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ABSTRACT

Reconstructing dynamic scenes with large-scale and complex motions—such as
those in sports events—remains a significant challenge. Recent techniques like Neu-
ral Radiance Field and Gaussian Splatting have shown promise but often struggle
with scenes involving substantial movement. In this paper, we propose RelayGS, a
novel dynamic scene reconstruction method based on Gaussian Splatting, specifi-
cally designed to represent and learn large-scale complex motion patterns in highly
dynamic scenes. Our RelayGS consists of three key stages. First, we learn the
fundamental scene structure from all frames without considering temporal informa-
tion and employ a learnable mask to decouple the highly dynamic foreground from
the background exhibiting minimal motion. Second, we partition the scene into
temporal segments, each consisting of several consecutive multi-view frames. For
each segment, we replicate the foreground Gaussians, dubbed Relay Gaussians,
as they are designed to act as relay nodes along the large-scale motion trajectory.
By creating pseudo-views from frames uniformly selected from the segment, we
optimize and densify foreground Relay Gaussians, further simplify and decompose
large-scale motion trajectories into smaller, more manageable segments. Finally,
we leverage HexPlane and lightweight MLPs to jointly learn the scene’s temporal
motion field and refine the canonical Gaussians. We conduct extensive experiments
on two dynamic scene datasets featuring large and complex motions to demonstrate
the effectiveness of our RelayGS. RelayGS outperforms state-of-the-arts by more
than 1 dB in PSNR, and successfully reconstructs real-world basketball game
scenes in a much more complete and coherent manner, whereas previous methods
usually struggle to capture the complex motion of players.

1 INTRODUCTION

Dynamic scene reconstruction plays a pivotal role in a wide range of applications that demand
immersive and interactive environments, including virtual reality, metaverse, and free-viewpoint
videos. However, achieving high-fidelity reconstruction of dynamic scenes with large-scale and
complex motions from multi-view videos remains a substantial challenge.

The recently emerged Gaussian Splatting (3DGS) Kerbl et al. (2023) has significantly advanced
3D reconstruction, inspiring numerous methods that enhance both reconstruction efficiency and
quality. Compared to its predecessor, Neural Radiance Field (NeRF) Mildenhall et al. (2020), 3DGS
uses Gaussian ellipsoids as primitives to explicitly represent 3D scenes, enabling real-time 1080p
rendering via a rasterized pipeline. Similar to dynamic NeRF methods Pumarola et al. (2021); Park
et al. (2021a;b), 3DGS has also been extended to dynamic scene reconstruction Yang et al. (2024a;b);
Liu et al. (2024); Huang et al. (2024); Lu et al. (2024); Mihajlovic et al. (2024); Diwen Wan (2024),
typically employing a framework that combines canonical space representations with implicit motion
fields learned via neural networks. While work well for small-scale motions in public datasets, these
methods encounter difficulties when handling large-scale and complex motions in real-world scenarios.
For instance, in dynamic settings like basketball games, where multiple players move rapidly across
the court, existing methods struggle to accurately capture the fast and large-scale movements of these
players. This limitation arises from the coupling of canonical Gaussian representation learning with
implicit neural motion field learning, which complicates optimization. Neural networks not only
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find it challenging to predict large motions but also tend to overfit the dominant small motions in the
scene, limiting their ability to model extensive complex movements.

We believe that one crucial aspect in addressing the challenge of the aforementioned problem is
decoupling the highly dynamic foreground from the background with minimal motion. By isolating
the foreground, we can better capture the large and complex motion trajectories of moving objects,
while minimizing interference from the background. Moreover, MLPs, as a classical solution for
representing motion fields, can efficiently handle the dynamic of dominant background content. The
primary challenge, however, lies in modeling large, non-rigid, and complex foreground motions,
which can be addressed by decomposing these motion trajectories into shorter, simpler segments.

In this paper, we propose RelayGS, a novel method for reconstructing dynamic scenes with large-
scale, complex motions, consisting of the following three key stages:

• I) We learn a static initial scene from all frames ignoring temporal information. However, this can
only capture the shared background of the entire scene. To address this, we introduce a learnable
mask to distinguish whether a Gaussian belongs to the foreground (high dynamics) or background
(low dynamics). All Gaussians are used for rendering the first frame, while for other frames, only
those with the mask equals 1 are used, enabling us to learn a coarse representation of both the shared
background and initial foreground while effectively decoupling the two.

• II) We divide the scene along the timeline into segments, each containing several consecutive
frames (e.g., the 1st-16th frames as one segment). For each segment, we copy the initial foreground
Gaussians decoupled in the first stage, and warm it up as the current segment’s foreground Gaussians,
then uniformly select three frames (e.g., frames 1, 8, 16) within the segment, blending them to
create pseudo-views that serve as ground truth views. These foreground Gaussians act as explicit
intermediate points along the motion trajectory, which we refer to them as Relay Gaussians, breaks
down the large, complex motion trajectories into smaller, more manageable motion segments.

• III) We utilize the HexPlane Cao & Johnson (2023) and lightweight MLPs to predict time-
continuous implicit motion offsets from the explicit canonical Gaussians initialized from the previous
stage. For the shared background Gaussians, we use one set of MLPs to predict temporal changes in
Gaussian properties. For the foreground Relay Gaussians across all segments, we employ another
set of MLPs and additionally introduce a learnable scaling factor for position changes, as they may
require a larger range that cannot be fully captured by the MLP’s predictions alone. This ensures that
the foreground Relay Gaussians can more accurately reflect large and complex motions in the scene.

We conducted extensive experiments to validate the effectiveness of our RelayGS. On the publicly
available PanopticSports dataset Joo et al. (2015), which features large-scale motions, our method
outperforms the previous state-of-the-arts with 1 dB improvement in PSNR. Moreover, on a more
complex real-world VRU Basketball Games dataset VRU (2024), our method successfully recon-
structs the scene in a much more complete and coherent manner, whereas previous methods usually
struggled to capture the dynamic foreground content with complex motions. The contributions of this
paper can be summarized as follows:

•We introduce a simple learnable mask that effectively decouples high dynamic foreground and
low dynamic background Gaussians without relying on additional priors, while learning a more
accurate and complete fundamental 3D Gaussian representation of the dynamic scene.

• We propose the temporal Relay Gaussians to decompose large-scale and complex motion
trajectories into smaller, more manageable motion segments, simplifying the representation and
learning of complex dynamics.

•We utilize distinct MLPs to predict motion changes for background Gaussians and foreground Re-
lay Gaussians, along with a learnable scaling factor for the position changes of Relay Gaussians,
enabling accurate capture of larger and more complex motions.

•We conduct extensive experiments on two real-world dynamic scene datasets featuring large-
scale, complex motions, where our RelayGS significantly outperforms previous state-of-the-art
methods, achieving a 1 dB improvement in PSNR on PanopticSports dataset and delivering
more complete and coherent reconstructions of complex, large-scale foreground motions.
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2 RELATED WORK

Dynamic Scene Representation. (1) NeRF-based methods have advanced dynamic scene recon-
struction using coordinate-based neural networks. D-NeRF Pumarola et al. (2021) introduced a
deformation network that warps samples from a canonical space over time, enabling accurate dynamic
scene representation. Extensions like Nerfies Park et al. (2021a) and HyperNeRF Park et al. (2021b)
use per-frame deformation codes for flexible modeling without relying solely on temporal input.
These methods aim to construct a deformation field that maps the canonical scene to dynamic frames,
but often with high computational costs due to dense sampling. (2) In contrast, methods based on 3D
Gaussian Splatting (3DGS) like 4D-GS Yang et al. (2024a) and D3DGS Yang et al. (2024b) employ
a deformation network that processes Gaussian center positions and timestamps to model scene
dynamics. Our work implements a 3DGS-based framework, benefiting from fast training, rendering,
and explicit representation.

Dynamic-Static Decoupling. One of the challenge in dynamic scene reconstruction is separating
foreground and background. (1) Motion masks simplify this process. S4D He et al. (2024) classifies
Gaussian points through multi-view 2D masks and a Gaussian category voting algorithm, effectively
separating dynamic objects and static backgrounds. Similarly, EgoGaussian Zhang et al. (2024), and
SC-4DGS Li et al. (2024a) also utilize pre-trained segmentation models to obtain motion masks.
The limitations of these methods lie in their reliance on 2D masks and their tendency to focus only
on areas with significant motion regions. (2) Some methods Guo et al. (2024); Liang et al. (2023)
adopt the solution of lifting 2D optical flow to 3D. Katsumata et al. (2024) align Gaussian motion
with optical flow data, improving spatiotemporal consistency, while GauFRe Liang et al. (2023)
achieves the separation of static and dynamic elements based on optical flow-based motion detection.
However, these approaches rely on pre-trained priors for optical flow, depth, or tracking. Our method
bypasses motion priors, using a learnable mask to decouple dynamic foreground from relatively static
background, making it more adaptable to complex scenarios and motion patterns.

Dynamic Modeling. Another key point is how to model the spatiotemporal dynamics. (1) The most
intuitive approach Yang et al. (2024a); Duan et al. (2024) predicts temporal changes in position
or appearance attributes using a deformation field. For instance, Gaussian-Flow Lin et al. (2024)
combines polynomial fitting in the time domain and Fourier series fitting in the frequency domain to
deform 3D Gaussian attributes over time. However, these methods are limited by model capacity and
struggle with long-term motion. (2) To address motion complexity, some works Wu et al. (2024);
Sun et al. (2024) employ latent embeddings to implicitly model the dynamics. E-D3DGS Bae
et al. (2024) and Li et al. (2024b) assign embeddings to each Gaussian, predicting changes over
time through MLPs, while DynMF Kratimenos et al. (2024) learns latent trajectories for Gaussian
groups. However, this implicit embedding still struggles to maintain stable and coherent modeling
in large scenes and high dynamics. To mitigate this limitation, in this work, we combine implicit
deformation fields with explicit trajectory initialization. By stacking multi-frame views to construct
pseudo-supervision, we create reasonable motion trajectories, reducing the deformation field’s burden
and enabling stable modeling of large-scale, dynamic, and long-term scenes.

3 PRELIMINARIES

3D Gaussian Splatting. 3D Gaussian Splatting Kerbl et al. (2023) explicitly represents scenes
using anisotropic 3D Gaussian primitives, mathematically formulated as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), Σ = RSSTRT , (1)

where the mean vector µ and covariance matrix Σ respectively characterize the central position and
geometric shape. The matrix Σ is decomposed into a scaling matrix S = diag(sx, sy, sz) ∈ R3 and
a rotation matrix R ∈ SO(3) to ensure physical meaning and facilitate optimization.

Rendering is performed by blending the contributions of N overlapping Gaussian primitives at each
pixel, taking into account their depth-ordering to ensure correct compositing, expressed as:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (2)

where ci, αi represents the color and blending weight of the ith Gaussian, respectively.

3
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The training of 3D Gaussian Splatting alternates between parameter optimization and density control.
Parameter optimization is supervised by the L1 loss and D-SSIM term:

L = (1− λ)L1 + λLD-SSIM (3)

where λ is typically set to 0.2. Meanwhile, density control manages Gaussian cloning and splitting to
address over-reconstruction and under-reconstruction.

4D Gaussian Splatting. 4D-GS Wu et al. (2024) builds upon the 3DGS by adding a deformation
field, which consists of a Spatial-Temporal Structure EncoderH and a Multi-head Gaussian Deforma-
tion Decoder D. The deformation field will cause the 3D Gaussians to undergo position shift, scaling,
and rotation over time.

The position of 3D Gaussian µ and time t are input into the Spatial-Temporal Structure Encoder
H together. The encoder, including a multi-resolution HexPlane Rl(i, j) and a lightweight MLP
ϕd, fuses temporal and spatial information to obtain features fd. Specifically, the mean value of 3D
Gaussians µ = (x, y, z) and time t are combined in pairs to generate six multi-resolution planes,
which is defined by {Rl(i, j)|(i, j) ∈ {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)}, l ∈ {1, 2}}, where
l is upsampling scale. Each voxel module will output the feature of neural voxels fh ∈ Rh∗l

through bilinear interpolation for querying the voxel features, where h is the hidden dim of features.
Subsequently, the feature fh will be fused using a lightweight MLP ϕd by fd = ϕd(fh).

The output heads D = {ϕµ, ϕr, ϕs, ϕo} decode the features fd into predicted offsets for position
∆µ = ϕµ(fd), rotation ∆r = ϕr(fd), scaling ∆s = ϕs(fd) and opacity ∆α = ϕo(fd), respectively.
The deformed 3D Gaussian is expressed as G′ = {µ+∆µ, s+∆s, r +∆r, α+∆α, C}, At time t,
the 3D Gaussian G in the scene will be replaced by the deformed 3D Gaussian G′ for rendering.

The optimization of 4D Gaussians is divided into two stages. The first stage is a warm-up period
that uses only 3D Gaussians to optimize static scenes. In the second stage, the parameters of the
HexPlane, MLPs, and 3D Gaussians are optimized simultaneously. The loss function comprises an
L1 loss between the rendered image Î and the GT image I and a grid-based total variation loss Ltv:

L = |Î − I|+ Ltv. (4)

4 METHODOLOGY

The proposed method, RelayGS, is designed to effectively tackle the challenge of reconstructing
dynamic scenes with large-scale and complex motions by leveraging a combination of explicit and
implicit representations. The method consists of three progressive stages, as shown in Fig. 1. In
the first stage, we quickly learn an initial coarse representation of the scene without considering
temporal information. This foundational stage allows us to capture the general structure of the scene
and decouple the dynamic foreground, where large-scale motions may occur, from the relatively
static background. In the second stage, we introduce Relay Gaussians to simplify and decompose
large-scale motion trajectories into smaller, more manageable segments, allowing for a more efficient
and detailed capture of dynamic content. In the final stage, we incorporate an implicit motion field
through the use of HexPlane and lightweight MLPs. This stage refines the previously learned base
Gaussian representations, enabling a full understanding of the scene’s 4D spatiotemporal structure.

4.1 STAGE 1: INITIAL REPRESENTATION AND FOREGROUND-BACKGROUND DECOUPLING

The primary goal of this first stage is to construct the fundamental 3D structure of the dynamic scene.
Previous method Wu et al. (2024) initialize a set of static Gaussians from sparse point clouds and
jointly optimize them using all given frames without considering temporal information, i.e., treating it
as a static scene for initialization. This approach effectively captures the relatively static background
of the scene, but struggles with the highly dynamic foreground.

The highly dynamic foreground, due to its significant positional variations across frames, cannot be
easily initialized. For instance, even if some Gaussians can model dynamic foreground objects in a
specific frame, due to the large motion of the objects, they may cause inconsistencies in another frame,
resulting in large rendering errors. Under this initialization paradigm, the Gaussians representing
such foreground objects would be noisy or automatically pruned.

4
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(a) S1: Scene Initialization (b) S2: Trajectory Decomposition (c) S3: Spatiotemporal Modeliing

Pseudo-View (Eq.(7)) Relay Gaussians

HexPlane

Gaussian Sequence Rendering
1

0

Background

Foreground

MLP

MLP

Fore.

Back.

Time
…

Figure 1: Framework of RelayGS. (a) First stage: Initialize the scene with all images and separate the
relatively static background and dynamic foreground using a learnable mask (visualized as yellow
and red). (b) Second stage: Construct pseudo-GT views through multi-view blending to generate
Relay Gaaussians for decomposing long trajectories. (c) Third stage: Based on the HexPlane 4D
representation, decode the foreground and background Gaussians using different MLPs to obtain
time-dependent Gaussian sequences, and then render through the differentiable pipeline of 3DGS.

To address this limitation and learn the highly dynamic foreground simultaneously, we introduce a
“learnable mask” for each Gaussian primitive to indicate whether it belongs to the highly dynamic
foreground or the relatively static background. This idea is inspired by the Compact3DGS Lee et al.
(2024), which was originally used to assess the importance of each Gaussian primitive in static scenes
for rendering quality, allowing for pruning and compression, thereby reducing storage overhead while
maintaining rendering quality. The formulation is written as:

Mn = sg(1[σ(mn) > ϵ]− σ(mn)) + σ(mn), (5)

α̂n = Mnαn, (6)
where n is the index among all N Gaussians, ϵ is the masking threshold, m ∈ RN is the learnable
mask parameter, M ∈ {0, 1}N is the generated binary masks, sg (·) is the stop gradient operator, and
1 [·] and σ (·) are indicator and sigmoid function, respectively. The αn and α̂n are the opacity before
and after applying the mask, respectively.

We use all Gaussians to render the views for the first frame. However, for other frames, only the
Gaussians where Mn equals 1 are used for rendering, which is implemented by Eq. (6). In this way,
we can effectively decouple the base Gaussians into two groups, as shown in Fig. 1(a), allowing the
separation of the highly dynamic foreground from the background with minimal motion.

This initialization process not only allows us to learn a better foundational scene representation
compared to previous methods, but the decoupling of the foreground and background also plays a
significant role in subsequent stages, as detailed in the following sections.

4.2 STAGE 2: LARGE MOTION TRAJECTORY DECOMPOSITION BY RELAY GAUSSIANS

Segments along timeline. The foreground objects in highly dynamic scenes often undergo significant
movements across frames, making it difficult to fully capture their large-scale motion trajectory with
a single set of canonical Gaussians. To address this issue, in the second stage, we aim to explicitly
decompose the large motion trajectory of the dynamic foreground into smaller, more manageable
segments. In our implementation, consecutive k=16 frames are treated as one segment, i.e., the
1st-16th frames form the first segment, followed by subsequent segments.

Relay Gaussians. Since motion trajectories are continuous over time, this segmentation also
effectively breaks down the large motion trajectory into smaller segments, each representing a portion
of the overall motion trajectory. For each segment, we replicate the dynamic foreground Gaussians
from the first stage and distinguish them as Relay Gaussians, as they are designed to act as relay
nodes along the large-scale motion trajectory, passing on critical information about the object’s
position and movement across different time intervals.

Pseudo-Views. For each segment, we construct pseudo-views by blending p = 3 uniformly selected
frames (e.g., frames 1, 8, and 16 in the first segment) for supervision. Let the three selected frames in
a segment be denoted as It1 , It2 , It3 . The pseudo-view Ipseudo for this segment is then constructed as:

Ipseudo = β1It1 + β2It2 + β3It3 , (7)

5
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where β1 + β2 + β3 = 1 are blending weights applied to the selected frames, typically chosen based
on frame importance or uniform blending. In this work, we use the strightforward uniform blending,
i.e., β1 = β2 = β3 = 1

3 , for conciseness. Ipseudo replaces the I in Eq. (4) for optimization. These
pseudo-views capture snapshots of the foreground at different time steps, as shown in Fig. 1 (b),
providing a richer representation for optimizing the Relay Gaussians, ensuring they more accurately
capture the motion trajectory within each segment.

By leveraging Relay Gaussians to decompose large-scale motion trajectories into smaller, more
manageable segments, we reduce the complexity of handling dynamic motions, which will become
evident in the final learning stage.

4.3 STAGE 3: 4D SPATIOTEMPORAL MODELIING AND OPTIMIZATION

4D representation. To achieve a complete 4D dynamic scene representation, it is crucial to incor-
porate temporal information, typically through an implicit motion field. In this work, we adopt the
representative 4D-GS framework. This choice is driven by the efficiency of HexPlane and MLPs in
encoding spatiotemporal data and their flexibility in modeling dynamic motion. Additionally, the
simplicity of the HexPlane-MLP combination allows for scalable optimization. It is worth noting that
our RelayGS is flexible and can be extended to leverage other motion fields, such as Per-GS Bae
et al. (2024), to further enhance motion representation, which will be explored in future works.

Foreground-background isolation. To avoid overfitting to small motions due to all Gaussians
sharing MLPs, we propose a divide-and-conquer strategy. For the background Gaussians, we utilize
a dedicated set of MLPs that predict the temporal changes in their positions and other attributes
relative to their base Gaussians. For the foreground Relay Gaussians, another set of MLPs models
their time-varying positions and attributes throughout the motion trajectory, as shown in Fig. 1 (c).

Position deformation scaling. To further enhance the nonlinear capability of the model to better
learn more complex motion patterns, for each Relay Gaussian, we introduce a learnable scaling factor
γ ∈ R3 that accounts for larger motion ranges, which may not be fully captured by the MLP alone.
This factor ensures that the Relay Gaussians can adapt to complex motions that extend beyond the
capacity of standard MLP predictions.

µ← µ+ (1 + eγ) ·∆µ. (8)

Through this stage, we achieve a comprehensive 4D scene reconstruction, integrating both spatial and
temporal dynamics. The optimization performed here refines the learned Gaussians and finalizes the
motion trajectories, resulting in a coherent and accurate representation of the entire dynamic scene.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

In this work, we primarily focus on addressing large-scale and complex motion in dynamic scenes.
To evaluate our RelayGS’s effectiveness, we conduct experiments on two representative datasets:
PanopticSports Dataset. This is a subset of the CMU Panoptic Studio dataset Joo et al. (2015),
containing 6 dynamic sports scenes: Juggle, Box, Softball, Tennis, Football and Basketball. Each
scene has a resolution of 640×360 and spans 150 frames, captured at 30 FPS. The data was collected
using 31 static cameras, of which 27 are used for training and 4 for testing (cameras 0, 10, 15, and
30).
VRU Basketball Games Dataset. This dataset VRU (2024) contains two real-world basketball
game scenes, “GZ” and “DG4”. Each was captured in an indoor basketball court using 34 fixed,
synchronized cameras, evenly distributed around the court to cover 360 degrees. The sequences span
10 seconds, with a resolution of 1920×1080 at 25 FPS, resulting in 250 frames per sequence. Of the
34 cameras, 30 are used for training, while 4 (cameras 0, 10, 20, and 30) are reserved for testing.
More details of these datasets can be found in the Appendix.

Implementation. Our implementation is based on the open-source 4D-GS Wu et al. (2024) code. In
the first stage, 3D Gaussians are initialize using sparse point cloud, following the 3DGS Kerbl et al.
(2023) and 4D-GS, and a mask attribute is assigned to each Gaussian, initialized to 2, which results

6
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Table 1: Quantitative results on the VRU Basketball Games dataset. “ST-GS†” uses point clouds of
uniformly selected 16 frames for initialization to ensure a fair comparison with our method, while
“ST-GS” utilizes point clouds of all 250 frames, the default setting for their method.

Method
GZ DG4

PSNR Storage Train Render PSNR Storage Train Render
(dB ↑) (MB ↓) (mins ↓) (fps ↑) (dB ↑) (MB ↓) (mins ↓) (fps ↑)

4D-GS 25.83 42 63 88 25.17 45 62 80
ST-GS 27.32 400 107 143 26.79 360 112 134
ST-GS† 26.49 35 64 264 25.79 40 64 236

E-D3DGS 26.14 113 224 35 25.06 136 301 27

RelayGS (Ours) 28.06 200 105 74 26.94 191 107 69

Table 2: Quantitative results on the PanopticSports dataset. “Dynamic3DGS” and “D-MiSo” data are
partially taken directly from their original papers or estimated based on the paper and available code.

Method
Juggle Boxes Softball

PSNR Storage Train PSNR Storage Train PSNR Storage Train
(dB ↑) (MB ↓) (mins ↓) (dB ↑) (MB ↓) (mins ↓) (dB ↑) (MB ↓) (mins ↓)

Dynamic3DGS 29.48 221 107 29.46 221 108 28.43 221 116
4D-GS 28.19 48 30 27.67 47 29 27.41 46 29

E-D3DGS 26.54 36 95 26.78 33 100 26.01 33 80
D-MiSo 29.79 - - 29.39 - - 28.60 - -

RelayGS (Ours) 30.06 31 48 29.99 30 48 30.20 33 48
Tennis Football Basketball

PSNR Storage Train PSNR Storage Train PSNR Storage Train
(dB ↑) (MB ↓) (mins ↓) (dB ↑) (MB ↓) (mins ↓) (dB ↑) (MB ↓) (mins ↓)

Dynamic3DGS 28.11 221 101 28.49 221 114 28.22 221 113
4D-GS 27.49 45 29 26.67 54 33 27.72 37 24

E-D3DGS 27.41 31 74 25.93 33 76 26.48 35 87
D-MiSo 29.02 - - 28.99 - - 28.49 - -

RelayGS (Ours) 30.21 31 48 30.23 37 48 29.77 51 48

in a value close to 1 after sigmoid activation. The optimization running for 3,000 steps with periodic
densification. Then, the Gaussians are separated into foreground and background based on the learned
mask values. In the second stage, the scene is divided into segments, each consisting of k=16 frames
in our experiments. This stage is trained for 14,000 steps. In the third stage, we initialize HexPlane
and MLPs in the same manner as 4D-GS. However, we configure two separate sets of MLPs: one for
background Gaussians and the other for Relay Gaussians. Both sets are responsible for predicting the
changes in the four Gaussian attributes—position, scaling, rotation, and opacity—over time. We do
not include the spherical harmonics MLP, as it increases the model size and reduces rendering speed
without providing notable performance gains. Additionally, the γ is initialized to 0. This stage is
trained for 20,000 steps. For the PanopticSports dataset, multi-view color inconsistencies are present,
so we apply a learnable channel-wise affine color tune for each camera, following Dynamic3DGS.
For VRU scenes, we optimize using 2× downsampled views to reduce time cost. All experiments
were conducted on an NVIDIA RTX 4090 GPU with batch size 4. The learning rate and densification
settings are consistent across all three stages, more details can be found in the Appendix.

5.2 EXPERIMENTAL RESULTS

Quantitative Comparison. We compare our RelayGS with several state-of-the-art methods, in-
cluding 4D-GS Wu et al. (2024), Dynamic3DGS Luiten et al. (2024), ST-GS Li et al. (2024b),
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GT Ours ST-GS 4D-GS

Figure 2: Qualitative comparisons on GZ scene of VRU Basketball Games dataset.

GT Ours E-D3DGS 4D-GS

Figure 3: Qualitative comparisons on Football scene of PanopticSports dataset.

E-D3DGS Bae et al. (2024), and D-MiSo Waczyńska et al. (2024). The results are shown in Tab. 1
and Tab. 2. (1) Quality: Our RelayGS method consistently outperforms competitors in terms of
reconstruction quality (i.e., PSNR) on both datasets. Specifically, on the six scenes of the Panoptic-
Sports dataset (see Tab. 2), RelayGS achieves PSNR improvements of 0.27 dB, 0.53 dB, 1.6 dB, 1.19
dB, 1.24 dB, and 1.28 dB, respectively, averaging a gain of 1.02 dB over the previous best methods.
Compared to the baseline method 4D-GS, we achieve an average performance gain of 2.47 dB. On
the more challenging VRU Basketball Games dataset (see Tab. 1), RelayGS outperforms the previous
best method ST-GS and the baseline method 4D-GS by an average of 0.45 dB and 2 dB, respectively.
It is worth noting that, although the PSNR difference compared with ST-GS appears small, the static
floor occupies approximately 70% of the pixels in these VRU view images, meaning the quality
improvement is more significant in the dynamic foreground regions. Additionally, ST-GS is heavily
dependent on initialization, as it extracts sparse point clouds for each frame and then merges them as
the initial scene. Since point clouds for each frame cannot be obtained in the PanopticSports dataset,
ST-GS is not applicable. (2) Efficiency: While our method learns corresponding foreground content
for each segment via Relay Gaussians, RelayGS strikes a good balance between reconstruction quality
and efficiency factors such as storage, training time, and rendering speed compared to competitors,
some of which achieve high storage efficiency but fall short in reconstruction quality. In contrast,
our method demonstrates a clear advantage in storage efficiency, particularly on the PanopticSports
dataset. Compared to the baseline method 4D-GS, RelayGS introduces an additional stage with Relay
Gaussians, which increases the training time and slightly reduces the rendering speed in some tend.
However, RelayGS still maintains a clear advantage in training time compared to other methods.
While achieving high-quality reconstruction, we can also ensure a real-time rendering speed of around
70 fps on RTX 4090 GPU.

Qualitative Analysis Fig. 2 and Fig. 3 show frames from two representative scenes with heavily
featured foreground dynamic content. As seen, our RelayGS reconstructs the humans with greater
clarity and completeness. This improvement is primarily due to the fact that, compared to our baseline,
4D-GS, our stage I not only learns the background Gaussians but also captures the foreground
Gaussians. In our stage II, we further refine the foreground Gaussians by learning additional
Gaussians that cover more of the motion trajectories, known as Relay Gaussians. ST-GS, although
using point clouds from all 250 frames, obtains a denser sampling of motion trajectories. However,
due to its simpler approach to modeling motion changes, it struggles to accurately capture the
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GZ

DG4

(b) 4DGS init. (c) RelayGS init. (d) Relay Gaussians (red)(a) Reference image

Figure 4: The visualization of canonical 3D Gaussians. (a) Reference image of the scene. (b)
Initialization by 4D-GS, with the dynamic Gaussian in the foreground almost eliminated. (c)
Initialization by our method achieves separation of static background and dynamic foreground,
visualized in different colors. (d) Relay Gaussians (red) generated in the second stage realize the
decomposition of long trajectories.

Table 3: Ablation study on key design components. For detailed analysis, please refer to Sec. 5.3.

Case Method GZ Softball

#1 full method 28.06 30.20

#2 w/o Segment along timeline 26.07 ↓1.99 29.42 ↓0.78
#3 w/o Stage II 27.27 ↓0.79 29.93 ↓0.27
#4 w/o Pseudo-Views 27.80 ↓0.26 30.00 ↓0.20
#5 w/o Fg-Bg Isolation 27.80 ↓0.26 30.07 ↓0.13
#6 w/o Scaling Factor γ 27.87 ↓0.19 29.73 ↓0.47

foreground with complex motions. This issue is more evident in the rendered videos, where ST-GS
shows inconsistencies in the motion of the Gaussians associated with the same object, leading to
flickering in the foreground. In contrast, our method, leveraging HexPlane encoding following
4D-GS, models temporally and spatially consistent motion, resulting in smoother and more coherent
reconstructions. Additionally, both 4D-GS and E-D3DGS struggle to handle the large-scale motion of
the ball in these scenes. In comparison, our method performs significantly better, although challenges
remain. The relatively small and isolated ball with mostly empty space around it makes it difficult
to track. Our second stage mitigates this issue to some extent by introducing Relay Gaussians, but
it remains a challenging aspect due to the sparse Gaussians learned in the first stage. In summary,
RelayGS not only achieves SOTA performance on quantitative metrics for the entire image but also
demonstrates superior spatiotemporal modeling capabilities, particularly on foreground dynamic
content. We encourage readers to view the supplementary rendered videos for a more comprehensive
understanding of our reconstruction results.

3D Gaussian visualization. We visualize the canonical Gaussians learned at different stages, with
the results shown in Fig. 4. As observed in Fig. 4 (b), in the baseline method 4D-GS, the canonical
Gaussians learned in the first stage primarily represent the background, with very few Gaussians
capturing the foreground. In contrast, in our method, the base Gaussians learned in the first stage
include both background and foreground Gaussians, which can be distinguished by a binary mask,
visualized in different colors in Fig. 4 (c). Furthermore, through the learning process in the second
stage, our method is able to capture additional Relay Gaussians (red points in Fig. 4 (d)) along the
motion trajectories of the foreground, significantly improving the representation of dynamic content.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation on number of frames per segment. The experiments are conducted on GZ scene of
VRU Basketball Games dataset.

k 8 16 32 64 128

PSNR (dB) 27.90 28.06 27.82 27.56 27.10

5.3 ABLATION STUDY

In Tab. 3, we present ablation studies on several key components of our method. The case #2
represents the configuration where no temporal segmentation is applied, and only a single global
set of foreground Gaussians is used. This results in a significant performance drop, as it cannot
effectively handle large-scale motion. In case #3, we remove the second stage of our method, directly
replicating a set of foreground Gaussians for each segment and learning them jointly with the implicit
motion field. This also leads to a notable performance decrease, especially in the more complex GZ
scene. In case #4, we demonstrate the significance of multi-view synthesis pseudo-views, which
enable the acquisition of richer Relay Gaussians representing trajectories. In cases #5 and #6, we
conduct ablation studies on the setting of different MLPs for foreground-background isolation and
the scaling factor γ in the third stage, respectively. These results highlight the importance of our
improvements for 4D spatiotemporal modeling.

In Tab. 4, we perform an ablation study on the length of each segment, i.e., the number of frames
included in each segment. As the segment length increases and the number of segments decreases, the
motion trajectory within each segment becomes larger, leading to a gradual decline in performance.
However, choosing the k value too small will increase the training cost and not result in a significant
performance improvement. Based on experience, we set k=16 as the default selection.

6 CONCLUSION

This paper proposes RelayGS, a novel method specifically designed to address the challenges of
reconstructing dynamic scenes with large-scale and complex motions. We first learn the basic
structure of the scene and, through a learnable mask, simultaneously capture the shared background
and the foreground of the initial frame, achieving effective decoupling of dynamic foreground
and relatively static background Gaussians. Then, we divide the scene into segments along the
temporal dimension, replicating and learning a set of foreground Gaussians for each segment. The
training views are constructed using pseudo-views by blending three frames within the segment.
These foreground Gaussians are referred to as Relay Gaussians, which decompose the complex,
large-scale motion trajectories into smaller, manageable segments. Finally, we further optimize the
spatiotemporal representation of both the background Gaussians and foreground Relay Gaussians.
Extensive experiments demonstrate that RelayGS outperforms state-of-the-art methods on two real-
world datasets with large-scale motions, achieving significant improvements in reconstruction quality.
Additionally, our method strikes a balance between reconstruction quality and storage efficiency,
making it well-suited for real-world applications involving complex motions.

Limitation. While our method achieves significant performance advantages, it still faces some
challenges. (1) Insufficient motion modeling of small but fast-moving objects. This is due to
the limited pixel coverage of these objects, insufficient camera view coverage, and sparse base
surrounding Gaussians, which make it difficult to accurately capture and reconstruct their motion. (2)
Our method for segmenting the scene and constructing pseudo-views is relatively straightforward.
In practice, the segmentation should adapt to the complexity of the motion in the scene, allowing
for more precise divisions. Additionally, rather than uniformly selecting frames, a more adaptive
approach would involve selecting frames along the motion trajectory in a way that better captures the
motion dynamics. This would lead to learning more optimal Relay Gaussians, ultimately improving
the accuracy of motion representation.
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APPENDIX

This appendix provides additional material to supplement the main text.

A DATASET DETAILS

PanopticSports Dataset. The cameras are temporally aligned with accurate intrinsic and extrinsic
parameters. Positioned in a roughly hemispherical arrangement around the area of interest in the
middle of the capture studio, the cameras provide comprehensive coverage of the scene. The images
are undistorted using the provided distortion parameters and resized to 640 × 360. The dataset
provides a point cloud generated by 10 available depth cameras for each scene. In our experiments,
this point cloud is first downsampled to approximately 35,000 points, which are then used to initialize
the Gaussian primitives. Each scene involves one or two moving persons and some moving objects,
while the background remains completely static. Additionally, the foreground colors are quite similar
to the background, which further increases the difficulty of scene reconstruction due to the reduced
contrast between the foreground and background elements.

VRU Basketball Games Dataset. The camera poses and distortion parameters were estimated
using the first frame from all 34 views by COLMAP Schonberger & Frahm (2016), and all frames
were undistorted accordingly. After undistortion, the resolution slightly increases, and we did not
resize the images back to 1920×1080. Following the 4D-GS Wu et al. (2024) method, a point
cloud was generated and downsampled to approximately 80,000 points for initializing the Gaussian
primitives. Each scene includes multiple basketball players, a basketball, scoreboards, advertisement
banners, and thousands of spectators. The basketball players and the basketball exhibit fast and
large-scale movements with highly complex motion patterns, including non-rigid deformations. The
scoreboards and banners also dynamically change over time, and even the background spectators are
not completely static, as some exhibit subtle movements. Additionally, the physical scale of the scene
is significantly larger than previously available dynamic scene datasets, making it highly challenging
to reconstruct.

B MORE IMPLEMENTATION DETAILS

Our method employs slightly different settings for learning rates and densification thresholds between
the foreground and background Gaussians. The background learning rates are similar to those used in
previous methods, with the initial learning rate for position set to 2e-4 and the minimum learning
rate to 1e-5. For the foreground Gaussians, the initial learning rate for position is set to 1e-3. The
gradient threshold for densification is 1e-4, which is half of the threshold used for the background.
Additionally, the scaling threshold for densification is set to 1e-3 for the foreground, which is 0.1
times that of the background. These settings encourage the foreground Gaussians to be smaller and
split faster than the background Gaussians. More detailed experimental settings will be released in
our future open-source code to better support reproducible research.

C ADDITIONAL QUALITY COMPARISON RESULTS

We present the quality comparison on other scenes from the two datasets in Figures 5 to 10. The
visual results clearly demonstrate that our method consistently achieves significantly better visual
quality compared to competitive counterparts across different scenes from both datasets, proving the
generalization ability of our RelayGS approach.

D ADDITIONAL EXPERIMENTAL RESULTS

The goal of the first two stages of our method is to learn a more robust base Gaussian representation,
simplifying complex motion patterns in the scene and preparing for full learning in the final stage.
Using low-resolution views during these stages produces comparable results while significantly
reducing training time. Additionally, we observed that our method performs more effectively at low
resolutions, resulting in a larger performance gap compared to counterpart methods. The results are
presented in Tab. 5, further reinforcing the superiority of our approach in motion learning.
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Table 5: Quantitative results on the VRU Basketball Games dataset at half resolution. “ST-GS”
utilizes point clouds of all 250 frames, the default setting for their method.

Method PSNR (dB ↑)
GZ DG4

ST-GS 27.61 26.87
E-D3DGS 26.33 25.39

RelayGS (Ours) 28.97 27.50

In Fig. 11, we provide additional visualization results of Relay Gaussians on the PanopticSports
dataset, showcasing how our method learns Relay Gaussians for large-scale dynamic content.

In the Supplementary Material, we provide a zip file that contains 3 videos: VRU GZ GT.mp4,
VRU GZ RelayGS PSNR-28.06.mp4, and VRU GZ ST-GS PSNR-27.32.mp4.These videos
represent, respectively, the ground truth videos from four test views, the videos rendered from our
RelayGS method, and the videos rendered from the ST-GS Li et al. (2024b) method initialized with
the sparse point clouds of all 250 frames. From these videos, the superior reconstruction quality and
motion coherence of our method compared to ST-GS can be clearly observed.

GT Ours ST-GS 4D-GS

Figure 5: Qualitative comparisons on DG4 scene of VRU Basketball Games dataset.

GT Ours E-D3DGS 4D-GS

Figure 6: Qualitative comparisons on Juggle scene of PanopticSports dataset.
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GT Ours E-D3DGS 4D-GS

Figure 7: Qualitative comparisons on Boxes scene of PanopticSports dataset.

GT Ours E-D3DGS 4D-GS

Figure 8: Qualitative comparisons on Softball scene of PanopticSports dataset.

GT Ours E-D3DGS 4D-GS

Figure 9: Qualitative comparisons on Tennis scene of PanopticSports dataset.
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GT Ours E-D3DGS 4D-GS

Figure 10: Qualitative comparisons on Basketball scene of PanopticSports dataset.

(a) (b) (c)

(d) (e) (f)

Figure 11: Visualizations of the second-stage dynamic foreground Relay Gaussians (red points) in
6 scenes of the PanopticSports dataset. (a)-(c) show people in the foreground with larger motion
amplitudes, generating more dispersed trajectories. (d)-(f) show people in the foreground with smaller
motion amplitudes, generating more concentrated trajectories.
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