–485,
2023.

Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, and Jingdong Wang. Bottom-up human
pose estimation via disentangled keypoint regression. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 14676–14686.
Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01444.
URL https://openaccess.thecvf.com/content/CVPR2021/html/Geng_
Bottom-Up_Human_Pose_Estimation_via_Disentangled_Keypoint_
Regression_CVPR_2021_paper.html.

Jijie He and Wenwu Yang. Video-based human pose regression via decoupled space-time aggregation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
USA, June 16-22, 2024, pp. 1022–1031. IEEE, 2024. doi: 10.1109/CVPR52733.2024.00103. URL
https://doi.org/10.1109/CVPR52733.2024.00103.

Shichun He, Meiqi Wei, Deyu Meng, Zongnan Lv, Hongzhi Guo, Guang Yang, and Ziheng Wang.
Adversarially trained rtmpose: A high-performance, non-contact method for detecting genu valgum
in adolescents. Comput. Biol. Medicine, 183:109214, 2024. doi: 10.1016/J.COMPBIOMED.2024.
109214. URL https://doi.org/10.1016/j.compbiomed.2024.109214.

William Huang, Sam Ghahremani, Siyou Pei, and Yang Zhang. Wheelpose: Data synthesis techniques
to improve pose estimation performance on wheelchair users. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems, pp. 1–25, 2024.

Institute for Health Metrics and Evaluation (IHME). Global burden of disease 2021: Findings from
the gbd 2021 study. Technical report, Institute for Health Metrics and Evaluation (IHME), Seattle,
WA, 2024.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(7):1325–1339, jul 2014.

Sam Johnson and Mark Everingham. Learning effective human pose estimation from inaccurate
annotation. In Proceedings of Computer Vision and Pattern Recognition (CVPR) 2011, 2011.

Xuan Ju, Ailing Zeng, Jianan Wang, Qiang Xu, and Lei Zhang. Human-art: A versatile human-
centric dataset bridging natural and artificial scenes. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 618–629.

12

http://openaccess.thecvf.com/content_cvpr_2018/html/Andriluka_PoseTrack_A_Benchmark_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Andriluka_PoseTrack_A_Benchmark_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR52688.2022.02029
https://openaccess.thecvf.com/content/CVPR2021/html/Geng_Bottom-Up_Human_Pose_Estimation_via_Disentangled_Keypoint_Regression_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Geng_Bottom-Up_Human_Pose_Estimation_via_Disentangled_Keypoint_Regression_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Geng_Bottom-Up_Human_Pose_Estimation_via_Disentangled_Keypoint_Regression_CVPR_2021_paper.html
https://doi.org/10.1109/CVPR52733.2024.00103
https://doi.org/10.1016/j.compbiomed.2024.109214


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

IEEE, 2023. doi: 10.1109/CVPR52729.2023.00067. URL https://doi.org/10.1109/
CVPR52729.2023.00067.

Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter Selednik,
Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models. In European
Conference on Computer Vision, pp. 206–228. Springer, 2024.

Sohyun Lee, Jaesung Rim, Boseung Jeong, Geonu Kim, Byungju Woo, Haechan Lee, Sunghyun
Cho, and Suha Kwak. Human pose estimation in extremely low-light conditions. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pp. 704–714. IEEE, 2023. doi: 10.1109/CVPR52729.2023.00075. URL
https://doi.org/10.1109/CVPR52729.2023.00075.

Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Haoshu Fang, and Cewu Lu. Crowdpose: Efficient
crowded scenes pose estimation and a new benchmark. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp.
10863–10872. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01112.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/Li_
CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_
Benchmark_CVPR_2019_paper.html.

Yunzhi Li, Vimal Mollyn, Kuang Yuan, and Patrick Carrington. Wheelposer: Sparse-imu based body
pose estimation for wheelchair users. In Proceedings of the 26th International ACM SIGACCESS
Conference on Computers and Accessibility, pp. 1–17, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
part v 13, pp. 740–755. Springer, 2014a.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In David J.
Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision - ECCV 2014
- 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V,
volume 8693 of Lecture Notes in Computer Science, pp. 740–755. Springer, 2014b. doi: 10.1007/
978-3-319-10602-1\ 48. URL https://doi.org/10.1007/978-3-319-10602-1_
48.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pp. 9992–10002. IEEE, 2021a. doi: 10.1109/ICCV48922.2021.00986. URL https:
//doi.org/10.1109/ICCV48922.2021.00986.

Zhenguang Liu, Haoming Chen, Runyang Feng, Shuang Wu, Shouling Ji, Bailin Yang, and Xun
Wang. Deep dual consecutive network for human pose estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 525–534.
Computer Vision Foundation / IEEE, 2021b. doi: 10.1109/CVPR46437.2021.00059. URL
https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Deep_
Dual_Consecutive_Network_for_Human_Pose_Estimation_CVPR_2021_
paper.html.

Debapriya Maji, Soyeb Nagori, Manu Mathew, and Deepak Poddar. Yolo-pose: Enhancing YOLO
for multi person pose estimation using object keypoint similarity loss. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans,
LA, USA, June 19-20, 2022, pp. 2636–2645. IEEE, 2022. doi: 10.1109/CVPRW56347.2022.00297.
URL https://doi.org/10.1109/CVPRW56347.2022.00297.

Jeffrey J Martin. Benefits and barriers to physical activity for individuals with disabilities: a social-
relational model of disability perspective. Disability and rehabilitation, 35(24):2030–2037, 2013.

13

https://doi.org/10.1109/CVPR52729.2023.00067
https://doi.org/10.1109/CVPR52729.2023.00067
https://doi.org/10.1109/CVPR52729.2023.00075
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_Benchmark_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_Benchmark_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_Benchmark_CVPR_2019_paper.html
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Deep_Dual_Consecutive_Network_for_Human_Pose_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Deep_Dual_Consecutive_Network_for_Human_Pose_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Deep_Dual_Consecutive_Network_for_Human_Pose_Estimation_CVPR_2021_paper.html
https://doi.org/10.1109/CVPRW56347.2022.00297


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jennifer Olsen, Sarah Day, Sigrid Dupan, Kianoush Nazarpour, and Matthew Dyson. 3d-printing and
upper-limb prosthetic sockets: promises and pitfalls. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 29:527–535, 2021.

Melissa T Parks, Zhuo Wang, and Ka-Chun Siu. Current low-cost video-based motion analysis
options for clinical rehabilitation: a systematic review. Physical therapy, 99(10):1405–1425, 2019.

Yili Ren, Zi Wang, Yichao Wang, Sheng Tan, Yingying Chen, and Jie Yang. Gopose: 3d human pose
estimation using wifi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 6(2):1–25, 2022.

Jiong Wang, Fengyu Yang, Bingliang Li, Wenbo Gou, Danqi Yan, Ailing Zeng, Yijun Gao, Junle
Wang, Yanqing Jing, and Ruimao Zhang. Freeman: Towards benchmarking 3d human pose
estimation under real-world conditions. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21978–21988, 2024.

Wei Wang. Advanced auto labeling solution with added features. https://github.com/
CVHub520/X-AnyLabeling, 2023.

Lumin Xu, Yingda Guan, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo, Wanli Ouyang, and Xiaogang
Wang. Vipnas: Efficient video pose estimation via neural architecture search. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 16072–
16081. Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01581. URL
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_ViPNAS_
Efficient_Video_Pose_Estimation_via_Neural_Architecture_Search_
CVPR_2021_paper.html.

Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision
transformer baselines for human pose estimation. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
fbb10d319d44f8c3b4720873e4177c65-Abstract-Conference.html.

Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
two-stages distillation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4210–4220, 2023.

Xiangyu Yin, Boyuan Yang, Weichen Liu, Qiyao Xue, Abrar Alamri, Goeran Fiedler, and Wei Gao.
Progait: A multi-purpose video dataset and benchmark for transfemoral prosthesis users. arXiv
preprint arXiv:2507.10223, 2025.

Song-Hai Zhang, Ruilong Li, Xin Dong, Paul L. Rosin, Zixi Cai, Xi Han, Dingcheng
Yang, Haozhi Huang, and Shi-Min Hu. Pose2seg: Detection free human instance
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 889–898. Computer Vi-
sion Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00098. URL http:
//openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_
Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html.

Weijia Zhang, Yulin Li, Shaomin Cai, Zhaowei Wang, Xue Cheng, Nutapong Somjit, Dongqing Sun,
and Feiyu Chen. Combined mediapipe and yolov5 range of motion assessment system for spinal
diseases and frozen shoulder. Scientific Reports, 14(1):15879, 2024.

Huiyu Zhou and Huosheng Hu. Human motion tracking for rehabilitation—a survey. Biomedical
signal processing and control, 3(1):1–18, 2008.

14

https://github.com/CVHub520/X-AnyLabeling
https://github.com/CVHub520/X-AnyLabeling
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_ViPNAS_Efficient_Video_Pose_Estimation_via_Neural_Architecture_Search_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_ViPNAS_Efficient_Video_Pose_Estimation_via_Neural_Architecture_Search_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Xu_ViPNAS_Efficient_Video_Pose_Estimation_via_Neural_Architecture_Search_CVPR_2021_paper.html
http://papers.nips.cc/paper_files/paper/2022/hash/fbb10d319d44f8c3b4720873e4177c65-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fbb10d319d44f8c3b4720873e4177c65-Abstract-Conference.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A STATEMENT ON LLM USAGE

We use a large language model only for language polishing. Its role is limited to grammar, spelling,
punctuation, and minor wording edits. It does not contribute to research ideation, study design, data
analysis, result interpretation, or substantive writing. All technical content and claims originate from
the authors, and every edit receives author review and approval.

B DATASET WEBSITE

All information related to the dataset is available on our anonymous project website � InclusiveVid-
Pose.

C BOARDER IMPACT

The InclusiveVidPose dataset and accompanying evaluation benchmark aim to address a critical gap
in human pose estimation (HPE) research by centering on individuals with limb deficiencies, an
underrepresented and clinically important population. We anticipate the following broader impacts:

C.1 POSITIVE BENEFITS TO COMMUNITY

Fairness and Exclusivity in AI Development By providing a large-scale, anatomically diverse
video dataset, we encourage the community to move beyond able-bodied assumptions. This can
catalyze new model architectures and training paradigms that generalize across a wider spectrum of
human bodies, helping to reduce algorithmic biases in downstream applications (e.g., surveillance
and sports analytics).

Assistive Technologies and Rehabilitation Models trained and validated on InclusiveVidPose can
be integrated into physical-therapy monitoring tools, prosthetic calibration systems, and home-based
exercise feedback platforms for individuals with limb deficiencies. This integration enhances the
independence and improves the quality of life for users with limb loss or congenital differences.

Research Resource The dataset includes rich annotations, i.e., keypoints, segmentation masks,
bounding boxes, and tracking IDs. These annotations serve as a valuable resource for developing
novel pose estimation and biomechanics algorithms and for teaching best practices in inclusive model
evaluation.

We hope our work draws greater attention to individuals with disabilities and empowers them to
benefit from advancements in technology.

C.2 POTENTIAL RISKS

Privacy and Misuse Although we only share YouTube URLs and anonymized keypoint data,
improper downloading or re-identification attempts could compromise personal privacy. To mitigate
this, we require strict anonymization standards and a Data Use Agreement (DUA) that forbids
deanonymization, re-identification, and commercial exploitation without consent.

Unintended Bias in Applications Models fine-tuned on limb-deficient data could be misapplied in
contexts where missing-joint detection is erroneously interpreted as injury or non-compliance (e.g.,
automated safety monitoring). We recommend clear documentation of model limitations and ethical
training for practitioners deploying these technologies.

D FURTHER ANALYSIS OF RESIDUAL ENDPOINTS

In Table 4, we extend the study by reporting ViTPose-H on InclusiveVidPose with 8, 17, and 25
keypoints under two training settings: InclusiveVidPose only and InclusiveVidPose plus COCO, both
evaluated on InclusiveVidPose. Under InclusiveVidPose-only training, AP on the 17 standard joints
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Table 4: ViTPose-H results on InclusiveVidPose for 8 residual endpoints and 17 standard joints.
We report performance on three keypoint sets: the 8 residual endpoints, the standard 17 COCO
joints, and the extended 25-keypoint schema. The left block (InclusiveVidPose*→ InclusiveVidPose)
trains ViTPose-H from scratch on InclusiveVidPose without COCO pretraining. The middle block
(InclusiveVidPose → InclusiveVidPose) initializes from COCO weights and fine-tunes only on
InclusiveVidPose. The right block (InclusiveVidPose+COCO→ InclusiveVidPose) jointly trains on
COCO and InclusiveVidPose before evaluation on InclusiveVidPose. AP on the 17 standard keypoints
is consistently higher than AP on the 8 residual endpoints, which suggests that residual endpoints are
harder to localize. Adding COCO, either as initialization or as extra training data, mainly helps the
17-keypoint subset, while accuracy on the 8 residual endpoints changes little.

InclusiveVidPose* → InclusiveVidPose InclusiveVidPose → InclusiveVidPose InclusiveVidPose+COCO → InclusiveVidPose

Keypoints AP AP50 AP75 AR AR50 AR75 AP AP50 AP75 AR AR50 AR75 AP AP50 AP75 AR AR50 AR75

8 82.4 90.1 85.4 85.2 91.6 87.2 84.2 92.2 86.3 86.7 93.1 88.0 82.2 92.0 84.7 85.7 93.1 87.3
17 85.2 89.6 86.3 86.6 90.9 87.4 86.7 90.8 87.5 87.9 91.8 88.6 87.0 91.6 87.4 88.3 92.3 88.8
25 84.8 90.6 86.3 86.3 91.1 89.4 86.3 90.8 87.5 87.6 91.8 88.7 86.5 91.6 87.5 87.9 92.4 88.9

Table 5: ViTPose-H performance on 17 COCO keypoints by limb-deficiency group. We report
COCO-style AP and AR on InclusiveVidPose using a 17-keypoint subset and group clips into Arm
Left, Arm Right, Leg Left, Leg Right residual-limb cases and Intact clips, showing consistent
annotation of the shared joints across limb-deficiency types.

AP AP50 AP75 AR AR50 AR75

Arm Left 84.7 88.4 85.9 86.6 89.9 87.4
Arm Right 82.3 86.1 82.9 86.2 89.7 86.8
Leg Left 92.3 95.9 92.9 93.0 96.1 93.7
Leg Right 87.5 91.9 88.6 88.7 93.0 89.1
Intact 75.7 84.1 76.4 81.5 88.1 83.0

is 86.7, while AP on the 8 residual endpoints is 84.2, which suggests that the standard joints are
easier. This is because most subjects have only one or two residual endpoints, their appearance varies
across individuals, and occlusion near amputation sites is common. When COCO is added to training,
the main gains appear on the 17-joint subset (AP increases to 87.0 and AR to 88.3). The 8-endpoint
subset does not improve (AP decreases to 82.2 and AR to 85.7), and the unified 25-keypoint set
changes only slightly (AP moves from 86.3 to 86.5). These results suggest that large general datasets
mainly strengthen common joints, while the residual endpoints still need targeted data and modeling.

To isolate the effect of COCO pretraining, we add an “InclusiveVidPose* → InclusiveVidPose” setting,
where ViTPose-H is trained from scratch on InclusiveVidPose without any COCO initialization.
Comparing this baseline with “InclusiveVidPose → InclusiveVidPose” shows that COCO pretraining
brings consistent gains across all keypoint sets: AP/AR improve from 82.4/85.2 to 84.2/86.7 on the
8 residual endpoints, from 85.2/86.6 to 86.7/87.9 on the 17 standard joints, and from 84.8/86.3 to
86.3/87.6 on the full 25-keypoint schema. The improvements are similar in magnitude for residual
endpoints and standard joints, which suggests that pretraining on a large intact-body dataset provides
a useful generic pose prior without harming residual-endpoint localization. Combined with the
joint-training results, these trends indicate that COCO mainly acts as a strong initialization that
stabilizes common body structure, while closing the remaining gap between standard joints and
residual endpoints still requires targeted InclusiveVidPose-style data and modeling.

We further evaluate ViTPose-H on a 17-keypoint version of InclusiveVidPose and group clips into five
categories: Arm Left, Arm Right, Leg Left, Leg Right, and Intact. As shown in Table X, ViTPose-H
achieves high AP and AR for all four limb-deficiency groups (around 82–85 AP for residual-arm
clips and 87–92 AP for residual-leg clips), while the Intact group is noticeably lower (75.7 AP and
81.5 AR). This is expected because, for limb-deficiency clips, keypoints on the missing limb are
marked with visibility = 0 and are ignored when COCO metrics are computed, so the evaluation
only covers the visible standard joints. In contrast, intact clips include a larger set of visible joints,
including more occluded and fast-moving points that are harder to localize. The gap between arm and
leg groups suggests that upper-limb joints near the torso remain more challenging than lower-limb
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Figure 8: Failure cases of DSTA on InclusiveVidPose. Each frame shows two rows: the top row
visualizes the ground truth keypoints and the bottom row shows predictions from DSTA. All examples
come from the InclusiveVidPose test split. Even when the overall pose looks roughly plausible, DSTA
often places residual endpoints and nearby joints at anatomically implausible locations relative to the
clearly shortened limbs and prostheses in the ground truth.

joints, but across all groups ViTPose-H maintains strong 17-keypoint performance. These results
support that the shared COCO joints are annotated consistently across limb-deficiency types and
that the main difficulty lies in detecting and localizing residual endpoints rather than in inconsistent
placement of standard keypoints.

E FURTHER ANALYSIS OF MULTI-FRAME POSE ESTIMATION

In the main paper, we evaluate both image-based pose estimators and recent multi-frame video models,
including DCPose (Liu et al., 2021b) and DSTA (He & Yang, 2024), on InclusiveVidPose. For the
video benchmark we follow a PoseTrack style evaluation protocol and report mAP over keypoints.
All reported numbers use the same 25 keypoint skeleton, the same training split of InclusiveVidPose.

Head joints. The behavior of head keypoints on InclusiveVidPose differs from PoseTrack style
benchmarks. Many InclusiveVidPose sequences center on the torso and residual limbs, for example
rehabilitation training or prosthesis demonstrations, so the head is often near the crop boundary or
partially out of frame. In contrast, PoseTrack videos usually show full body, upright people with
clear heads near the image center Andriluka et al. (2018). In addition, facial keypoints are annotated
in fewer instances than most torso and leg joints. Each head joint appears only on the order of one
hundred thousand labeled instances in our video annotations, which is roughly about half of the
supervision frequency that standard lower body joints receive. As a result, all models see noticeably
fewer positive examples for the head than for knees, hips, and ankles during training, and head AP is
lower than for better supported joints.

Residual endpoints and temporal assumptions. The larger gap on residual limb endpoints comes
mainly from how current video pose models are designed. DCPose and DSTA are built to exploit
temporal continuity in videos where every subject has a complete skeleton. They always predict a
fixed set of joints for each person in every frame, and they aggregate neighboring frames to smooth
short term occlusions, blur, or defocus (Liu et al., 2021b; He & Yang, 2024). On PoseTrack this
assumption holds, because there are no limb deficiencies and occlusions are usually temporary. In
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InclusiveVidPose, residual limbs are structural rather than temporary. Many participants have only
one or two residual endpoints and the rest of the limb is truly absent. When a model that assumes a
full limb sees such a sequence, it tends to hallucinate a complete arm or leg and gradually pull the
residual endpoint toward a typical wrist or ankle location. Once this happens near the beginning of
a clip, the temporal module propagates and stabilizes the wrong configuration across many frames.
Residual endpoints then follow a smooth but systematically shifted trajectory and receive low AP
under per frame evaluation.

The image baselines instead make independent predictions at each frame. They still struggle near
residual limbs, but early mistakes do not automatically propagate in time, so they can recover on
frames where the stump is well visible. Consistent with this interpretation, intact joints such as knees
and ankles remain in the 70+ AP range in our video benchmark, which is close to what comparable
architectures report on PoseTrack under related settings (Liu et al., 2021b; He & Yang, 2024).

Failure cases on InclusiveVidPose. Figure 8 illustrates typical failure cases of DSTA on Inclu-
siveVidPose. In these sequences the global pose is roughly plausible and the temporal aggregation
produces visually coherent predictions across frames, yet the residual endpoints and nearby joints
are often placed at anatomically implausible locations relative to the clearly shortened limbs and
prostheses in the ground truth. These examples support our quantitative finding that existing multi
frame architectures, which are tuned for intact body benchmarks and fixed skeletons, do not yet
capture residual limb anatomy even when trained on the same annotations. The fact that intact joints
reach normal AP while residual endpoints remain much harder to localize reinforces our main claim
that InclusiveVidPose provides a demanding but realistic testbed for developing temporal pose models
that explicitly represent limb deficiencies.

F DISCUSSION AND FUTURE WORK

Limitation Even with a careful multi-annotator process and video, telling an occluded limb from
an absent limb is sometimes unclear. This can add small noise to labels and make training a bit harder.
We also see that current pose models on our data sometimes give unreliable confidence for missing or
prosthetic limbs. These points suggest clear next steps for better guidelines and better models.

Opportunities for prosthesis-aware modeling. Beyond benchmarking, our annotations are de-
signed to support inclusive model design. First, while the current keypoint schema focuses on human
anatomy and does not include prosthesis-tip joints, our pixel-level masks and per-limb prosthesis
status naturally enable future work that introduces prosthesis end-effectors for applications requiring
precise contact modeling with the environment (e.g., gait analysis or object manipulation). Second,
the per-limb prosthesis status can be used by future pose estimators through conditional keypoint
heads, adaptive skeleton graphs, or curriculum training schemes that explicitly condition on prosthesis
presence.

Privacy-preserving synthetic data augmentation. In future work, we will explore the use of
synthetic data to protect participant privacy while enriching the InclusiveVidPose dataset. Real-
world videos may raise privacy and ethical concerns and can be difficult or impractical to collect
for rare limb-deficiency cases. Crucially, the success of any synthetic-data pipeline depends on a
high-quality base of real examples. In our case, our InclusiveVidPose corpus provides the anatomical
diversity and motion variability needed to guide realistic synthesis. To overcome the scarcity of
certain amputation scenarios, we will generate motion sequences of limb-deficient subjects by
combining advanced human-body simulators with generative adversarial networks. These synthetic
clips will span uncommon amputation levels, diverse prosthesis designs, and challenging viewpoints
or occlusions. We will then integrate them with our real footage. Finally, domain-adaptation and
style-transfer techniques will harmonise appearance and temporal dynamics across synthetic and real
data, ensuring that models trained on the hybrid dataset generalize robustly to in-the-wild videos.
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Algorithm 1 LiCC: Limb-specific Confidence Consistency
Require: Ground-truth annotations G, keypoint predictions D, number of keypoints K, rulesR
Ensure: LiCC score

1: c← 0 ▷ correct comparisons
2: N ← 0 ▷ total comparisons
3: for all (g, d) in zip(G,D) do
4: gt← reshape(g.keypoints, K, 3)
5: pred← reshape(d.keypoints, K, 3)
6: for all rule ∈ R do
7: i← rule.main kp idx
8: C ← rule.compare kp indices
9: v ← gt[i, 2] ▷ ground-truth visibility

10: if v ∈ {1, 2} then
11: N ← N + 1
12: m← pred[i, 2]
13: mc← {pred[j, 2] : j ∈ C, 0 ≤ j < K}
14: q ← max(mc)
15: if m > q then
16: c← c+ 1
17: end if
18: end if
19: end for
20: end for
21: return

c

N
if N > 0 else 0

Mutlimodal data for individuals with limb deficiencies. While the current dataset focuses on
RGB video frames with 2D keypoint and segmentation annotations, extending the data modalities
could unlock richer biomechanical and temporal analyses. In particular, incorporating depth maps or
multi-view camera streams would provide 3D pose ground truth and enable reconstruction-based
methods to handle occlusions more robustly. Additionally, fusing inertial measurement unit (IMU)
data from wearable sensors could offer complementary kinematic signals for smoother tracking
of residual limbs. Finally, exploring audio-visual cues, for example, gait-associated sounds or
speech commands, may facilitate multimodal models that better understand the context and intent of
individuals with limb deficiencies during natural activities.

G IMPLEMENTATION DETAILS

Experimental Setup All experiments were run on a workstation equipped with two NVIDIA
RTX 4090 GPUs and an AMD Ryzen Threadripper PRO 3955WX CPU. The system software
environment is Ubuntu 24.04.2 LTS, Python 3.11.11, PyTorch 2.5.1 with CUDA 12.4. Our imple-
mentation is based on the MMPose library1). For data preprocessing, augmentation, and training
hyperparameters, we used the default settings of each method as provided by MMPose. All training
configurations, including exact config files and command-line instructions, have been released in
the � InclusiveVidPose.

Limb-specific Confidence Consistency(LiCC) Pseudocode Explanation As shown in Algo-
rithm 1, we denote G as the set of all ground-truth annotations, D as the set of corresponding pose
estimation results, K as the total number of keypoints, andR as the collection of mutual-exclusion

1https://github.com/open-mmlab/mmpose
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rules. In our case,

R =
{
(7, {17}), (9, {17, 19}), (17, {7, 9}), (19, {9})︸ ︷︷ ︸

Left Upper Extremity

,

(8, {18}), (10, {18, 20}), (18, {8, 10}), (20, {10})︸ ︷︷ ︸
Right Upper Extremity

,

(13, {21}), (15, {21, 23}), (21, {13, 15}), (23, {15})︸ ︷︷ ︸
Left Lower Extremity

,

(14, {22}), (16, {22, 24}), (22, {14, 16}), (24, {16})︸ ︷︷ ︸
Right Lower Extremity

}
,

where each tuple (i, {j, . . . }) enforces that, whenever keypoint i is visible in the ground truth, its
predicted confidence must strictly exceed the maximum confidence among the mutually-exclusive
indices {j, . . . }. The algorithm maintains two counters, c for correct comparisons and N for total
comparisons. For each pair (g, d) ∈ zip(G,D), we skip if g is empty; otherwise we reshape
g.keypoints into gt ∈ RK×3 (visibility in column 3) and d.keypoints into pred ∈ RK×3, extracting
its third column as the predicted confidence vector. We then iterate over every (i, C) ∈ R: ensure
i ∈ [0,K), read visibility v = gt[i, 2], and if v ∈ {1, 2} increment N , set m = pred[i], gather
{pred[j] | j ∈ C} into mc, skip if empty, else let q = max(mc) and if m > q increment c. Finally,
we return c/N when N > 0, or 0 otherwise. This LiCC metric thus measures how consistently a
visible keypoint’s confidence surpasses that of all its mutually exclusive counterparts.

H TERMS OF USE

H.1 ANNOTATIONS AND WEBSITE

The annotations and all website content for the InclusiveVidPose dataset are (c) 2025 InclusiveVidPose
Consortium, and are released under the Creative Commons BY-NC-SA 4.0 license �.

H.2 INFRINGEMENT

If you believe any material in this dataset infringes your rights, please contact the authors. We will
promptly review and remove the infringing content.

H.3 VIDEOS AND FRAMES

All videos referenced in this dataset are publicly available YouTube videos or YouTube Shorts. We do
not host or distribute the video files or extracted frames, instead, each annotation record includes the
corresponding publicly accessible YouTube URL. Any use of these videos or frames (e.g., viewing,
downloading, processing, or redistributing) must fully comply with YouTube’s Terms of Service
(https://www.youtube.com/t/terms) as well as any additional restrictions imposed by the
original content creators or channels. Downstream users assume sole responsibility for ensuring that
their use of this material conforms to all applicable copyright, privacy, and publicity laws.

Under both Australian and U.S. copyright law, academic researchers may, under certain conditions,
use publicly available media, including YouTube videos, for research and study. In Australia, the
Copyright Act 1968 provides fair dealing exceptions that permit the use of copyright material for
research or study where the use is fair. In the United States, Section 107 of the Copyright Act
codifies fair use and explicitly identifies scholarship and research as purposes that can qualify under
this doctrine. Our own collection and internal use of source videos falls within these research-
focused exceptions; however, this dataset only distributes derived annotations (e.g., keypoints and
segmentation masks), not the underlying video content. Users remain responsible for ensuring that
any use of the source videos complies with applicable copyright law and the terms of service of the
hosting platforms.
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H.4 ETHICS ADDENDUM

By accessing, downloading, or using the InclusiveVidPose dataset (the “Dataset”), any downstream
user (“You”) must agree to and abide by the following additional ethical obligations, which supplement
the Dataset’s base license terms:

• Anonymization Standards
You may not distribute, publish, or otherwise reveal any video frames or metadata in a form
that could identify any individual, minor or adult, either directly or by inference.

• Prohibition on Re-Identification
You shall not attempt, by any means, to re-identify any person depicted in the Dataset.
You shall not augment the Dataset with external data or use deanonymization algorithms to
recover or expose personal identities.

• Non-Commercial, Ethical Research Use Only
You shall use the Dataset solely for non-commercial, research-oriented activities that comply
with all applicable laws, institutional review board (IRB) approvals or exemptions, and
recognized ethical norms for human-subjects research.
Any form of commercial exploitation, product development, or profit-driven application
of the Dataset is expressly prohibited without the prior written consent of the Dataset’s
custodians.

• Breach and Remedies
Violation of any provision in this Addendum constitutes a material breach of your rights
to use the Dataset, and may result in immediate termination of your license and access
privileges. The Dataset custodians reserve the right to pursue any and all available legal and
equitable remedies in the event of non-compliance.

H.5 DATA USE AGREEMENT (DUA)

As a prerequisite for accessing the InclusiveVidPose dataset, all prospective users must complete
a Data Use Agreement and submit it for review. Each agreement will be examined by the dataset
administrators to ensure that proposed uses comply with our ethical and legal guidelines. Only
after the DUA has been approved will access credentials be issued. A scanned copy of the signed
agreement is provided in the supplementary materials.
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