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Online Robust Low-Rank Tensor Modeling
for Streaming Data Analysis

Ping Li , Jiashi Feng , Xiaojie Jin, Luming Zhang , Xianghua Xu, and Shuicheng Yan, Fellow, IEEE

Abstract— Tensor data (i.e., the data having multiple dimen-
sions) are quickly growing in scale in many practical applications,
which poses new challenges for data modeling and analysis
approaches, such as high-order relations of large complexity,
gross noise, and varying data scale. Existing low-rank data
analysis methods, which are effective at analyzing matrix data,
may fail in the regime of tensor data due to these challenges.
A robust and scalable low-rank tensor modeling method is
heavily desired. In this paper, we develop an online robust
low-rank tensor modeling (ORLTM) method to address these
challenges. The ORLTM method leverages the high-order corre-
lations among all tensor modes to model an intrinsic low-rank
structure of streaming tensor data online and can effectively
analyze data residing in a mixture of multiple subspaces by virtue
of dictionary learning. ORLTM consumes a very limited memory
space that remains constant regardless of the increase of tensor
data size, which facilitates processing tensor data at a large scale.
More concretely, it models each mode unfolding of streaming
tensor data using the bilinear formulation of tensor nuclear
norms. With this reformulation, ORLTM employs a stochastic
optimization algorithm to learn the tensor low-rank structure
alternatively for online updating. To capture the final tensors,
ORLTM uses an average pooling operation on folded tensors in
all modes. We also provide the analysis regarding computational
complexity, memory cost, and convergence. Moreover, we extend
ORLTM to the image alignment scenario by incorporating
the geometrical transformations and linearizing the constraints.
Extensive empirical studies on synthetic database and three
practical vision tasks, including video background subtraction,
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image alignment, and visual tracking, have demonstrated the
superiority of the proposed method.

Index Terms— Background subtraction, image alignment, low-
rank tensor, object tracking, online learning, robust recovery.

I. INTRODUCTION

EFFICIENT data analysis methods are highly demanded
due to the fast growth of multidimensional data in

practical applications. During the last decade, low-rank tensor
modeling methods [1], [2] have attracted a lot of interest since
these methods can reveal intrinsic structures while consolidat-
ing knowledge learnable from the data. In addition, unlike the
ones formatting tensors into matrices and employing low-rank
matrix methods, low-rank tensor modeling methods directly
process raw multidimensional data without destroying tensor
structures and thus demonstrate a great potential in many mul-
tidimensional real-world applications, including video analy-
sis, weather forecast data analysis, and multispectral image
processing, to name a few.

However, a large number of tensor data often arrive con-
tinuously in a dynamic environment, such as video in public
surveillance systems. This brings the following new challenges
to low-rank tensor modeling methods: 1) how to devise
scalable approaches for efficiently processing dynamic tensor
data in a large size and 2) how to handle data contaminated
by malicious outliers or gross noise.

In recent years, two batch-based robust tensor methods
were developed to deal with noisy tensors, including high-
order robust principal component analysis (HORPCA) [1] and
tensor RPCA [2]. These two methods generalize RPCA [3]
from matrix cases to tensors for learning the inherent low-rank
structure by solving minZ,E �Z�∗+�E�1 under the constraint
X = Z + E . While those methods can handle noisy data,
they suffer from two drawbacks: 1) they do not scale well
to larger data because of heavy memory overheads which
will become computationally unaffordable when the data size
scales up and 2) their output a low-rank tensor is usually
static which prevents them from capturing data dynamics, thus
giving inferior performance.

To address these issues, we develop an online robust low-
rank tensor modeling (ORLTM) approach that can sequen-
tially learn low-rank tensor structures of noisy data, offering
robustness to gross noise contained in the data. Different from
those methods that must perform a data analysis in batch,
ORLTM bifactorizes the low-rank component in each mode m
of the tensor, i.e., Zm =WmRm . Here, Wm encodes the basis
of low-rank subspace, while Rm denotes its tensor coefficient
representation. One appealing feature of such reformulation
is that the basis and data representations become decoupled.
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In this way, the basis usually in small size only requires
very limited memory cost and data representations are updated
dynamically. Hence, instead of calculating the nuclear norm
(also known as trace norm) of the whole unfolding matrix Zm ,
ORLTM can significantly reduce memory cost. Such equiva-
lent bifactor reformulation makes online processing possible
on streaming data for low-rank tensor modeling with favorable
scalability and adaptivity to the data dynamics.

Typically, existing tensor RPCA methods make an assump-
tion that tensor data populate in a single low-rank data
subspace. Nevertheless, it might be not true for the practical
data characterizing more sophisticated structures, e.g., those
sampled from a mixed data space consisting of several sub-
spaces. In this situation, both the vanilla ORLTM and previous
approaches are unable to yield satisfying performances. There-
fore, a dictionary learning module is further introduced so as to
enhance ORLTM. With the learned dictionary, a more flexible
basis set is available to encode the low-rank component of
complicated tensor data. This allows ORLTM to learn complex
low-rank structures, such as mixed structure of several low-
rank subspaces, thus better modeling tensor data.

An overview of our proposed ORLTM method (with the
dictionary learning part) is shown in Fig. 1. With ORLTM,
each unfolding X(m) (recall that m denotes tensor mode and the
superscript m in parentheses denotes tensor unfolding matrix
while that without parentheses denotes traditional matrix vari-
able) is decomposed into one low-rank component revealing
underlying low-rank subspace and one sparse component
encoding noise or corruption. It is able to learn the low-rank
component Zm given a prior dictionary D(m) (e.g., the data
unfolding itself) through minimizing its nuclear norm �Zm�∗.
As mentioned earlier, this convex formulation fails to offer
a sequential way for data processing, and ORLTM employs
its equivalent bilinear factorization form Zm = WmRm to
deal with this issue. To better model data dynamics, ORLTM
further introduces an auxiliary variable B(m) for D(m)Wm as
reinforced basis dictionary to be learned. The reformulated
problem can be solved via stochastic optimization. Thereafter,
to recover the final tensors, ORLTM uses the average pooling
operation in all modes of folded tensors.

Generally speaking, ORLTM can be widely applied to
analyzing dynamic tensor data in a large size. This paper
specifies its application in three real-world streaming data
analysis tasks, including video background subtraction, image
alignment, and visual tracking. For the foremost one, ORLTM
employs the low-rank component L to model the background
of a given video and the sparse component E to model the
foreground (e.g., moving pedestrians and objects). For the
latter two, ORLTM aims to capture the correct geometrical
transformations so as to align images or track target objects.

This paper presents an extension of previous con-
ference version [4] in terms of proposing an adap-
tive ORLTM for image alignment (ORLTM-IA) and
visual object tracking. In short, we make the following
contributions.

1) An ORLTM approach is developed to better model the
low-rank structure of the tensor even in the presence of
noise or malicious corruptions.

Fig. 1. ORLTM framework. Here, X is a third-order tensor (m = 1, 2, 3),
which has n unit subtensors with each subtensor size as n3. Thus, there are
N = (n/n3) subtensors for online processing. The detailed notations are given
in Sections III and IV. Best viewed in color.

2) ORLTM is able to handle samples sequentially and
save the computational and memory cost significantly
compared with batch methods.

3) We introduce a dictionary learning component that pro-
vides a more flexible set of basis for representing the
low-rank component of complex tensors, hence captur-
ing more sophisticated structures.

4) We extend ORLTM to image alignment as well as visual
tracking by incorporating geometrical transformations
and linearizing the tensor constraints.

5) Comprehensive empirical studies on both synthetic data
and three practical tasks clearly demonstrate the superi-
ority of ORLTM compared with several well-established
batch and online approaches.

The remainder of this paper is organized as follows.
Section II reviews the closely related works and Section III
introduces some mathematical notations and tensor basics.
Then, we describe the proposed ORLTM method in
Section IV, including further analysis regarding memory cost,
computational efficiency, as well as convergence. Moreover,
we provide an extension of ORLTM to image alignment
scenario in Section V. To investigate the performance of
our approach, we carried out extensive experiments to verify
its advantages and report the results in Section VI. Finally,
we conclude this paper.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ORLTM FOR STREAMING DATA ANALYSIS 3

II. RELATED WORK

This section reviews closely related methods in two aspects,
i.e., low-rank learning methods and tensor decomposition
methods, from both batch and online perspectives.

A. Low-Rank Learning Methods

Low-rank models are regarded as the useful tools to robustly
handle data contaminated by gross corruption or malicious
noise in a vast range of real-world applications, e.g., recov-
ering the authentical samples from noisy and corrupted ones,
modeling background of moving objects [5], tracking in video
sequences [6], saliency detection [7], and hyperspectral image
restoration [8]. A brief review on low-rank decomposition plus
additive matrices for background/foreground separation can
found in [9]. Generally speaking, most of the existing low-rank
learning methods for robust recovery are typically developed
upon the approach named RPCA in [3], which decomposes
a given matrix X ∈ R

d×n to a low-rank matrix L ∈ R
d×n

and a sparse matrix E ∈ R
d×n , i.e., X = L + E. While the

RPCA assumes the underlying data structure resides in a single
low-rank subspace, the latent incoherent condition is actually
not so consistent with the mixture structure of several sub-
spaces, thus degrading its performance [10]. Motivated by this,
Liu et al. [11] considered the data drawn from a union
of multiple subspaces and proposed low-rank representation
(LRR), i.e., X = DZ + E, where D ∈ R

d×n is a given
dictionary and Z ∈ R

n×n is the LRR. In this way, the self-
expressiveness ability, i.e., each sample is a linear combina-
tion of the rest, is thus strengthened for a robust recovery.
Toward the low-rank goal, a great many variants have emerged
recently. From the dictionary construction perspective,
Liu and Yan [12] attempted to improve the performance of the
LRR using the observed data and hidden data together, while
Zhang et al. [13] utilized the supervised method to construct a
discriminative dictionary to discover semantic structure infor-
mation resulting in strong identification capability for low-rank
matrix recovery. From the manifold assumption perspective,
Yin et al. [14] utilized dual-graph-regularized LRR to pre-
serve the geometrical information in both the ambient space
and the feature space, and in their following-up work [15],
a variant of LRR regularized by nonnegative sparse hyper-
Laplacian was proposed to consider both the global
low-dimensional structure and the intrinsically geometrical
information in data. From supervised learning perspective,
Li and Fu [16] incorporated the low-rank constraint and the
class label information to capture discriminative subspaces;
Li et al. [17] proposed another constrained LRR method using
the least-squares regularization technique; Zhou et al. [18]
introduced the latent LRR into a classifier based on ridge
regression to learn discriminative features for recognition.
Moreover, Shen and Li [19] factorizes the matrix with
the nuclear norm regularizer to learn structured LRR;
Tang et al. [20] proved that the structure-constrained LRR
with a pregiven weight matrix can exactly discover the rela-
tions among multiple linear disjoint subspaces. In addition,
a kernel version of LRR was developed by Xiao et al. [21]
to handle the data drawn from multiple nonlinear subspaces.
However, the above-mentioned methods are typically based

on batch optimization requiring large memory to store all the
samples, preventing them from efficiently processing large-
scale or streaming data due to memory bottleneck.

To alleviate this problem, several online learning approaches
were proposed. For example, Feng et al. [22] developed an
online RPCA using stochastic optimization which is provably
robust to sparse noise; Shen et al. [23] put forward an online
method to solve max-norm-regularized matrix decomposition
problems and proved the fact that the solutions converge to
a stationary point asymptotically; Zhan et al. [24] explored
an online RPCA (ORPCA) by adopting recursive projected
compressive sensing and showed correctness results; to speed
up LRR, Shen et al. [25] designed its online implementation
with guaranteed convergence. Admittedly, these methods can
largely reduce the memory cost. However, they are still
inappropriate for tensors since they only exploit one mode
of data, far from sufficient to discover the low-rank structures
of tensors.

B. Tensor Decomposition Methods

In a multidimensional data analysis, robust tensor recov-
ery is of vital importance to handle arbitrary outliers, gross
corruptions, and missing values. Unlike the above-mentioned
approaches, robust tensor approaches make use of information
in all modes [26] and have been shown to be capable of
utilizing the multilinear structures for better decompositions in
two forms [1], i.e., CANDECOMP/PARAFAC (CP) decom-
position [27] and Tucker decomposition. For the former,
CP-ALS [28] as a typical CP method adopts alternating
least squares to solve CP tensor factorization, and recently,
Zhou et al. [29] devised one accelerated CP to process
large-scale tensors. For the latter, high-order singular value
decomposition (HOSVD) is a typical approach. However, they
both lack the guarantee of global optimality. This motivated
Goldfarb and Qin [1] to present the alternating direction
augmented Lagrangian algorithm and the accelerated prox-
imal gradient algorithm to solve the exact constrained and
the Lagrangian robust tensor recovery issue, both of which
belong to HORPCA. Currently, there is no consistently unified
framework for tensor analysis, e.g., Lu et al. [2] adopted
the tensor framework of [30] to develop a tensor RPCA for
image denoising, where an alternate tensor representation was
exploited to show promise with respect to the tensor approxi-
mation problem; Cao et al. [31] presented an RPCA method in
a tensor form to subtract video background, and particularly,
it leverages spatial–temporal correlations to facilitate encoding
video background while using spatial–temporal tensor conti-
nuity to model video foreground; Fu et al. [32] took advantage
of both feature information and spatial structures to learn
low-rank tensor representation and sparse data subspace for
clustering so as to better model the inherent feature of data and
its global structure; Tan et al. [33], [34] attempted to achieve
low-n-rank tensor recovery using multilinear n-rank and
�0-norm optimization in the presence of arbitrarily corrupted
elements; Zhao et al. [35] designed a generative model under
a fully Bayesian treatment for robust tensor factorization with
both missing data and outliers; Yokota et al. [36] targeted
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improving the robustness of minimum description length in the
Tucker model by exploiting the multilinear low-rank structure
of tensors; Zhou et al. [37] developed an outlier-robust tensor
principle component analysis method for simultaneous low-
rank tensor recovery and outlier detection; Gandy et al. [38]
regarded the n-rank of a tensor as a sparsity measure and
considered the problem of finding the tensor of the lowest
n-rank that satisfies some linear constraints and introduced
a tractable convex relaxation; Liu et al. [39] addressed the
missing value problem of tensor data through developing three
low-rank tensor completion methods.

The above-mentioned methods all require heavy memory
cost because of batch learning, so they are unable to process
samples in a sequential way. To this end, several works
have emerged for an online tensor analysis, such as recursive
projected sparse matrix recovery [40], online tensor robust
PCA [41], and online tensor subspace tracking with the
CP decomposition using the recursive least squares [42].
Among them, the most closely related one is online sto-
chastic tensor decomposition (OSTD) [43] built upon RPCA
for background subtraction in multispectral video sequences.
Similarly, as stated earlier for RPCA, there exists one inherent
shortcoming for OSTD that it is incompetent to handle the data
drawn from a union of multiple subspaces, which becomes one
motivation of our ORLTM approach.

III. NOTATIONS AND PRELIMINARIES

Before introducing our method, we provide some necessary
notations and definitions here. Throughout this paper, we use
the calligraphic letter to represent tensor, e.g., A, boldface
uppercase letter to denote matrix, e.g., A, boldface lowercase
letter to denote vector, e.g., a. The number of dimensions is the
order or mode of a given tensor. For a third-order tensor X ∈
R

n1×n2×n3 , its (i, j, k)-th entry is denoted as X (i, j, k) or xi jk ,
and its fiber is a column vector defined as X (i, j, :); X (i, :, :)
is the i th horizontal slice; X (:, j, :) is the j th lateral slice;
X (:, :, k) or Xk is its kth frontal slice. A traditional matrix
is represented by Am without bracket, and Ai j denotes the
(i, j)th entry of a matrix A.

A. Tensor Unfolding [1], [28]

The mode-m unfolding of A ∈ R
n1×n2×...×nM , A(m),

is derived by organizing the mode-m fibers into the matrix
columns, i.e., unfoldm(A) = A(m) ∈ R

nM\m×nm , where
nM\m =∏M

j �=m, j=1 n j and
∏M

j=1 n j = n1 × n2 × . . .× nM .

B. Tensor Folding [1]

The formula foldm(A) = Am folds the mode-m unfolding
of A and gives the corresponding tensor in mode m. In the
following, we omit the subscript m for brevity when the matrix
has indicated its unfolding mode.

C. Tensor Vectorization [1]

It aligns the elements of given tensor into a long column
vector, denoted by vec(A). The mode-m vectorization of
A is vec(Am) [also denoted as vec(A(m))] which arranges
all columns of mode-m unfolding into a single column
vector.

D. Mode-m Product [1]

The mode-m product of tensor A and matrix Um ∈ R
nm×nc

in mode m is represented as A×m U. Here, (A×m Um)(m) =
A(m)Um , where A(m) ∈ R

nM\m×nm is the mth mode of the
tensor.

E. Tensor Norms [1]

The �1-norm is �A�1 = �vec(A)�1 = ∑
i j k |ai jk |, and

the Frobenius norm is �A�F = (vec(A)�vec(A))1/2 =
(
∑

i j k a2
i j k)

1/2. These norms will degenerate to the corre-
sponding matrix or vector norms when A is a matrix or a
vector.

F. Tensor Rank [1]

The mode-m rank of a tensor A, denoted by rankm(A),
is the column rank of the unfolding A(m), and the set of M
mode-m ranks is called Tucker rank. However, minimizing
Tucker rank is always NP-hard, and thus, its convex sur-
rogate CTrank(A) is often used in practice [44], [45], i.e.,
CTrank(A) :=∑M

m=1 �A(m)�∗.

IV. ONLINE ROBUST LOW-RANK TENSOR MODELING

This section develops the objective function of our method
at first and then elaborates on the proposed ORLTM, which
is solved by a stochastic optimization technique. In addition,
computational complexity, memory cost, and convergence
analysis are provided.

A. Objective Function

We now introduce the objective formulation of our proposed
approach. First, we review the batch-based HORPCA [1],
which decomposes the given tensor into a low-rank component
and a sparse one that encodes malicious outliers or corruptions.
Its slicewise model is expressed by

min
L,E

M∑

m=1

�L(m)�∗ + λ1�E�1, s.t. X = L+ E (1)

where X ,L, E ∈ R
n1×n2×...×nM denote the observed noisy

tensor, its low-rank component, and the sparse component,
respectively; the constant λ1 > 0, L = fold(L(m)), and∑M

m=1 �L(m)�∗ = CTrank(L). In fact, the solutions to (1)
can lead to distinct low-rank and sparse components for
different mode-m unfoldings X(m). Hence, we introduce a set
of auxiliary tensor variables, i.e., {Lm}Mm=1 and {Em}Mm=1, and
utilize the variable-splitting strategy. Thus, the formulation (1)
can be rewritten as

min
Lm ,Em

m=1,2,...,M

M∑

m=1

�L(m)�∗ + λ1�E(m)�1

s.t. X(m) = L(m) + E(m), m = 1, . . . , M

Lm = fold(L(m)), Em = fold(E(m)) (2)

where X = fold(X(m)), and each unfolding X(m) in all
modes should return the common tensor X through the
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fold(·) operator. As a common practice indicated in [1], [33],
and [43], we can obtain the relaxed solutions to the above
tensor variables by average pooling on those auxiliary tensors,
i.e., L = (1/M)

∑M
m=1 Lm and E = (1/M)

∑M
m=1 Em .

As shown in (2), the unfolding matrix is constrained to
residing in a single low-rank subspace. This makes it unable
to handle the data drawn from a union of multiple subspaces.
Therefore, the constraints are too tight to hold when data are
with a mixture structure of several subspaces, resulting in
inferior performance for real-world applications. To capture
the intrinsic low-rank structure more accurately, we introduce
a pregiven dictionary D(m) ∈ R

nM\m×nm which can be simply
set to the data. By imposing nuclear norm on Zm ∈ R

nm×nm ,
i.e., �Zm�∗, the low-rank property is well preserved. Since the
inequality rank(D(m)Zm) ≤ rank(Zm) always holds, minimiz-
ing the nuclear norm of Zm can actually bound the rank of
the clean data L(m) when L(m) � D(m)Zm , leading to low-rank
structure. Then, we have

min
Zm ,E(m)

m=1,2,...,M

M∑

m=1

�Zm�∗ + λ1�E(m)�1

s.t. X(m) = D(m)Zm + E(m), m = 1, . . . , M. (3)

The multiplication of D(m) and Zm yields the unfolding
matrix L(m) which is the mode-m unfolding of the low-rank
tensor L. To process streaming data, instead of solving the
above-constrained problem directly, we relax the constraints
by regarding them as quadratic penalties to facilitate online
optimization, resulting in

min
Zm ,E(m)

m=1,2,...,M

1

2

M∑

m=1

�X(m) − D(m)Zm − E(m)�2F

+ λ1�E(m)�1 + λ2�Zm�∗ (4)

where λ2 > 0 controls the contribution of the nuclear norm
regularizer.

However, calculating the nuclear norm often consumes
large memory and is computationally unaffordable for ana-
lyzing the large-scale data. To sequentially process samples,
we propose to adopt the bifactor factorization form Zm =
WmRm [46], where Wm ∈ R

nm×p and Rm ∈ R
p×nm with

p � min(nm , nM\m). In consequence, the rank of Zm is upper
bounded by the constant p. As pointed out in [47] and [48],
minimizing �Zm�∗ is equivalent to minimizing �Wm�2F and
�Rm�2F at the same time. Thus, the unconstrained problem
in (4) is converted into a nonconvex optimization problem

min
Wm ,Rm ,E(m)

m=1,2,...,M

1

2

M∑

m=1

�X(m) − D(m)WmRm − E(m)�2F

+ λ1�E(m)�1 + λ2

2

(�Wm�2F + �Rm�2F
)
. (5)

This is the objective function of our method, for which updat-
ing the entries in Zm amounts to updating the corresponding
rows of Wm and the columns of Rm on the fly.

It can be observed from (5) that unfolding matrices scale up
as nM gets larger and, at each iteration, the dictionary D(m)

is only partially accessed. Moreover, the rows in W(m) are
coupled together as being multiplied by the left dictionary.
To address these shortcomings, we introduce another set of
auxiliary variables B(m) = D(m)Wm ∈ R

nM\m×p , m =
1, 2, . . . , M , to approximate the recovery part (X(m) − E(m))
by B(m)Rm . This indicates that the introduced dictionaries
{B(m)}Mm=1 can be regarded as reinforced basis dictionaries,
while {Rm}Mm=1 are the low-dimensional coefficients. Com-
pared with the pregiven D(m), the learned dictionary B(m)

is consolidated by considering the two factored low-rank
components of Zm iteratively. Hence, (5) can be approximated
as

min
B(m),Wm ,Rm ,E(m)

m=1,2,...,M

M∑

m=1

1

2
�X(m) − B(m)Rm − E(m)�2F

+ λ1�E(m)�1 + λ2

2

(�Wm�2F + �Rm�2F
)

+ λ3

2
�B(m) − D(m)Wm�2F (6)

where λ3 > 0 governs the reconstruction ability of B(m). The
above-mentioned function is more beneficial and more infor-
mative for learning from streaming data, because it encodes
the basis of the union of multiple subspaces explicitly across
all modes of tensor data. Therefore, it enables more promising
low-rank tensor modeling for tensor subspace recovery.

B. Online Implementation of ORLTM

In this section, we propose an online optimization algorithm
to optimize the objective function in (6). It allows the low-rank
tensor modeling to take in one sample or one minibatch at each
time instance and adopts the stochastic optimization strategy.
In the beginning, we define two functions in mode-m

�̃(xm, B(m), rm, em) � 1

2
�xm − B(m)rm − em�22
+ λ1�em�1 + λ2

2
�rm�22

�(xm, B(m)) = min
rm ,em

�̃(xm, B(m), rm, em) (7)

h̃(D(m), B(m), Wm) �
N∑

i=1

λ2

2
�wm

i �22

+ λ3

2
�B(m) −

N∑

i=1

dm
i wm

i �2F
h(D(m), B(m)) = min

Wm
h̃(D(m), B(m), Wm) (8)

where xm , em , dm , and rm denote the columns in matrices
X(m), E(m), D(m) ∈ R

nM\m×nm , and Rm ∈ R
p×nm , respectively,

and wm is the row vector of Wm ∈ R
nm×p . In virtue of these

formulations, (6) can be expressed by

min
B(m)

min
E(m),

Wm ,Rm

N∑

i=1

�̃
(
xm

i , B(m)
i , rm

i , em
i

)+ h̃(D(m), B(m), Wm)

(9)
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where N is the number of samples to be handled. This adds
to minimizing the following loss function:

fN (B(m)) � 1

N

N∑

i=1

�
(
xm

i , B(m)
)+ 1

N
h(D(m), B(m)).

Next, we introduce the way to calculate those variables
in (6) online by optimizing a jointly nonconvex problem.
Here, we utilize the alternative optimization, i.e., solving
one variable while fixing the rest. The entire algorithmic
framework is described in Algorithm 1, which includes the
following alternative variable updatings at each iteration t .

1) Updating rm
t , em

t : Given the dictionary B(m)
t−1 in the

previous iteration, we get the optimal {rm
t , em

t } from

min
rm ,em

�̃
(
xm

t , B(m)
t−1, rm, em)

. (10)

When em keeps still, there exists a closed-form solution of rm
t

rm = (
B(m)�

t−1 B(m)
t−1 + λ2Ip

)−1B(m)�
t

(
xm

t − em)
(11)

and the local minimizer of em with respect to fixed rm is
obtained using the soft-thresholding operator [49]

em = Sλ1

[
xm

t − B(m)
t−1rm]

. (12)

Generally, the solutions rm
t and em

t could be efficiently learned
by adopting a coordinate descent algorithm [50].

2) Updating wm
t : We define an accumulation matrix

G(m)
t−1 =

∑t−1
i=1 dm

i wm
i ∈ R

nM\m×p , where Gm
0 = 0, and then

get wm
t through minimizing the following:

�̃2
(
dm

t , B(m)
t−1, G(m)

t−1, wm)

� λ2

2
�wm�22 +

λ3

2

∥
∥B(m)

t−1 −G(m)
t−1 − dm

t wm
∥
∥2

F . (13)

This leads to the closed-form solution

wm
t =

(
∥
∥dm

t

∥
∥2

2 +
λ2

λ3

)−1

dm�
t

(
B(m)

t−1 −G(m)
t−1

)
. (14)

Here, we provide the intuition behind (13) as follows. The
variable wm

t depends on the entire dictionary D(m), and only
the current atom dm

t can be accessed. We thus update wm
t

by holding the rest given the observed tth atom dm
t , and

each wm
t is updated streamingly only once while revealing

all the atoms. This technique is actually the one-pass block-
coordinate descent method, which can be readily extended to
its multiple-pass version in demanding real-world tasks.

3) Updating B(m)
t : We update the reinforced basis dictio-

nary by minimizing the surrogate function

ht (B(m)) � 1

t

t∑

i=1

�̃
(
xm

i , B(m), rm
i , em

i

)

+ λ2

2t

t∑

i=1

∥
∥wm

i

∥
∥2

2 +
λ3

2t

∥
∥B(m) −G(m)

t

∥
∥2

F . (15)

For dictionary updates, the surrogate ht (·) can be
amounted by a few sufficient statistics updated sequentially,
i.e., ht (·) can be captured without explicitly storing earlier
samples [51]. In general, there are two common ways to
solve this problem: one is directly computing the closed-form

Algorithm 1 ORLTM

Input: Observed M-th order tensor X ∈ R
n1×n2×...×n and

pregiven dictionary D, tradeoff parameters {λ1, λ2, λ3},
target rank p, sub-tensor size nM .

Output: Low-rank tensor L and sparse tensor E .
1: Initialize: Set all entries of {L, E} ∈ R

n1×n2×...×n , Wm ∈
R

nm×p , Rm ∈ R
p×nm , G(m)

0 , �
(m)
0 , �m

0 to zero, initialized
B ∈ R

n1×n2×...×p , N = n
nM

.
2: for t = 1 to N do
3: for m = 1 to M do
4: Access the t-th sample xm

t and the t-th atom dm
t .

5: Obtain coefficients rm
t and sparse vectors em

t by
optimizing �̃(xm

t , B(m)
t−1, rm , em) and utilize coordinate

descent algorithm for (11)(12) to derive the solutions.
6: Compute coefficients wm

t by (14) via minimizing
�̃2(dm

t , B(m)
t−1, Gm

t−1, wm).
7: Update accumulation matrices:

G(m)
t ← G(m)

t−1 + dm
t wm

t ,

�
(m)
t ← �

(m)
t−1 + (xm

t − em
t )rm�

t ,

�m
t ← �m

t−1 + rm
t rm�

t .

8: Update dictionary B(m)
t by (16).

9: Update low-rank components: L(m)
t ← B(m)

t rm
t .

10: Update sparse components: E(m)
t ← em

t .
11: end for
12: end for
13: Average pooling on mode-m foldings, i.e., L =

1
M

∑M
m=1 f old(L(m)), E = 1

M

∑M
m=1 f old(E(m)).

solution and the other is adopting stochastic gradient descent.
If we define two accumulation matrices as

�m
t =

t∑

i=1

rm
i rm�

i , �
(m)
t =

t∑

i=1

(
xm

i − em
i

)
rm�

i

then we have

B(m)
t = (

�
(m)
t + λ3G(m)

t

)(
�m

t + λ3Ip
)−1 (16)

where �m
t ∈ R

p×p and �
(m)
t ∈ R

nM\m×p are independent
of the data size N , which allows ORLTM possibly to handle
large-scale tensor data.

We also provide a dictionary update strategy using stochas-
tic gradient descent optimization. In concrete, if we define
φm

t = rm
t rm�

t and θm
t = (xm

t − em
t )rm�

t , then the gradient of a
surrogate function ht (B(m)) with respect to B(m) is

∇B(m)ht (B(m)) = B(m)
(
φm

t + λ3Ip
)− λ3

(
θm

t +G(m)
t

)
. (17)

Given the recovered sample (xm
t − em

t ) in iteration, the basis
dictionary Bt in mode m can be updated as follows:

B(m)
t ← B(m)

t−1 − η∇B(m)ht (B(m)) (18)

where η > 0 is the learning rate during the optimization.
In Algorithm 1, for an Mth order tensor X , the symbol

nM denotes the number of unit subtensor samples, i.e., one
(M − 1)th order subtensor. If the number of unit subtensor
samples denotes the entire tensor size n, then N = (n/nM )
is the number of subtensor samples. In each iteration, one
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subtensor is fed into ORLTM, either single unit subtensor
sample (nM = 1) or multiple unit subtensor samples. At the
tth iteration, the vector xm

t is the tth column of the mode-m
unfolding matrix X(m) and, similarly, dm

t is that of D(m). The
pregiven dictionary D is set to the tensor X in this paper.

C. Complexity and Convergence Analysis

Here, we provide further analysis on computational com-
plexity, memory cost, and convergence for our method.

1) Computational Complexity: In each iteration, there are
four variables to be computed. First, it is cheap to cal-
culate {rm

t , em
t } as one might adopt the block-coordinate

descent algorithm with lienar convergence [52]. Next, it needs
O(nM\m p) for wm

t to do matrix-vector multiplication, where
p � min(nM\m, nm), and the subtensor size nM appears to be
small in practical settings. Moreover, updating accumulation
matrices G(m)

t , �
(m)
t , and �

(m)
t requires O(nM\m p). In addi-

tion, it costs O(nM\m p2) to update Bm
t . Hence, the overall

computational cost is relatively limited.
2) Memory Cost: ORLTM requires O(nM\m p) to load B(m)

t
and xm

t to obtain {rm
t , em

t }, and also O(nM\m p) to employ
B(m)

t , G(m)
t for computing wm

t . Since the history information
of ht (B

(m)
t ) in (15) has been stored by those accumulation

matrices G(m)
t , �

(m)
t , and �

(m)
t , it costs at most O(nM\m p).

Therefore, ORLTM only desires O(nM\m p) for memory cost
in each iteration. Thus, it is independent of the number of
subtensor samples, saving substantial memory for large-scale
streaming tensor data.

3) Convergence: For convergence analysis, three assump-
tions are necessary. 1) the observed subtensor samples are
generated independent identically distributed from some dis-
tribution and there exist two constants α0 and α1, such that the
conditions 0 < α0 ≤ �xm�2 ≤ α1 and α0 ≤ �dm�2 ≤
α1 hold almost surely; 2) for Q(m)

t = (1/t)
∑t

i=1 dm
i dm�

i ,
the smallest nonzero singular value is lower bounded away
from zero; and 3) ∀ t ≥ 0, the surrogates ht (B(m)) are strongly
convex. Following proof techniques in [25] and [53], we derive
several theoretical results: 1) the surrogate function ht (B

(m)
t )

in (15) converges almost surely, while B(m)
t is the solution

produced by Algorithm 1; 2) if {B(m)
t }∞t=1 is the sequence of

optimal basis from Algorithm 1, then these sequences converge
to a stationary point of f (B(m)) when t goes to infinity;
3) let {G(m)

t }t≥0 be the sequence of matrices derived from
Algorithm 1, and there exists some universal constant C0,
such that ∀ t ≥ 0, ∃ �G(m)

t �F ≤ C0. Also, the solution
B(m)

t is inherently determined by �
(m)
t /t and �m

t /t when
t becomes very large, since G(m)

t /t → 0. Furthermore,
the numerical convergence rate of B(m)

t is nonasymptotic, since
�B(m)

t − B(m)
t−1�2 = O(1/t).

V. EXTENSION TO IMAGE ALIGNMENT

Misalignments together with corruptions and occlusions
often appear in unconstrained real-world streaming data.
Image alignment is an essential problem in a multimedia
analysis and computer vision and has received many algo-
rithmic solutions. For example, Peng et al. [54] attempted to

Algorithm 2 ORLTM-IA
Input: A third-order tensor consisting of unaligned images

X ∈ R
n1×n2×n , initial transformation �, tradeoff parame-

ters {λ1, λ2, λ3}, target rank p.
Output: Aligned image tensor X̃ = X ◦ �, low-rank tensor

L and sparse tensor E .
1: Initialize: Set {L, E} ∈ R

n1×n2×n , Wm ∈ R
nm×p , Rm ∈

R
p×nm , G(m)

0 , �
(m)
0 , �m

0 to zero, B ∈ R
n1×n2×p .

2: for t = 1 to n do
3: while not converged do
4: Compute the warped image X̃t = Xt ◦ τt .
5: Update the Jacobian Jt = ∂

∂ζ vec(Xt ◦ ζ )|ζ=τt .
6: for m = 1 to 3 do
7: x̃m

t ← vec(X̃(m)
t ), x̃m

t ← x̃m
t

�x̃m
t �2 .

8: dm
t ← x̃m

t .
9: while not converged do

10: �x̃m
t ← (Jt�τt )

m .
11: Update rm

t by (23).
12: Update em

t by (24).
13: Update �τt by (22) in mode-3.
14: end while
15: Compute wm

t using (14).
16: end for
17: τt ← τt +�τt .
18: end while
19: for m = 1 to 3 do
20: Update the dictionary B(m)

t by (16) or (18).
21: L(m)

t ← B(m)
t rm

t , E(m)
t ← em

t .
22: end for
23: end for

align images by seeking a set of transformations which min-
imizes the rank of warped images corrupted by sparse noise.
However, as a batch-based algorithm, their method requires
large memory cost when aligning a large number of images.
For scalability, Wu et al. [55] developed an online image
alignment method that uses a fixed rank model and updates the
basis through thresholding and simple replacement. Similarly,
Song et al. [56] proposed an online robust PCA method for
image alignment. This section extends ORLTM to solve the
image alignment problem from the perspective of robust tensor
learning.

Formally, a group of n images {Xi }ni=1 with width n1 and
height n2 (d = n1×n2), such as video frames, can be regarded
as a third-order tensor (M = 3). Each image is a frontal
slice of the tensor. Although a stack of well-aligned images
would form a low-rank tensor where noise or corruptions
can be modeled as sparse error, the misalignments existing
in a few images would break the low-rank structure of the
tensor. Thus, we introduce a set of geometrical transformations
� = {τ1, τ2, . . . , τn} to align the 2-D slices of the tensor and
reformulate the constraint in (1) as

X ◦ � = L+ E (19)

where X ◦ � = X̃ applies the transformation τi ∈ R
q to

each frontal slice matrix X (:, :, i) or Xi from the tensor X .
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When the changes �� = {�τ1,�τ2, . . . ,�τn} in � are small,
the constraint in (19) can be approximated by linearizing the
current estimate of � [57] as follows:

X ◦ (� +��) ≈ X ◦ � + fold3

(
n∑

i=1

Ji��i
�
i

)

(20)

where Ji denotes the Jacobian of the frontal slice matrix
X (:, :, i) with respect to the transformation parameter τi ∈ R

q

and i ∈ R
n is the standard basis. For brevity, we define

�X = fold3(
∑n

i=1 Ji��i
�
i ), which reflects the change in

the tensor X along the third mode.
To align images in an online manner, we follow the

previous deductions and incorporate image warping into the
formulation. Specifically, we warp the image by geometrical
transformations and reformulate (7) to update �τ as

�̃(�τ) � min
B(m),rm ,em

1

2

∥
∥x̃m

t + (Jt�τ)m − B(m)rm
t − em

t

∥
∥2

2

+ λ1
∥
∥em

t

∥
∥

1 +
λ2

2

∥
∥rm

t

∥
∥2

2 (21)

where x̃m
t = vec(Xt ◦τt )

m denotes the warped image in mode-
m, Jt = (∂/∂ζ )vec(Xt ◦ ζ )|ζ=τt ∈ R

d×q is the Jacobian of the
tth image with respect to τt , and �x̃m

t = (Jt�τt )
m reveals

the image change. It is actually an unconstrained least squares
problem to solve �τ , which has a concise solution

�τt =
(
J�t Jt

)−1J�t (Brt + et − x̃t ). (22)

Also, we alternatively update rm , em and �
(m)
t as follows:

rm = (
B(m)�

t−1 B(m)
t−1 + λ2Ip

)−1B(m)�
t

(
xm

t +�x̃m
t −em)

(23)

em = Sλ1

[
xm

t +�x̃m
t − B(m)

t−1rm]
(24)

�
(m)
t =

t∑

i=1

(
xm

i +�x̃m
i − em

i

)
rm�

i . (25)

We summarize the proposed ORLTM-IA method in
Algorithm 2. Note that to model dynamics, we directly use
the warped image x̃m

t as the atom dm
t in the dictionary D(m)

t .
Since poorly conditioned Jacobian matrix often incurs instable
problem, we propose to compute its QR factorization [54].
Concretely, instead of using J in Algorithm 2, we use the
orthogonal Q and multiple �τi by the right component of such
factorization. For each image, the basis B remains unchanged,
and the Jacobian matrix J as well as (J�J)−1J� is calcu-
lated in advance. This significantly reduces the computational
complexity and offers good scalability for aligning very long
sequences of images in highly demanding applications.

ORLTM-IA can also be adapted to visual tracking tasks as
a robust tracker, which essentially aims to track target object
in nonstationary image streams that change over time [58].
Robust visual tracking attempts to handle the unconstrained
environments containing a drastic change in the appearance
of the object or large lighting variation in its surroundings.
This paper explores the way to dynamically model the object
and the changes in motion or appearance by the proposed
ORLTM, which serves as one subspace representation-based
tracker. Similar trackers include Incremental Visual Tracking
[58] that learns a low-dimensional subspace representation,

online robust image alignment (ORIA) [55] that uses well-
aligned images to linearly and sparsely reconstruct newly
arrived ones after image alignment, and ORPCA-IA [56] that
considers geometrical transformation in ORPCA [22]. Unlike
image alignment, the initial transformation of each frame is
the updated one of the previous frame for tracking.

VI. EXPERIMENTS

In this section, we conduct extensive experiments on both
synthetic databases and three practical vision tasks, including
video background subtraction, image alignment, and visual
tracking. An input video or a long image sequence can
be regarded as a long third-order tensor, where one frame
forms a frontal slice and a subtensor is composed of multiple
frames. We employ Algorithm 1 for synthetic data analysis
and video background subtraction and utilize Algorithm 2 to
align images and to track targets in the presence of large illu-
mination variations, appearance, and view angle changes. For
tracking, we simply adopt the closed-form solution to update
the basis dictionary. In the practical tasks, all experiments were
conducted on original image pixels directly.

A. Synthetic Data Analysis

To generate synthetic data with a low-rank structure,
we use rank-3 factor matrices, e.g., Sm ∈ R

50×3 (here
m denotes mode), to create a tensor S of size 50 ×
50 × 30. Every factor matrix is composed of three com-
ponents [sin(2πmim/50), cos(2πmim/50), sgn(sin(0.5π im)],
where im indexes the column element in mode m. Each frontal
slice of mode-3 is generated by the product of two factor matri-
ces. The entries of the tensor are corrupted at random by small
noise from normal distribution N(0, 0.05) and outliers from
uniform distribution U(−|H |, |H |) (H is the magnitude of
interval bound). We adopt root relative square error (RRSE) as
the evaluation metric computed by (�Ŝ − S�F /�S�F ), where
Ŝ is the learned low-rank tensor. For evaluation, we com-
pare four batch approaches, i.e., RPCA [3], LRR [10], [11],
HOSVD [1], and HORPCA [1], and four online approaches
(where the subtensor size is set to 1), i.e., ORPCA [22], online
low-rank subspace clustering (OLRSC) [25], OSTD [43], and
the proposed ORLTM method. It should be noted that batch
methods have the hindsight knowledge of all the sequential
data, thus providing performance upper bound for online
counterparts. For ORLTM, λ1 = 1/(log(n1 n2))

1/2, λ2 = 1,
λ3 = λ1(log(t))1/2, and we utilize the default parameters
for those alternatives as indicated in original papers. For all
methods, the target rank p is set to 3.

The plots in Fig. 2 depict the results obtained by varying the
corruption percentage η from 0% to 100% with an interval of
10 and by changing outlier intervals 2|H | in [0 : 0.2 : 2].
It can be easily observed that our method performs better
than all online approaches when the corruption percentage and
the outlier interval change greatly, and even comparable to
batch ones. Moreover, ORLTM outperforms LRR consistently
and HORPCA when the corruption exceeds approximately
55%. These results suggest the advantages of ORLTM which
leverages the low-rank data structure across all tensor modes.
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Fig. 2. RRSE averaged over 10 test runs on different corruption entries on synthetic data. Left: RRSE versus corruption percentage (H = 0.5 and H = 1.0).
Right: RRSE versus outlier intervals (2|H | with η = 50% and η = 100%).

TABLE I

RRSE (↓) OF ONLINE METHODS WITH DIFFERENT TENSOR SIZES n3
(η = 50%, H = 1, n1 = 50, AND n2 = 50, AVERAGED

OVER 10 TEST RUNS)

The reported results are finalized by averaging over 10 test
runs due to the randomness of data generation. Furthermore,
for online approaches, Table I shows the RRSE records derived
from data with different sizes (n3), and these results are
also averaged over 10 test runs. As indicated in Table I,
all methods exhibit more promising data recovery abilities
when the tensor size increases. This has justified the fact that
more unit subtensor samples contribute to achieving much
improved robust tensor recovery. Simultaneously, ORLTM
performs consistently the best among the compared online
methods when the size of tensor data varies largely.

B. Video Background Subtraction

To subtract background of videos, we employ the low-
rank component L to model the background (BG, i.e., static
scene) while using the sparse component E to model the
foreground (FG, i.e., walking pedestrians). The test bed is
the I2R database [59] which contains a rich variety of both
indoor and outdoor scenes, e.g., offices, campus, parking lot,
shopping mall, restaurant, airport, and sidewalk. We use
eight video sequences, including Bootstrap, Campus, Curtain,
Fountain, Lobby, Shopmall, Watersurface, and Hall. There
are totally over 15 000 video frames with a size ranging
from 120 × 160 to 256 × 320. For each sequence, we have
20 ground-truth Foreground Mask (FM) of frames. For com-
parison, four online approaches, including ORPCA [22],
OLRSC [25], OSTD [43], and online CP [29], and
five batch approaches, including RPCA [3], LRR [11],
HORPCA [1], and CP-ALS [28], were evaluated and their
parameters are set according to original papers or released
implementations. For ORLTM, each subtensor size is set
to 1, λ1 = α/(log(n1 n2))

1/2 (α is 0.02 for Curtain, Lobby,
and Watersurface and 0.1 for the rest), and λ2 = 1 and
λ3 = λ1(log(t))1/2 (t is the iteration number). The target
rank p for all approaches is empirically set to 10 provid-
ing generally good performance. We capture the foreground

masks by thresholding the sparse part of the frontal slice,
i.e., FMi j = 1 if E2

i j /2 ≥ (std(vec(E)))2, and zero other-
wise, where std(·) is the standard deviation. All frames were
passed two epochs to further refine the background modeling
for online approaches. Batch approaches take in small-batch
(500 frames) per time due to limited memory resource. For
ORLTM, we utilize the bilateral random projection (BRP) [60]
technique also used in [43] and [61] to initialize the dictionary
B(m) only for background subtraction. In particular, given a
dense matrix � ∈ R

s×c, one can easily compute its low-
rank approximation by �̃ = �Y1(Y�2 �Y1)

−1Y�2 �, where
the rank r ≤ min(s, c) and Y1 ∈ R

c×r , Y2 ∈ R
s×r are

random matrices. In addition, to examine how BRP influences
the initialization, we use ORLTM2 to denote the proposed
method accepting uniformly distributed random numbers for
initialization. Note that LRR was found to perform very
poorly when the dictionary is set to the database itself,
and we thus employ its mean matrix to yield a descent
performance.

To examine the performance of compared method, we use
F-score [62] as the evaluation metric. If true positive (TP)
is the total number of foreground pixels correctly classi-
fied, false positive (FP) is the total number of the pixels
incorrectly classified as foreground, and false negative (FN)
is the number of misclassified foreground pixels, then we
define Precision = (TP/TP+ FP), Recall = (TP/TP+ FN),
and F-score = (2 · Precision · Recall/Precision+ Recall). The
recorded F-score values are reported in Table II. As can be
observed in Table II, ORLTM performs the best in various
scenes, and the F-score is higher than the second best RPCA
(batch method) by about 10%. In specific, ORLTM enjoys
more promising performance on Bootstrap, Curtain, Fountain,
Lobby, and Hall in comparison with others. Besides, our
method shows the satisfying results on other sequences indi-
cated by its almost the same F-score to that of the best ones.
We attribute the superiority of ORLTM to two reasons: one
is that dictionary learning can model video background better
even in grossly corrupted and noisy situations and the other
is that it takes full advantage of the underlying information
of video sequences by learning the low-rank structures of
data across all tensor modes. Here, batch methods handle
500 frames each time in the tests, marginally degrading its
performance. In addition, it can be found that BRP indeed
improves the performance of the proposed method on most
video sequences, due to its nice low-rank approximation
property.
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TABLE II

F-Score (% ↑) COMPARISONS ON ALL VIDEO SEQUENCES FOR BACKGROUND SUBTRACTION. BEST IN BOLDFACE AND SECOND BEST UNDERLINED

Fig. 3. Some randomly selected frame masks from video background subtraction in various scenes. (a) Input frame. (b) ORLTM (background). (c) ORLTM
(foreground). (d) ORLTM. (e) ORLTM2. (f) OSTD. (g) OLRSC. (h) ORPCA. (i) HORPCA. (j) LRR. (k) RPCA. The TP pixels are in white, TN pixels in
black, FP pixels in red and FN pixels in green.

TABLE III

SPEED COMPARISON (fps ↑) BETWEEN ORLTM AND TWO BATCH

METHODS. THE VALUE IN PARENTHESES DENOTES THE
ACCELERATION RATE OF ORLTM COMPARED

WITH OTHERS. BEST IN BOLDFACE

For computational efficiency, we adopt frame rate (fps)
as the metric. The results are recorded in Table III,
which demonstrates that ORLTM runs much more efficiently
compared with batch ones, e.g., faster than RPCA on Boot-
strap by over 12 times and up to 46 times quicker than
HORPCA on Fountain. The reason is that ORLTM as an
online algorithm only requires constantly small memory and
its computational cost is very limited per time instance. In con-
trast, batch approaches shall store all frames in memory and
singular value decompositions on batch frames need intensive

computations. The tests were conducted on a machine with
3.06 GHz Core X5676 processor and 24-GB RAM.

To illustrate background subtraction, we display some fore-
ground masks of those frames randomly chosen in Fig. 3.
Here, these images have gone through binarization, i.e.,
the pixel values are converted to 0 or 255 for better visualiza-
tion. Compared with the ground-truth mask, TP, true-negative
(TN), FP, and FN pixels have been marked by different colors.
As vividly shown in Fig. 3, our method captures much better
masks than the rest in most situations, e.g., swinging curtain
(row 2), running fountain (row 3), and varying illumination
(row 4). This further validates the fact that ORLTM can
provide more satisfying background and foreground modeling
in various scenes.

C. Image Alignment

To evaluate ORLTM-IA, we conducted tests on both con-
trolled images including Al Gore, Digit 3, and Dummy and
unconstrained images taken from LFW [63] database including
Ariel Sharon, Colin Powell, George W. Bush, Laura Bush,
and Hugo Chavez. Al Gore talking video contains 140 frames
with strong jitter across frames; Digit-3 consists of 100 hand-
written digits originally from the MNIST data set; Dummy
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Fig. 4. Image alignment results for (a) Digit 3 and (b) dummy images.
Row 1: unaligned image. Row 2: aligned image by ORLTM-IA. Row 3: low-
rank image by RASL. Row 4: low-rank image by ORIA. Row 5: low-rank
image by ORPCA-IA. Row 6: low-rank image by ORLTM-IA.

contains 100 perturbed and occluded images; LFW images
suffer from large changes in pose and facial expression as
well as illumination or occlusion variations. These images and
corresponding initial transformation estimates are all provided
in [54], and we adopt the same canonical image size, i.e.,
29× 29 for digits, 49× 49 for dummy images, and 80 × 60
for face images. We use affine transformation G = Aff(2) for
image geometrical warping. For comparison, we tested two
online methods, including ORIA [55] and ORPCA-IA [56],
in addition to one batch method Robust Alignment by Sparse
and Low-Rank Decomposition (RASL) [54]. We set the para-
meters of compared methods as suggested in original works.
For ORLTM, we set λ1 = λ3 = 1/

√
d and λ2 = 1; for all

methods, the first 10 aligned images by RASL are utilized to
initialize the basis (the rank p = 10).

To visualize results, some samples are randomly selected,
and the aligned images are displayed in Figs. 4 and 5. From
Fig. 4, one can observe that ORLTM-IA can well align the
digits despite very different styles and orientations (second
row), and the recovered low-rank images (sixth row) are
more consistent than the compared ones. These results clearly
justify that ORLTM-IA can well model and preserve the low-
rank structures of these images. Moreover, the dummy faces
with serious illumination variations and occlusions can be
aligned nicely using the proposed method. Fig. 5 shows that
ORLTM-IA provides much better alignments than the other
two online methods (ORIA and ORPCA-IA), and its perfor-
mance is even comparable to the batch method, RASL. This
can be attributed to two advantages of ORLTM-IA: 1) our
method utilizes the spatial information across different modes
and can better capture the geometrical transformations of the

unaligned images and 2) the introduced dictionary component
is able to enhance the low-rank modeling ability.

For quantitative evaluation, we use the eye slop/angle
and mouth slop/angle as the metric to compute concrete
alignment accuracy. If the slop is ρ, the angle can be computed
as ω = (arctan(ρ) · 360/2π). In detail, we first apply the facial
point detector using a deep convolutional network model [64]
to detect five points on both unaligned faces and aligned
faces by the compared methods. Among these detected points,
we utilize two eye center points to compute the eye-line
slop/angle and two mouth corner points to compute the mouth-
line slop/angle. Ideally, we expect the two slops or angles
to be as small as possible, indicating better aligned images
in a local view. However, occasionally, the detector fails to
detect the points on all the facial images, because the bounding
boxes cannot be located on some aligned images in a canonical
size. Hence, we report the averaged absolute results of three
successfully detected face data, i.e., Al Gore, George W. Bush,
and Laura Bush, in Table IV. As seen in Table IV, all the
image alignment methods can reduce the slop and the angle
of both eye and mouth lines on average. ORLTM-IA can best
rectify the eye line and the mouth line, since it can maximally
reduce the bias angle |ω| from 7.63° to 3.76° for the former
and from 7.08° to 3.54° for the latter on Laura Bush. However,
except our method, the remaining ones perform poorly on the
video data Al Gore, which might because the data have been
roughly aligned and the low-rank structure of the video is
better captured by robust tensor learning.

D. Visual Tracking

The task of visual tracking is generally to track the target
by a bounding box, which is manually initialized in the
first frame. Regarding the target, its initial transformation
in the current frame is the estimated transformation of the
same target in the previous frame. Here, we adopt the pro-
posed online image sequence alignment strategy, ORLTM-IA,
in Algorithm 2 to update the model for visual tracking.
We compare our tracker with two online subspace trackers,
i.e., ORIA [55] and ORPCA-IA [56], on 15 challenging
video sequences [65] where the targets may undergo partial
occlusions and pose, illumination, or appearance changes. The
parameters of compared ones are set by default in the original
papers, and we use λ1 = λ3 = 1/

√
d , λ2 = 1, and affine

transformations G = Aff(2) for our method. For all methods,
we generate the initial basis or dictionary from the first frame,
which provides the initial location of the target whose size is
set as the canonical image size.

To evaluate the tracking performance, we adopt three
widely used metrics, including Overlap Ratio, Center
Error, and Frame Rate. Overlap Ratio is defined as
(areaes ∩ areagt/areaes ∪ areagt ), where the numerator is the
intersection of the ground-truth bounding box and the esti-
mated one while the denominator is the union of the two
boxes; Center Error calculates the averaged Euclidean dis-
tance between the estimated center and the ground truth of
those bounding boxes in all consecutive frames of a given
video; Frame Rate computes the number of frames handled
by the method in 1 s. These records are collected by a
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TABLE IV

QUANTITATIVE IMAGE ALIGNMENT RESULTS IN TERMS OF EYE AND MOUTH Slop |ρ|(↓) / Angle |ω|(↓) ON THE FACE DATA SETS. NOTE THAT RASL
IS A BATCH METHOD WHILE THE REST ONES ARE ONLINE METHODS; “ORIGIN” DENOTES THE ORIGINALLY UNALIGNED IMAGES.

THE SMALLER THE SLOP AND THE ANGLE, THE BETTER THE FACIAL IMAGES ARE ALIGNED. BEST IN BOLD FACE

Fig. 5. Image alignment results of facial images. (a) AI Gore. (b) Ariel Sharon. (c) Colin Powell. (d) George W. Bush. (e) Laura Bush. (f) Hugo Chavez.
Row 1: unaligned image. Row 2: aligned image by ORLTM-IA. Row 3: low-rank image by RASL. Row 4: low-rank image by ORIA. Row 5: low-rank image
by ORPCA-IA. Row 6: low-rank image by ORLTM-IA.

machine with 2.20 GHz Dual Core i5-5200U processor and
12-GB RAM. The results of the compared methods are
reported in Table V, where Win/loss/tie reveals how well the
method is competing, and high win or low loss represents suc-
cess. The records in Table V indicate that our method achieves
the most promising performance and still offers processing
speed as fast as 25 frames/s on CarDark and Man, satisfy-
ing the real-time requirements. ORLTM-IA outperforms the
second best ORPCA-IA by a significant percentage of 7.6 in
terms of Overlap Ratio and meanwhile reduces the center
error by a large magnitude of 8.5. This is because leveraging
the information in all modes of data does strengthen the
ability of ORLTM-IA to well model the pose, illumination,
view angle changes, and even large shading in video frames.
Moreover, we find that both ORLTM-IA and ORIA run
almost twice faster than ORIA, due to the much slower

convergence of objective function for ORIA to update the
basis.

The bounding boxes of tracking results on some videos
are shown in Fig. 6. Our method coded in red rectangle can
robustly track the face in spite of large occlusion by the book
on FaceOcc1 (row 1). In contrast, ORIA fails to track the
target on Girl sequence since frame #109 while ORPCA-IA
drifts off since frame #69 when the head turns (row 2). For
Skating1 sequence, ORIA drifts after frame #83 when the rest
ones perform better due to the satisfying basis updated by
the tracker; for Suv video, ORIA drifts since frame #526 and
ORPCA-IA drifts since frame #730 as displayed in row 3,
but our method can track the vehicle until the end though
there exists tolerable center bias. This suggests that low-
rank tensor modeling can learn dynamics during the harsh
circumstances, such as large occlusion by the tree or other
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TABLE V

TRACKING RESULTS IN TERMS OF OVERLAP RATIO (↑), CENTER ERROR (↓), AND FRAME RATE (↑) ON VIDEO SEQUENCES. THE NUMBER OF
FRAMES IN EACH VIDEO IS IN PARENTHESES. WIN/LOSS/TIE COMPARES THE CURRENT RECORD WITH THE BEST ONE IN BOLD FACE

Fig. 6. Bounding boxes yielded by different trackers in frames. Row 1: FaceOcc1. Row 2: Girl. Row 3: Skating1. Row 4: Suv. Row 5: Trellis.

vehicles. On the Trellis sequence, ORIA drifts since frame
#387 while ORPCA-IA losts the target since frame #192 due
to the drastic motion or appearance variations of the target,
which however can be nicely handled by our tracker. Overall,
ORLTM-IA enables more favorable tracking results as well as
the fast speed on these sequences in comparison with other
methods.

VII. CONCLUSION

In this paper, we developed an ORLTM approach for
learning low-rank structures of streaming noisy tensor data.

ORLTM can handle samples in a sequential way via the
equivalent bifactor formulation of the nuclear norm, which
makes it possible to process large-scale streaming tensor data,
such as image and video sequences. The objective function is
reformulated as a nonconvex problem and solved by stochastic
optimization. In contrast to batch methods, our method reduces
memory consumption by a factor of n in each iteration.
Moreover, we extend the proposed method to image alignment
scenario and also adapt it for visual object tracking. Exten-
sive experimental results have demonstrated that our method
gains significant advantages and promising performances on
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synthetic data and several practical tasks. Empirical studies
on synthetic data have shown more promising results of the
proposed method in comparison with the well-established
online approaches and ORLTM is even comparable to batch
alternatives though the tensor data are grossly corrupted by
noise. Practical studies have validated the superior perfor-
mance of ORLTM in video background subtraction. Besides,
ORLTM-IA achieves favorable image alignment results and
also enables robustly tracking the target in consecutive frames
in the presence of large variations, motion changes, and partial
occlusions.
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