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ABSTRACT

Generative models are important tools to capture and investigate the properties
of complex empirical data. Recent developments such as Generative Adversarial
Networks (GANs) and Variational Auto-Encoders (VAEs) use two very similar,
but reverse, deep convolutional architectures, one to generate and one to extract
information from data. Does learning the parameters of both architectures obey
the same rules? We exploit the causality principle of independence of mechanisms
to quantify how the weights of successive layers adapt to each other. Using the
recently introduced Spectral Independence Criterion, we quantify the dependen-
cies between the kernels of successive convolutional layers and show that those
are more independent for the generative process than for information extraction,
in line with results from the field of causal inference. In addition, our experiments
on generation of human faces suggest that more independence between successive
layers of generators results in improved performance of these architectures.

1 INTRODUCTION

Deep generative models have proven powerful in learning to design realistic images in a variety of
complex domains (handwritten digits, human faces, interior scenes). In particular, two approaches
have recently emerged: Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), which
train an image generator by having it fool a discriminator that should tell apart real from artificially
generated images; and Variational Autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al.,
2014) that learn both a mapping from latent variables to the data (the decoder) and the converse
mapping from the data to the latent variables (the encoder), such that correspondences between
latent variables and data features can be easily investigated. Although these architecture have been
lately the subject of extensive investigations, understanding why and how they work, and how they
can be improved, remains elusive.

An interesting feature of GANs and VAEs is that they both involve the learning of two deep sub-
networks. These sub-networks have a ”mirrored” architecture, as they both consist in a hierarchy
of convolutional layers, but information flows in opposite ways: generators and decoders map la-
tent variables to the data space, while discriminators and encoders extract information from the
same space. Interestingly, this difference could be framed in a causal perspective, with information
flowing in the causal direction in the case of generators (from the putative causes of variations in
the observed data), while extracting high level properties from the observations (with encoders or
discriminators) would operate in the anti-causal direction.

Generative models in machine learning are usually not required to be causal, as modeling the data
distribution is considered to be the goal to achieve. However, the idea that a generative model able
to capture the causal structure of the data by disentangling the contribution of independent factors
should perform better has been suggested in the literature (Bengio et al., 2013a; Mathieu et al.,
2016) and evidence supports that this can help the learning procedure (Bengio et al., 2013b). Al-
though many approaches have been implemented on specific examples, principles and automated
ways of learning disentangled representations from data remains largely an open problem both for
learning representations (targeting supervised learning applications) and for fitting good generative
models. GANs have for example recently been a subject of intensive work in this direction, leading
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to algorithms disentangling high level properties of the data such as InfoGans (Chen et al., 2016)
or conditional GANs (Mirza & Osindero, 2014). However such models require supervision (e.g.
feeding digit labels as additional inputs) to disentangle factors of interest. Unsupervised learning of
disentangled representations has been addressed in various frameworks including Restricted Boltz-
mann Machines (Desjardins et al., 2012), tensor analyzers (Tang et al., 2013) and Lie groups (Cohen
& Welling, 2014). A recent attempt to address unsupervised learning in VAEs is β-VAE (Higgins
et al., 2017) which introduces and adjustable parameter β in the VAE objective to strengthen the
data compression constraint with respect to reconstruction error.

While the above approaches envision the disentangling of representations as finding subsets of la-
tent variables that relate to different properties of the generated data, parameters of the network can
be also considered as factors affecting the generated data. Ideally, to ensure modularity of deep
generative models, different layers should encode different aspects of the data in their parameters.
Intuitively for deep convolutional networks, different layers should encode image features at differ-
ent scales. The idea that successive layers can be used as modules encoding different levels of details
has for example been exploited to build high-resolution generative models by training iteratively a
GAN with an increasing number of layers (Karras et al., 2017). Enforcing modularity of trained
neural architecture may not only allow to adapt them to the task at hand with minimum additional
training, but also to better understand the structure and function of these highly complex black-box
systems. However, to the best of our knowledge, assessing how independent (or disentangled) are
the properties encoded by the weights distributed across the structure of deep networks has not been
addressed quantitatively in the literature.

We propose that the coupling between high dimensional parameters can be quantified and exploited
in a causal framework to infer whether the layered architecture disentangles different aspects of the
data. This hypothesis relies on recent work exploiting the postulate of Independence of Cause and
Mechanism stating that Nature chooses independently the properties of a cause and those of the
mechanism that generate effects from the cause (Janzing & Schölkopf, 2010; Lemeire & Janzing,
2012). Several methods relying on this principle have been proposed in the literature in association
to different model classes (Janzing et al., 2010; Zscheischler et al., 2011; Daniusis et al., 2010;
Janzing et al., 2012; Shajarisales et al., 2015; Sgouritsa et al., 2015; Schölkopf et al., 2012). Among
these methods, the Spectral Independence Criterion (SIC) (Shajarisales et al., 2015) can be used in
the context of linear dynamical systems, which involve a convolution mechanism.

In this paper, we show how SIC can be adapted to investigate the coupling between the parameters
of successive convolutional layers. Empirical investigation shows that SIC is approximately valid
between successive layers of generative models, and suggests SIC violations indicate deficiencies in
the learning algorithm or the architecture of the network. Interestingly, and in line with theoretical
predictions (Shajarisales et al., 2015), SIC tends to be more satisfied for generative sub-networks
(mapping latent variables to data), than for the part of the system that map the anti-causal direction
(data to latent variables). In addition, comparison of different generative models indicates that more
independence between layers is associated to better performance of the model. Overall, our study
suggests that quantifying Independence of Mechanisms in deep architecture can help analyze and
design better generative models.

2 BACKGROUND

2.1 WHY A CAUSAL PERSPECTIVE?

An insightful description of causal models is based on Structural Equations (SEs) of the form

Y := f(X1, X2, · · · , XN , ε)

The right hand side variable in this equation may or may not be random, and the additional indepen-
dent noise term ε, representing exogenous effects (originating from outside the system under consid-
eration), may be absent. The “:=” symbol indicates the asymmetry of this expression and signifies
that the left-hand-side variable is computed from the right-hand-side expression. This expression
thus stays valid if something selectively changes on the right hand side variables, for example if the
value ofX1 is externally forced to stay constant (hard intervention) or if the shape of f or of an input
distribution changes (soft intervention). These properties account for the robustness or invariance
that is expected from causal models with respect to purely probalistic ones. Assume now X1 itself
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is determined by other variables according to

X1 := g(U1, U2)

then the resulting structural causal model summarized by this system of equations also implies a
modularity assumption: one can intervene on the second equation while the first one stays valid,
baring the changes in the distribution of X1 entailed by the intervention.

This structural equation framework describes well what would be expected from a robust generative
model. Assume the model generates faces, one would like to be able to intervene on e.g. the pose
without changing the rest of the top-level parameters (e.g. hair color), and still be able to observe
a realistic output. One can also expect intervening on specific operations performed at intermediate
levels by keeping the output qualitatively of the same nature. For example, we can imagine that by
slightly modifying the mapping that positions the eyes with respect to the nose on a face, one may
generate different heads that do not match exactly the standards of the dataset used for training, but
are human-like. What we would not want is instead to see artifacts emerging all over the generated
image, or edges being blurred.

2.2 INDEPENDENCE OF CAUSE AND MECHANISM (ICM)

Assume we have two variables X and Y , possibly multidimensional and neither necessarily belong-
ing to a vector space, nor necessary random. Assume the data generating mechanism obeys the
following structural equation:

Y := m(X) ,

with m the mechanism, X the cause and Y the effect. We rely on the postulate that properties of
X and m are “independent” in a sense that can be formalized in various ways (Peters et al., 2017).
Broadly construed, ICM states that m and X do not carry information about each other, which
can be expressed mathematically in a very general setting using algorithmic information Janzing
& Schölkopf (2010). Based on this notion of independence, causal inference methods address the
problem of identifying cause from effect, when both directions of causation (X → Y and Y → X)
are a priori plausible. Interestingly, there are several settings for which it is possible to derive an
application specific quantification of ICM, such that if it is valid for the true causal direction (say
X → Y ), the converse independence assumption is very likely violated (with high probability) for
the anti-causal model

X := m−1(Y )

(independence is then evaluated between m−1 and Y ). As a consequence, the true causal direction
can be identified by picking the direction for which ICM is the most likely satisfied (see for example
Janzing et al. (2010)).

2.3 SPECTRAL INDEPENDENCE

Shajarisales et al. (2015) introduce a specific formalization of ICM in the context of time series that
will be suited to the study of convolutional layers in deep neural network. This relies on analyzing
signals or images in the Fourier domain.

2.3.1 BACKGROUND ON DISCRETE SIGNALS AND IMAGES

The Discrete-time Fourier Transform (DTFT) of a sequence a = {a[k], k ∈ Z} is defined as

â(ν) =
∑
k∈Z

a[k]e−i2πνk, ν ∈ R .

Note that the DTFT of such sequence is a continuous 1-periodic function of the normalized fre-
quency ν. By Parseval’s theorem, the energy (sum of squared coefficients) of the sequence can be
expressed in the Fourier domain by ‖a‖22 =

∫ 1/2

−1/2 |â(ν)|
2dν. The Fourier transform can be easily

generalized to 2D signals of the form {b[k, l], (k, l) ∈ Z2}, leading to a 2D function, 1-periodic with
respect to both arguments

b̂(u, v) =
∑

k∈Z,l∈Z
b[k, l]e−i2π(uk+vl), (u, v) ∈ R2 .
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2.3.2 SIC POSTULATE

Assume now that our cause-effect pair (X, Y ) is a weakly stationary time series. This implies that
the power of these signals can be decomposed in the frequency domain using their Power Spectral
Densities (PSD) Sx(ν) and Sy(ν). If Y results from the filtering of X with convolution kernel h

Y :=
{∑

τ∈Z hτXt−τ
}
= h ∗X . (1)

then PSDs are related by the formula Sy(ν) = |ĥ(ν)|2Sx(ν) for all frequencies ν. The Spectral
Independence Postulate consists then in assuming that the power amplification of the filter at each
frequency |ĥ(ν)|2 does not adapt to the input power spectrum Sx(ν), i.e. the filter will not tend to
selectively amplify or attenuate the frequencies with particularly large or low power. This can be
formalized by stating that the total output power (integral of the PSD) factorized into the product of
input power and the energy of the filter, leading to the criterion (Shajarisales et al., 2015):
Postulate 1 (Spectral Independence Criterion (SIC)). Let Sx be the Power Spectral Density (PSD)
of a cause X and h the impulse response of the causal system of (1), then∫ 1/2

−1/2
Sx(ν)|ĥ(ν)|2dν =

∫ 1/2

−1/2
Sx(ν)dν ·

∫ 1/2

−1/2
|ĥ(ν)|2dν , (2)

holds approximately.

We can define a scale invariant quantity ρX→Y measuring the departure from this SIC assumption,
i.e. the dependence between input power spectrum and frequency response of the filter: the Spectral
Dependency Ratio (SDR) from X to Y is defined as

ρX→Y :=
〈Sx · |ĥ|2〉
〈Sx〉〈|ĥ|2〉

, (3)

where 〈.〉 denotes the integral (and also the average) over the unit frequency interval. The values of
this ratio can be interpreted as follows: ρX→Y ≈ 1 reflects spectral independence, while ρX→Y > 1

reflects a correlation between the input power and the filter’s frequency response |ĥ(ν)|2 across
frequencies (the filter selectively amplifies input frequency peaks of large power, leading to anoma-
lously large output power), conversely ρX→Y < 1 reflects anticorrelation between these quantities.
We will use these terms to analyze our experimental results. In addition Shajarisales et al. (2015)
also derived theoretical results showing that if ρX→Y ≈ 1 for an invertible causal system, then
ρY→X < 1 in the anti-causal direction. These interpretations of SDR values are summarized in
Fig. 3b and can be used to interpret experimental results.

3 INDEPENDENCE OF MECHANISMS IN DEEP NETWORKS

We now introduce our causal reasoning in the context of deep convolutional networks, where the out-
put of successive layers are often interpreted as different levels of representation of an image, from
detailed low level features to abstract concepts. We thus investigate whether a form of modularity
between successive layers can be identified using the above framework.

3.1 STRIDED CONVOLUTIONAL UNITS AND INDEPENDENCE BETWEEN SCALES

DCGANs have successfully exploited the idea of convolutional networks to generate realistic im-
ages (Radford et al., 2015). While strided convolutional units are used as pattern detectors in deep
convolutional classifiers, they obviously play a different role in generative models: they are pattern
producers. We provide in Fig. 1 (left) a toy example to explain their potential ability to generate
independent features at multiple scales. On the picture the activation of one pixel in one channel at
the top layer (top left) may encode the position of the pair of eyes in the image. After convolution by
a first kernel, activations of a downstream channel in the second layer indicate the location of each
eye. Finally, a kernel encoding the shape of the eye convolves this input to generate an image that
combines the three types of information, distributed over three different spatial scales.

What we mean by assuming independence of the features encoded at different scales can be phrased
as follows: there should be typically no strong relationship between the shape of patterns encoding
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Figure 1: Left: schematic composition of coarse and finer scale features using two convolution
kernels in successive layers to form the eyes of a cartoon face. Right: Example of violation of
independence of mechanisms between two successive layers. In both cases crosses indicate center
of patches (in light grey) affected by the activation of pixel in the previous layer.

Generator
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FCz

FCDecision

512
256

128

64
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Figure 2: Architeture of the pretrained DCGAN generator used in our experiments. FC indicates
a fully connected layer, z is a 100-dimensional isotropic Gaussian vector, horizontal dimensions
indicate the number of channels of each layer. The output image size is 64 by 64 pixels and these
dimensions drop by a factor 2 from layer to layer.

a given object at successive scales. Although counter examples may be found, we postulate that a
form of independence may hold approximately for a good generative model of naturalistic images
that possess a large number of features at multiple scales. A case for which this assumption is
violated due to limitations of the deep network architecture is given in Fig. 1, where a long edge in
the image cannot be captured by a single convolution kernel (because of the kernel size limitation
to 3 by 3 in this case). Hence, an identical kernel needs to be learned at an upper layer in order
to control the precise alignment of activations in the bottom layer. Any misalignment between the
orientation of the kernels would lead to a very different pattern, and witness that information in the
two successive layers is entangled.

3.2 SIC BETWEEN SUCCESSIVE (DE)CONVOLUTIONAL UNITS

The SIC framework is well suited to the analysis of convolutional layers, since it assumes deter-
ministic convolution mechanisms. However two differences appear with respect to the original
assumptions: 1/ the striding adds spacing between input pixels in order to progressively increase
the dimension and resolution of the image from one layer to the next, and 2/ there is a non-linearity
between successive layers. Striding can be easily modeled as it amounts to upsampling the input
image before convolution (see illustration Fig. 1). We denote .↑s the upsampling operation with
integer factor1 s that turns the 2D tensor x into

x↑s[k, l] =

{
x[k/s, l/s], k and l multiple of s
0 otherwise.

Interestingly, the definition implies that striding amounts to a compression of the normalized fre-
quency axis in the Fourier domain with x̂↑s(u, v) = x̂(su, sv).

Next, the non-linear activation between successive layers is more challenging to take into account.
We will thus make the simplifying assumption that rectified linear Units are used (ReLU), such that

1s is the inverse of the stride parameter, which is fractional in that case
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a pixel is either linearly dependent on small variations of its synaptic inputs, or not active at all. We
then follow the idea that ReLU activations may be used as a switch that controls the flow of relevant
information in the network (Tsai et al., 2016; Choi & Kim, 2017). Hence, for convolution kernels
in successive layers that encode different aspects of the same object, we make the assumption that
their corresponding outputs will be frequently coactivated, such that the linearity assumption may
hold. If pairs of kernels are not frequently coactivated, we postulate that they do not encode the
same object and it is thus unlikely that their weights are related.

Let us now write down the mathematical expression for the application of two successive deconvolu-
tional units to a given input tensor using the above linearity assumptions. Let z be the 2D activation
map of a given channel in the first layer. It projects to the activation map x of a channel in the
second layer through convolution kernel g. Finally x projects to the activation y in the third layer
through kernel h (see Fig. 3c for an illustration). Successive upsamplings and convolutions lead to
the expression

y = h ∗ x↑s = h ∗ (g ∗ z↑s)↑s ,
which corresponds to

ŷ(u, v) = ĥ(u, v)x̂(su, sv) = ĥ(u, v)ĝ(su, sv)ẑ(s2u, s2.v) ,

in the Fourier domain. In order to have a criterion independent from the incoming activations in z,
we assume z has no spatial structure (e.g. z is sampled from a 2D white noise), such that its power
is uniformly distributed across spatial frequencies (the PSD is approximately flat). The spatial prop-
erties of x are thus entirely determined by g and the spectral independence criterion of equation 2
becomes 〈

|ĝ(u, v).ĥ(su, sv)|2
〉
=
〈
|ĝ(u, v)|2

〉 〈
|ĥ(su, sv)|2

〉
, (4)

where angular brackets denote the double integral across spatial frequencies. We can then write
down an updated version of the SDR of equation 3 corresponding to testing SIC between a cascade
of two filters in successive layers as

ρg→h =

〈
|ĝ(u, v)ĥ(su, sv)|2

〉
〈|ĝ(u, v)|2〉

〈
|ĥ(u, v)|2

〉 ,
which we will evaluate in the experiments.

4 EXPERIMENTS

We used a version of DCGANs pretrained on the CelebFaces Attributes Dataset (CelebA)2. The
structures of the generator and discriminator are summarized in Fig. 2 and both include four suc-
cessive convolutional layers. We also experimented with a plain VAEs3 with a similar convolutional
architecture with the following differences: the default number of channels of the bottom hidden
layer is 32 (but we change it to 64 in the last subsection), and the dimension of the latent vector z is
128. Each layer uses 4 pixels wide convolution kernels for the GAN, and 5 pixels wide for the VAE.
In all cases, layers are enumerated following the direction of information flow. We will talk about
coarser scales for layers that are towards the latent variables, and finer scales for the ones that are
closer to the image.

4.1 SIC BETWEEN SUCCESSIVE DECONVOLUTIONAL UNITS

We first illustrate the previously introduced framework by showing in Fig. 3a an example of two
convolution kernels between successive layers (1 and 2) of the GAN generator. It shows a slight
anti-correlation between the absolute values of the Fourier transforms of both kernels, resulting I a
SDR of .88. One can notice the effect of kernels h (upper layer) and g (lower layer) on the resulting
convolved kernel in the Fourier domain: the kernel from the upper layer tends to modulate the fast
variations of g ∗h in the Fourier domain, while g affects the ‘slow’ variations. This is a consequence
of the design of the strided fractional convolution. We use this approach to characterize the amount

2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
3https://github.com/yzwxx/vae-celebA
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(a) Illustration of successive convolutions.
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Figure 3: 3a Example convolution kernels and corresponding Fourier transforms (zero frequencies
are located at the center of each picture), taken from layer 1 (for h) and 2 (for g) of the generator
of a trained DCGAN. 3b Illustration of the meaning of SDR values. 3c Illustration of the multiple
compositions of convolution kernels belonging to successive layers. The pathway depends on the
considered input layer (blue), output layer (red) and intermediate layer (green) channels.

of dependency between successive layers by plotting the histogram of the SDR that we get for all
possible combination of kernels belonging to each layer, i.e. all possible pathways between all in-
put and output channels, as described in Fig. 3c. The result is shown in Fig. 4, witnessing a rather
good concentration of the SDR around 1, which suggests independence of the convolution kernels
between successive layers. It is interesting to compare these histograms to the values computed for
the discriminator of the GAN, which implements convolutional layers of the same dimensions in
reverse order. The result, also shown in Fig. 4, exhibits a broader distribution of the SDR, especially
for layers encoding lower level image features. This is in line with the principle of independence
of mechanism, as the discriminator is operating in the anticausal direction. However, the difference
between the generator and discriminator is not strong, which may be due to the fact that the dis-
criminator does not implement an inversion of the putative causal model, but only extract relevant
latent information for discrimination. In order to check our method on a generative model including
a network mapping back the input to their cause latent variables, we applied it to a trained VAE.
The results presented in Fig. 5 show much sharper differences between generator (decoder) and en-
coder. The shape of the histograms are matching predictions from (Shajarisales et al., 2015) shown
in Fig. 3b: with a mode around one for the distribution in the causal direction, while it remains
below one in the anti-causal direction. The difference with GANs can be explained by the fact that
VAEs are indeed performing an inversion of the generative model, leading to very small SDR values
in the anticausal direction. We also note overall a much broader distribution of VAE SDRs in the
causal direction (decoder) with respect to their GAN counterpart. Interestingly, the training of the
VAE did not lead to values as satisfactory as what we obtained with the GAN. Examples generated
from the VAE are shown in appendix (Fig. 11). This suggests that dependence between cause and
mechanism may reflect a suboptimal performance of the generator.
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Figure 4: Superimposed histograms of spectral density ratios of a trained GAN generator and dis-
criminator for layers at the same level of resolution (left to right from finer to coarser).
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Figure 5: Superimposed histograms of spectral density ratios of trained VAE generator and discrim-
inator for layers at the same level of resolution (left to right from finer to coarser).

4.2 REMOVING CORRELATED UNITS

We saw in the above histograms that while many successive convolutional unit had a SDR close to
one, there are tails composed of units exhibiting either a ratio inferior to one (reflecting negative
correlation between the Fourier transform of the corresponding kernels) or a ratio larger than one
(reflecting positive correlation). Interestingly, if we superimpose the histograms (see Fig. 4) of
the lower level layer of the generator and discriminator networks, we see that these tails are quite
different between networks, showing more negative correlations for the discriminative networks,
while the positive correlation tail of the generative networks remains rather strong. This suggests
that negative and positive correlation are qualitatively different phenomena. In order to investigate
the nature of filters exhibiting different signs of correlation, we selectively removed filters of the
third layer of the generator (the last but one), based on the magnitude (above or below one) of the
average SDR that each filter achieved when combined with any of the filters in the last layer. In
order to check that our results were not influenced by filters with very small weights (that still can
exhibit correlations), we zeroed the kernels contributing to the output layer with the smallest energy
(averaged across output channels), while maintaining an acceptable quality of the output of the
network (see Fig. 6 second column). This removed around half of the filters of the third layer. Then
we removed additional filters exhibiting either large or small (anti-correlated) generic ratio, such that
the same proportion of filters is removed (see Fig. 6 third and fourth column). It appears clearly from
this result that filters exhibiting large positive or negative correlation do not play the same role in the
network. From the quality of the generated images, filters from the third layer that are negatively
correlated to filters from the fourth seem to allow correction of checkerboard artifacts, potentially
generated as side effect of the fractional strided convolution mechanisms4. Despite a decrease in
texture quality, the removal of such kernels does not distinctively affect an meaningful aspect of the
generated images. Conversely, removing positively correlated filters lead to a disappearance of the
color information in a majority of the regions of the image. This suggests that such filters do encode
the color structure of images, and the introduced positive correlation between the filters from the
third and fourth layer may result from the fact that uniform color patches corresponding to specific
parts of the image (hair, skin) need a tight coordination of the filters at several scales of the image in
order to produce large uniform areas with sharp border. As we observed more dependency betwen
GAN layers at fine scales, we considered using dropout (Srivastava et al., 2014) in order to reduce

4 https://distill.pub/2016/deconv-checkerboard/
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original reduced <0 correlation removed >0 correlation removed

Figure 6: Random face generated by a pretrained DCGAN (left column). Second column: output
of the same network when removing low energy filters from the third layer (reduction from 8,192
to 4,260). Third column: output of the same network when removing the filters leading to the
lowest average SDR (ρ < .9, leading to 3,684 filters). Fourth column: same when removing the
filters leading to the largest SDR (ρ > 1.45, leading to 3,660 filters). More examples are shown in
appendix Fig. 10.

this dependency. Indeed, dropout has been introduced with the idea that it can prevent neurons from
over-adapting to each other and thus regularize the network. The results shown in Fig. 12 witness on
the contrary an increase of the dependencies (especially positive correlation) between these layers
and exhibit a strongly deteriorated performance as shown in examples Fig. 13. We suggest that
dropout limits the expressivity of the network by enforcing more redundancy in the convolutional
filters, leading also to more dependency between them.

4.3 RELATIONSHIP BETWEEN PERFORMANCE AND SDR STATISTICS.

In order to further assess how much our SIC values relate to the performance of the generative model,
we trained different versions of VAEs by acting on two parameters: we changed the number of
channels in the last hidden layer, and weighted differently the least square reconstruction error term
with respect to the Kullback-Leibler (KL) divergence term (reflecting data compression) in the VAE
objective by applying a multiplicative factor β to the KL divergence, in the same way as it is done
for β-VAEs (Higgins et al., 2017). Example results on Fig. 7 show that while increasing the number
of channels possibly provides a slight improvement, decreasing β strongly increases the variety of
faces that can be generated by the network. In particular, VAEs trained with a lower β (right-hand-
side), exhibit a broader variety of hair styles, face shapes and background colors. Interestingly,
this improvement is reflected in the SDR statistics plotted in Fig. 8, showing more concentrated
SDR values for better performing networks at the coarser level, which likely relates to the type of
broad variations in face characteristics introduced by a decrease in β. Direct comparison of SDR
distributions between the worst and best performing models is provided in Fig. 9 and confirms the
above observations. Interestingly, we can also identify the SDR values at the finest level are a slightly
more concentrated around one for the worst performing model. Although this seems to contradict
our previous statement, a careful observation of the fine details of the generated pictures in Fig. 7
shows that the best performing model (bottom right) is far from perfect at this scale and contains
more pixelation artifacts than the worst performing one (top left). While further improving the VAE
training and architecture is beyond the scope of this paper, these results suggests that SDR statistics
can be used as a diagnostic tool to guide the choice of parameters of the architecture and identify
which module needs improvement.

5 DISCUSSION

In this work, we derived a measure of independence between the weights learned by convolutional
layers of deep networks. The results suggest that generative models that map latent variables to
data tend to have more independence between successive layers than discriminative or encoding
networks. This is in line with theoretical predictions about independence of mechanisms for causal
and anti-causal systems. In addition, our results suggest the dependency between successive layers
relates to the bad performance of the trained generative models. Moreover, the SDR analysis also
indicates which layers should be modified to improve the performance. Enforcing independence
during training may thus help diagnose and improve generative models. Finally, we speculate that
independence between successive layers, by favoring modularity of the network, may help build
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Figure 7: Example faces generated by VAEs with different combinations of network parameters:
number channels in the last hidden layer and β parameter. Top: 32 channels, bottom: 64 channels.
Left: β = 1, right: β = .1.

architectures that can be easily adapted to new purposes. In particular, separation of spatial scales
in such models may help build networks in which one can intervene on one scale without affecting
others, with applications such as style transfer Gatys et al. (2015). One specific feature of our
approach is that this quantitative measure of the network performance in not statistical and as such
requires neither extensive sampling form the fitted generative distribution nor from real datasets to
be computed: only the parameters of the model are used. This is in strong contrast with state-of-
the-art approaches such as the Fréchet Inception Distance (FID) (Heusel et al., 2017), and makes the
approach easy to apply to any neural network equipped with convolutional layers.

REFERENCES

Y Bengio, A Courville, and P Vincent. Representation learning: A review and new perspectives. IEEE trans-
actions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013a.

Y Bengio, G Mesnil, Y Dauphin, and S Rifai. Better mixing via deep representations. In ICML 2013, 2013b.

X Chen, Y Duan, R Houthooft, J Schulman, I Sutskever, and P Abbeel. Infogan: Interpretable representation
learning by information maximizing generative adversarial nets. jun 2016.

J-S. Choi and M. Kim. A deep convolutional neural network with selection units for super-resolution. In
Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on, pp. 1150–1156.
IEEE, 2017.

10



Under review as a conference paper at ICLR 2018

Figure 8: SDR encoder histograms for different choices of VAE parameters.

Figure 9: Comparison of SDR decoder histograms between worst and best performing VAEs (32
channels/β = 1 and 64 channels/β = .1, respectively).

T. Cohen and M. Welling. Learning the irreducible representations of commutative lie groups. In International
Conference on Machine Learning, pp. 1755–1763, 2014.

P. Daniusis, D. Janzing, K. Mooij, J. Zscheischler, B. Steudel, K. Zhang, and B. Schölkopf. Inferring determin-
istic causal relations. In UAI 2010, 2010.

G. Desjardins, A. Courville, and Y. Bengio. Disentangling factors of variation via generative entangling. arXiv
preprint arXiv:1210.5474, 2012.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576,
2015.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in neural information processing systems, pp. 2672–2680, 2014.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706.08500, 2017.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework. In ICLR 2017, 2017.

D. Janzing and B. Schölkopf. Causal inference using the algorithmic Markov condition. Information Theory,
IEEE Transactions on, 56(10):5168–5194, 2010.

11



Under review as a conference paper at ICLR 2018

D. Janzing, P.O. Hoyer, and B. Schölkopf. Telling cause from effect based on high-dimensional observations.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.

D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and B. Schölkopf.
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APPENDIX

original reduced <0 correlation removed >0 correlation removed

Figure 10: Example generated figures using a pretrained DCGAN (left column). Second column:
the output of the same network when removing low energy filters from the third layer (reduction
of the number of filters from 8,192 to 4,260). Third column: the output of the same network when
removing the filters leading to the lowest average SDR (ρ < .9, leading to 3,684 filters). Fourth
column: same when removing the filters leading to the largest average SDR (ρ > 1.45, leading to
3,660 filters).
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Figure 11: Random examples generated by a trained VAE.
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Figure 12: Evolution of the spectral density ratios between successive layers as a function of training
iteration when dropout is used between the two finer scale layers of the generator.

Figure 13: Evolution of generated examples (for a fixed latent input) as function of training iteration
(same as Fig. 12) when dropout is used.
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