
Long-Term Recurrent Predictive Model for Intent Prediction
of Pedestrians via Inverse Reinforcement Learning

Abstract—Recently, the problem of intent and trajectory
prediction of pedestrians in urban traffic environments
has got some attention from the intelligent transportation
research community. One of the main challenges that make
this problem even harder is the uncertainty exists in the
actions of pedestrians in urban traffic environments, as well
as the difficulty in inferring their end goals. In this work,
we are proposing a data-driven framework based on In-
verse Reinforcement Learning (IRL) and the bidirectional
recurrent neural network architecture (B-LSTM) for long
term prediction of pedestrians’ trajectories. In the proposed
framework, we firstly learn a reward function of the urban
traffic environment scene that capture the preference of the
pedestrians with respect to the scene’s physical contextual
information. Then based on the learned features of this
reward function along with past trajectories of pedestrians
in the scene, we forecast a probability distribution over
the pedestrians’ future trajectories using B-LSTM model.
We evaluated our framework on real-life datasets for
agent behavior modeling in traffic environments and it has
achieved an overall average displacement error of only
2.93 and 4.12 pixels over 2.0 secs and 3.0 secs ahead
prediction horizons respectively. Additionally, we compared
our framework against other baseline models based on
sequence prediction models only and we have outperformed
them with a lowest margin of average displacement error
of more than 5 pixels.

I. INTRODUCTION

Recently, the development of autonomous vehicles
(AVs) have met major milestones and witnessed a num-
ber of success in highway traffic environments [1],
[2]. However, they are still facing with a number of
challenges in urban traffic environments, more specif-
ically when it comes to interacting with vulnerable
road users (VRUs) around them such as pedestrians
and cyclists [3]–[5]. Thus, the necessity for having
predictive models within these vehicles that can infer and
understand the VRUs intentions over longer time periods
became inevitable. In the advanced driving assistance
systems (ADAS) community, the intent prediction of
pedestrians problem has been thoroughly investigated
over the past few years [6]–[8]. Whereas, the intent
prediction problem is commonly accomplished based
on forecasting the motion trajectories of pedestrians in
traffic environments.
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Figure 1. The proposed framework for long-term trajectory prediction
of pedestrians in urban traffic environment. Firstly, demonstrated tra-
jectories and contextual features maps are used for learning the reward
map of the scene via IRL MaxEnt. The demonstrated trajectories along
with the learned reward map of the scene are passed as the input
sequences for training a probabilistic trajectory prediction B-LSTM-
MDN model. The output of the B-LSTM-MDN model are probability
density of future sequence trajectories of input pedestrians.

In ADAS, since the driver is still in command of
the driving decisions most of the time, the predictive
models for intent prediction proposed in the literature
are only predicting shorter time horizons of pedestrians’
intention. On the other hand, in the context of AVs,
whereas the driver will be out of the decision-making
loop, the need for long-term prediction is essential. As
it was illustrated in [3], [9], longer time horizons of
intent prediction of pedestrians was attributed to be one
of the most strong cues for a trusted interaction between
pedestrians and AVs.

Commonly, the approaches for the intent prediction
introduced in ADAS field rely either on single linear
dynamical models such as Kalman filter [6] or a switch-
ing multiple linear dynamical models [7], [8]. One of
the constrains of linear dynamical models that they need
an explicit model of the agent (i.e, pedestrian) in the
scene in addition to the challenges that comes with
capturing the variable non linear and uncertain dynamics
of pedestrians over longer time periods. On the other
hand, planning based models do not suffer from these
issues and they have been proven to provide a resilient
prediction of pedestrians over longer time horizon [10]–
[12]. However, one of the challenges planning-based
models are encountered with is their inherent reliance on
a prior known end goal. Recently, sequence-prediction



models were adopted for the intent prediction problem
of pedestrians. Similar to planning-based models they
do not require an explicit modeling of the pedestrians’
motion dynamics. However, unlike planning-based mod-
els they do not require a prior end goal for the pedes-
trians to be known beforehand. Despite the promising
results that data-driven approaches have shown for the
the intent prediction problem for pedestrians, they still
require improvements. For instance, so far the proposed
sequence prediction models in the literature do not take
into account the inherent uncertainty of the pedestrians’
actions. Additionally, they are also neglecting the effect
of the physical environment on the pedestrians’ actions.

Thus, in this paper we are proposing a framework that
combine between planning-based models and sequence
prediction models based on inverse reinforcement learn-
ing and deep recurrent neural networks. Whereas we
firstly learn the reward function of the traffic environ-
ment by just observing a demonstrated trajectories of
the pedestrians. Then using the learned reward function
alongside the motion trajectory of pedestrians in the
environment we learn another RNN model that infer a
long term trajectory without a prior information about
the end goal at inference time.

The rest of this paper is organised as follows. Sec-
tion II presents a brief literature review on the problem.
Section III describes problem formulation and the pro-
posed solution. Section IV describes the datasets used
and the validation method. Finally, Section V concludes.

II. RELATED WORK

The intent prediction problem of pedestrians has been
commonly approached in the literature as a dynamical
motion modeling problem which is usually solved using
recursive Bayesian filters [6], [7], [13]. In [6], one of the
early work on the intent prediction problem of pedes-
trians, an Extended Kalman filter (EKF) was used to
model the linear dynamical motion model of pedestrians
in four distinctive crossing scenarios. Keller et al. [7],
relied on another dynamical motion model based on a
Gaussian process in order to infer whether a pedestrian
walking on a curb will cross or not. In their work, two
different motion models to identify the stopping and
walking behavior of the pedestrians were developed, and
with the help of optical flow fields, they can predict the
trajectory of the pedestrian.

Another category of approaches which was also uti-
lized in the literature for the intent and trajectory pre-
diction of pedestrians, was the planning-based models.
These models are inspired by the path planning ap-
proaches that are heavily used in the robotics field.

However, rather than planning an ego-centric trajectory
to be performed by a robot in a given environment,
it was used to plan a trajectory of other agent (i.e,
pedestrian). In planning-based approaches, there is an
inherent assumption that the end goal that the agent is
trying to reach is known in advance. In [14], a planning-
based approach was used for forecasting pedestrians’
trajectories in traffic environments. Since the end goal of
the pedestrians was not known beforehand, they firstly
infer a set of possible goals using a combination of Gaus-
sian Mixture Model (GMM) and Particle Filter (PF).
Using these inferred end goals and an occupancy grid
map of the environment, they can predict a probability
distribution over the possible trajectories to these goals.

Data-driven approaches specifically those ones based
on recurrent neural network architectures such as LSTM
were investigated for the intent and trajectory predic-
tion problem of pedestrians [15], [16]. In data-driven
approaches and similar to planning-based approaches,
no explicit modeling for the dynamics of the motion of
pedestrians are needed to be performed firstly. However,
unlike planning-based approaches, they do not require a
prior information regarding the end goal of the pedes-
trians in the scene. In [15], recurrent neural network
(RNN)-based approach was used for modeling human-
to-human interactions in crowded environments from a
surveillance camera’s perspective. In [16], another RNN-
based model for predicting trajectories of pedestrians in
traffic environments were introduced. Their introduced
RNN model relied only on past positional information
of pedestrians in order to predict their future motion
trajectories.

III. PROPOSED METHODOLOGY

In this section, the proposed methodology for the
intent prediction problem for pedestrians in urban traffic
environment will be discussed. Firstly, we will start our
formulation for the problem. Then, the building blocks
of our proposed framework (shown in Figure 1) will be
described.

A. Problem Formulation

In our formulation for the intent prediction problem of
pedestrians in traffic environment, we cast the problem
as a probabilistic sequence prediction problem. Whereas,
given a sequence of past trajectory observations x as
well as a reward map r that represents the pedestrian’s
preference in an urban traffic environment, we are in-
terested in estimating the probability density P(y|x,r) of
the pedestrian’s future trajectory y. In order to achieve a
probabilistic sequence prediction model, we will utilize



a bidirectional recurrent neural network model based on
LSTM architecture [17] with a an output layer of a mix-
ture density network [?]. For recovering a reward map
that can accurately capture the pedestrians’ preferences,
we will rely on an inverse reinforcement learning IRL
technique [18].

B. IRL and Markov Decision Process

Markov Decision Process (MDP), is one of the most
widely used frameworks for modeling the dynamics of
a decision making process [19]. MDP can be defined
as M = {S,A,T,r}, where S is the state space of the
system, A is the possible actions, T is the transition
model that describes the system dynamics and r is the
reward function. Typically acting in a MDP, results in
a sequence of states and actions {s0,a0,s1,a1,s2, . . .}.
A policy π , is the mapping sequences (µ0,µ1,µ2, . . .),
where, at time t the mapping µt(·) determines the action
at = µt(st) to take when in state st . The ultimate goal in
a MDP, is to find an optimal policy π∗, that maximizes
the expected sum of rewards accumulated over time.

In IRL context, the specifications of MDP are avail-
able except the reward function r is unknown. Alter-
natively, a set of demonstration D = {ζ1,ζ2, . . . ,ζN}
are provided by a demonstrator. Whereas, each sam-
ple trajectory ζi from the set of demonstration D is
described by a pair of state-action according to ζi =
{(s0,a0),(s1,a1), . . . ,(sT ,aT )}. Given, the demonstration
D, the goal of IRL is to recover the reward function r
that can ultimately capture the preference of the agent.
Since in real life applications, it would be difficult to
observe a reward function for each action-state pair in
the set of demonstration D , specially if the state space
is large. Thus, a common approach in IRL methods is
collecting a feature values vector f that best characterize
each possible action from the set of demonstration D.

C. Reward Learning for Pedestrian Intent and Trajec-
tory Prediction

One of the most commonly used approaches for
IRL, is the maximum entropy IRL approach (MaxEnt)
proposed in [18]. MaxEnt was successfully utilized in a
number of applications such as learning driver behaviors
[11], planners for social robotics [18], [20] and activity
forecasting from surveillance data [10], [21]. In the
formulation for the MaxEnt, the reward function can
be calculated as a weighted linear combination of the
feature values vector f according to Eq. 1.

r = θ
T f , (1)

where θ is a vector of unknown weights.

In this work, we will be focusing on the contextual
physical information in urban traffic environment as
our feature values vector for parameterizing the reward
function that need to be learned. More specifically,
we will utilize the vision-based contextual information
extracted from physical urban traffic enthronements by
means of image semantic segmentation techniques. The
contextual physical information will be the common ones
that could have a potential influence on the future actions
of pedestrians such as: trees, buildings, sidewalks and
roads.

Using demonstrated trajectories of pedestrians in ur-
ban traffic environments along with contextual physi-
cal information, MaxEnt approach can be adopted for
learning the reward function parameters. In MaxEnt
approach, the probability distribution of a trajectory ζi is
proportional to the exponentiated sum of rewards along
the trajectory ζi, which can be formulated as in Eq 3
after the substitution in Eq 1 to produce

P(ζi) ∝ exp ∑
(s,a)∈ζi

rs,a (2)

P(ζi|θ) =
exp∑(s,a)∈ζi θ T fs,a

Z(θ)
(3)

where Z(θ), is the normalization function. By maximiz-
ing the entropy of Eq 3, learning from demonstration
trajectories in maximum IRL can be accomplished. Ad-
ditionally, the maximization of the entropy of Eq 3 can
be interpreted as minimizing the the gradient of the log-
likelihood of the same equation, which in returns can be
calculated using learning algorithms such as conjugate or
stochastic gradient descent. That been said, we will be
using the similar forward-backward algorithm introduced
and discussed in [10] for training the MaxEnt framework
and obtaining the weights θ of the reward function.

D. Probabilistic Trajectory Prediction via Bidirectional
LSTM

Due to their capabilities in modeling complex tem-
poral dependency of their input sequence information,
Recurrent neural networks (RNN) have been achiev-
ing resilient results in sequence prediction tasks [22],
[23]. Thus, in our proposed framework for trajectory
prediction of pedestrians in urban traffic environment,
we will be capitalizing on their powerful sequence-
to-sequence modeling capabilities. In specific, we will
be utilizing one variant of RNN, the bidirectional long
short-term memory (B-LSTMs) architecture [?]. In gen-
eral, the operation of conventional LSTM architecture
is governed by three main internal gates which dictates



which information to be persisted over time and which
to be forgotten. Thus, LSTMs is considered one of
the best RNN architectures for memorizing longer-term
information. The aforementioned conventional LSTMs
are usually referred to as unidirectional LSTM (U-
LSTM), that because they process the information in
only one direction which is the forward direction. On
the other hand, B-LSTM can process the information
in two directions, namely forward and backward which
make make them more capable of understanding much
higher level of abstraction of their input information [?].

Both U-LSTM and B-LSTM architectures output pre-
dictions of deterministic real target values, however in
real-life there is usually an inherent uncertainty spe-
cially with respect to our pedestrian trajectory predic-
tion problem. Thus, we will be augmenting BLSTM
architecture with an output layer of a mixture density
network (MDN) [?], that can generate a weighted sum of
numerous probability distributions that can account for
the uncertainty of pedestrian trajectories in urban traffic
environments.

In Figure 2, the proposed B-LSTM-MDN for pedes-
trians trajectory prediction is shown. It is comprised of
two stacked LSTM layers (LSTM-1 & LSTM-2) each
with 64 hidden nodes. At the output layer, it output two
weighted MDNs. The information flow of the forward
and backward iterations over time is denoted by forward
and backward arrows. Given an input a sample sequence
X = {x0, ..,xT} of length T to our B-LSTM-MDN model.
Whereas X is comprised of two main information, the
trajectory of the pedestrian in 2D dimension (x0:T ,y0:T )
and the k-neighbor reward features at each position of
this trajectory (rk

0:T ). Then, the output of the model is
the probability distribution over the future trajectory Y
of the pedestrian. As we mentioned before, the output
ht of every LSTM memory cell is controlled by three
internal gates at each time step t which in the case of
our B-LSTM-MDN model will have two of them. The−→
ht for the forward layer and

←−
ht for the backward layer.

In return, the final output yt from each LSTM cell is as
follows:

yt = σ(
−→
ht ,
←−
ht ), (4)

where σ is a function to combine the outputs from
the two inner LSTMs and it is usually implemented as
a concatenation function with the rectified linear unit
(ReLU) as the activation layer.

For the MDN output layer, we chose the mixture
of Gaussian as our probability density function (PDF),
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Figure 2. The probabilistic B-LSTM model for trajectory prediction
of pedestrian in urban traffic environments.

which is calculated as follows:

P(yt |Nt) =
M

∑
m=1

α
m
t N (yt |µm

t ,σm
t ,ρm

t ) (5)

where yt is the real target value, M the number of
mixtures for the PDF of Gaussian which was two in
our case, αm

t is the weight for the m-th mixture and N
is the normal Gaussian distribution.

Since the output values from our the B-LSTM model
are real numbers, so a transformations are needed before
we use them as the parameters {µm

t ,σm
t ,ρm

t } for our
normal distribution as follows:

α
m
t =

exp(α̃m
t )

∑
M
i=1 exp(α̃m

i ))
, (6)

σ
m
t = exp(σ̃m

t ) (7)

ρ
m
t = tanh(ρ̃m

t ) (8)

where α̃m
t , σ̃m

t and ρ̃m
t are the PDF’s weight, variance

and the correlation values from the B-LSTM output layer
of the m-th Gaussian mixture respectively.

Eventually, the training of the B-LSTM-MDN model
can be accomplished via minimizing the log likelihood of
the normal Gaussian distribution against the input real-
valued training data as follows:

L(X) =
T

∑
t=1
− log(

M

∑
m=1

α
m
t N (yt |µm

t ,σm
t ,ρm

t )) (9)

where T is the length of the input sequence. For op-
timizing the aforementioned loss function we used, the
Adam optimizer with learning rate of 0.005.



IV. EXPERIMENTS

In this section the data that has been utilized for
training and testing our proposed framework for pedes-
trians’ trajectory prediction will be presented. Then,
the performance of that framework will be evaluated
against a number of evaluation metrics quantitatively.
Additionally, it will be compared against number of
baseline models.

A. Dataset

Given the nature of the proposed framework which
mainly relies on deep sequence prediction model (i.e,
B-LSTM), the necessity for relatively large amount
of pedestrians’ trajectory in traffic environment is in-
evitable. Fortunately, recently the Stanford drone dataset
(SDD), one of the largest datasets for agents’ behavior
modeling has been made publicly available [?]. SDD was
collected using a bird’s eye view camera mounted on a
drone hovering over the vicinity of Stanford University
campus. The dataset contains video images with frame
by frame bounding-boxes annotations (at roughly frame
rate of 28 FPS) for moving targets such as pedestrians,
bikers and cars. SDD was categorized into 8 scenes,
each with a number of target annotated videos. In
our experiments, we focused on the scenes that had
more number of pedestrians, which at the same time
contain other static or dynamic objects similar to the
ones found in urban traffic environments. These traffic
objects are such as: sidewalks, road/roundabouts, cars,
grass and buildings. Thus, we chose four scenes from
the SDD for the training and testing of our framework,
namely “bookstores, gates, deathCircle and little”. As a
first preparation stage, for each pedestrian’s annotated
bounding box coordinates over time in each scene, they
were converted into a trajectory of (x,y) positions by
calculating the bounding box’s center position.

B. Data Preparation for Training IRL MaxEnt

For the reward learning via IRL MaxEnt sub-system,
we have further manually annotated the reference image
for each scene from the four scenes with pixel-wise
semantic labels. These semantic labels are to be the input
feature values vector for the IRL MaxEnt as discussed
in Section III-C. The number of pixel-wise semantic
labels were scene specific but the common ones were:
buildings, road, sidewalk and generic obstacles. Since the
resolution of pixel-wise semantic label image for each
scene is relatively large, so for tractable computation
of the IRL MaxEnt algorithm, we resized all of the
semantic label images of the four scenes into a size of
(224×224). For training the IRL MaxEnt we used the

entire pedestrian trajectories and semantic label images
from each scene from the four scenes. In Figure 1, an
example of the learned reward for scene “bookstore” is
shown in the middle.

C. Data Preparation for Training B-LSTM-MDN

For the probabilistic sequence prediction B-LSTM-
MDN sub-system, the entire pedestrians’ trajectories
from the four scenes were split into 80% for training
and the rest for testing using a 2-fold cross validation
technique. As we discussed in Section III-D, the input
to the model is a sequence of length T containing past
trajectory and reward features. We empirically chose T
to be of size 28 which corresponds to roughly 1 second
of past trajectory of pedestrian with its k-neighbor reward
features. Whereas k was also empirically chosen to be of
size 8. Therefore, we preprocessed only the training tra-
jectories split with their 8-neighborhood learned reward
maps at each position of the trajectory into an equal
chunks of 28 and were used as the input X sequence.
For the target Y sequence, at the training phase it was
preprocessed into the same 28 length as the input X , but
it contained only the future 28 trajectory positions for
the trajectory positions of the input sequence X . At the
testing phase and with the help of the output MDN layer
of the model, we can sample any variable length for the
future trajectories.

D. Performance Evaluation and Discussion

For quantitatively evaluating the performance of our
proposed framework for the pedestrians’ trajectory pre-
diction problem, we adopted two different evaluation
metrics. The first one is the average displacement error
which was used in [23]. The average displacement error
is essentially the averaged euclidean distance between
the future trajectory predicted and generated by our
framework and the ground truth future trajectory over all
the single steps of the pedestrians’ trajectories. The sec-
ond metric is the Modified Hausdorff Distance (MHD)
which was similarly adopted in [10]. MHD is used to
evaluate the geometrical similarities between two non-
linear sequences which in our case will be the predicted
future trajectory from our framework and the future
ground truth trajectory. It is worth noting, that as our
framework predicts a probability distribution over each
point for the future trajectory. Thus, we will use random
sampling technique to get the real numbers of the future
predicted trajectories to evaluate it against the future
ground truth trajectory.

In order to further evaluate the performance of our
framework, more specifically whether the learned reward



Table I
PERFORMANCE OF OUR PROPOSED FRAMEWORK (B-LSTM-MDN-REWARD) AGAINST A NUMBER OF BASELINE MODELS. OUR PROPOSED
APPROACH WERE EVALUATED OVER TWO DIFFERENT PREDICTION HORIZONS (2 AND 3 SECS) OF THE PEDESTRIANS’ TRAJECTORIES AND

AGAINST TWO DIFFERENT EVALUATION METRICS. THE LOWER THE BETTER.

Approach 2.0 (sec) Ahead 3.0 (sec) Ahead

Avg. Disp. Error (pixels) MHD (pixels) Avg. Disp. Error (pixels) MHD (pixels)

U-LSTM 12.12 10.96 15.16 13.48
U-LSTM-MDN 9.16 7.48 13.49 11.12
B-LSTM-MDN 8.13 6.48 11.29 8.94
U-LSTM-Reward 11.49 10.29 15.04 13.29
U-LSTM-MDN-Reward 3.22 1.93 4.35 2.72
B-LSTM-MDN-Reward (proposed) 2.93 1.95 4.12 2.90

map features had made an actual difference in the
predicted trajectories from our B-LSTM-MDN model.
In Table I, we compare against a number of variants
of data-driven baseline models based on LSTM network
over two different long-term future prediction horizons
(2 second and 3 seconds ahead). The baseline models
are:

• U-LSTM: traditional unidirectional stacked LSTM
model similar to the one in [16], that rely only
on the past trajectories of pedestrians in order to
directly infer real-valued future trajectory.

• U/B-LSTM-MDN: unidirectional or bidirectional
stacked LSTM network with MDN at the output
layer (with the same layers as in Section III-D),
that rely only on past trajectory positions to infer
probability distributions over the future trajectory.

• U-LSTM-Reward: traditional unidirectional stacked
LSTM model, however is augmented by reward
future along with the past future trajectories.

• U/B-LSTM-MDN-Reward: is the proposed proba-
bilistic trajectory model describes in Section III-D,
but in the case of U-LSTM-MDN-Reward, the
LSTM layers are unidirectional instead of the bidi-
rectional ones.

As it can be noticed from Table I, the proposed
framework has outperformed all the other LSTM-based
baseline models in terms of lowest average displace-
ment errors and MHD. More specifically, the additional
learned reward features were also proven to improve the
performance of all the LSTM-based models that did not
include it, namely (U-LSTM, U-LSTM-MDN and B-
LSTM-MDN). Another observation, is that the LSTM-
based models with MDN output layer tend to be giving
more accurate predictions in comparison to the LSTM
model that was without it (i.e. U-LSTM). Moreover, the
main proposed framework (B-LSTM-MDN-Rewrd), was
also proved to be providing resilient results over two

(a) (b) (c)

Figure 3. Qualitative sample predictions of our B-LSTM-MDN-
Reward framework (dashed blue) against the ground truth trajectory
(solid red) over three scenes of SDD, (a) gates, (b) “deathCircle”, (c)
“bookstore” .

long term prediction horizons (namely 2 and 3 seconds
ahead). For an additional qualitative evaluation of the
predictions of our proposed framework, in Figure 3,
some predicted trajectories of our proposed framework
are shown against the ground truth trajectories. As it
can be shown, our framework can generate trajectories
that are close enough to the ground truth trajectories
and it can capture the non-linear motion pattern of the
pedestrians in traffic environments.

V. CONCLUSION

In this work, a framework for long-term prediction
of pedestrians trajectories in urban traffic environment
was proposed. Our proposed framework is based on
a combination between planning-based models and se-
quence prediction models based on inverse reinforcement
learning (IRL) and deep recurrent neural networks. With
the help of IRL, a reward function of the physical
environment can be learned that perfectly capture the
pedestrians preference in traffic environments. Then us-
ing the learned reward function alongside the motion
trajectory of pedestrians in the environment we learn
another RNN model that infer a long term trajectory
without a prior information about the end goal at infer-
ence time. We evaluated the proposed framework against



two different evaluation metrics and in comparison to
other baseline models. Our framework has shown a
significant improvements over the baseline models in
terms of lower average displacement errors and modified
Hausdorff distance.
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