
Published as a conference paper at ICLR 2017

PALEO: A PERFORMANCE MODEL FOR
DEEP NEURAL NETWORKS

Hang Qi
UCLA
hangqi@cs.ucla.edu

Evan R. Sparks
UC Berkeley
sparks@cs.berkeley.edu

Ameet Talwalkar
UCLA
ameet@cs.ucla.edu

ABSTRACT

Although various scalable deep learning software packages have been proposed,
it remains unclear how to best leverage parallel and distributed computing infras-
tructure to accelerate their training and deployment. Moreover, the effectiveness
of existing parallel and distributed systems varies widely based on the neural net-
work architecture and dataset under consideration. In order to efficiently explore
the space of scalable deep learning systems and quickly diagnose their effective-
ness for a given problem instance, we introduce an analytical performance model
called PALEO. Our key observation is that a neural network architecture carries
with it a declarative specification of the computational requirements associated
with its training and evaluation. By extracting these requirements from a given
architecture and mapping them to a specific point within the design space of soft-
ware, hardware and communication strategies, PALEO can efficiently and accu-
rately model the expected scalability and performance of a putative deep learning
system. We show that PALEO is robust to the choice of network architecture,
hardware, software, communication schemes, and parallelization strategies. We
further demonstrate its ability to accurately model various recently published scal-
ability results for CNNs such as NiN, Inception and AlexNet.

1 INTRODUCTION

Deep learning has been successfully applied in many areas including natural language processing
and computer vision. The scale of modern datasets and the millions to billions of parameters in these
deep networks pose new challenges when designing computational systems that leverage parallel
and distributed computing. Indeed, several important open questions remain:

• How fast can we train or evaluate a model on a user’s given hardware?

• For a given architecture, how can a user best leverage parallel and distributed computation?

• How can we design a new neural network architecture that can be trained and evaluated efficiently
under common hardware setups?

In response to these fundamental questions, various software packages and systemshave been
painstakingly developed, e.g. DistBelief (Dean et al., 2012), TensorFlow (Abadi et al., 2015),
MXNet (Chen et al., 2015), SparkNet (Moritz et al., 2015), FireCaffe (Iandola et al., 2016). More-
over, expensive benchmarking efforts, e.g., Chintala et al. (2016), have performed brute-force pro-
filing on some of these deep learning systems on a handful network architectures.

In this work we aim to tackle these questions by taking an analytical approach to model the per-
formance of arbitrary learning systems. Our work hinges on the observation that a neural network
architecture is a declarative specification of the forward and backward propagation steps required
for training and deploying the network. However, given this specification, there is a rich design
space of algorithms, hardware choices, and communications strategies to most efficiently execute
these specifications. We build a novel performance model called PALEO1 that maps this declarative
specification to arbitrary points in this design space to estimate the execution time of training and

1Open-sourced at https://github.com/TalwalkarLab/paleo.

1

https://github.com/TalwalkarLab/paleo

Published as a conference paper at ICLR 2017

deploying deep neural networks.2 PALEO applies broadly to a wide variety of neural network archi-
tectures and for arbitrary learning systems within this design space, and thus can serve as a valuable
tool for practitioners and developers to answer the questions mentioned above.

2 BACKGROUND AND RELATED WORK

Training deep neural networks can be very time and resource consuming, and it is not uncommon
for the training of a model to take days across tens or hundreds of machines. Several high-level
strategies have been proposed to accelerate this process, and these strategies collectively define the
design space considered by PALEO.

Hardware acceleration approaches are designed to accelerate the computation of the forward and
backward passes and often make use of specialized hardware, such as GPUs (Coates et al., 2013), or
more recently custom hardware designed specifically for deep learning (Jouppi, 2016). PALEO ac-
cepts constants associated with hardware as input (e.g., peak FLOPS, network bandwidth) and au-
tomatically adapts to changes in this input.

Software acceleration via specialized libraries, e.g., cuda-convnet (Krizhevsky, 2014a) and
cuDNN (Chetlur et al., 2014), and highly-optimized algorithms for commonly used primitives,
e.g., Chetlur et al. (2014) and Lavin (2016), can also be used to accelerate deep model training.
PALEO dynamically picks among the best available implementation for each layer at execution time.

Parallelization is a natural approach to consider, and can involve training a neural network with
many computational devices (e.g. CPUs, GPUs) on a single machine, or across a network. There
are two major parallelization strategies when it comes to training deep neural network models at
scale: data parallelism and model parallelism. In classical data parallel systems, each worker stores
an identical copy of the model and computes gradients only on a shard of the training examples, and
these gradients are aggregated to update the model. In contrast, model parallel systems shard the
model itself across the workers, while the training data may be stored on each worker or sharded
across the workers. PALEO models both data and model parallel settings.

Communication schemes have also been explored to accelerate incremental model updates across
distributed workers. Three of the most common schemes are (Iandola et al., 2016; Zhao & Canny,
2013): (i) the OneToAll scheme has a 2KT communication time as a master node must communi-
cate with all K workers individually, where T is the time for communicating data through one link
in the network; (ii) the Tree AllReduce scheme takes 2 log2(K)T for weights to be aggregated and
broadcasted to all workers following a tree topology; and (iii) the Butterfly AllReduce scheme in
which all workers receive aggregated weights in log2(K)T using a butterfly network. We restrict
the focus of PALEO to distributed communication schemes that return equivalent results to serial
executions, and we thus do not consider the recently introduced butterfly mixing scheme of Zhao &
Canny (2013), or non-deterministic asynchronous parameter servers.

3 PALEO

We now present PALEO, a model for the lean consumption of resources during the training of DNNs.
PALEO decomposes the total execution time into computation time and communication time; both
are estimated for each pass of a neural network’s evaluation given user specified choices within the
design space of algorithms, hardware, and communications strategies. Figure 1 illustrates the overall
idea. The computation time is calculated from factors including the size of the computation inputs
imposed by the network architecture, the complexity of the algorithms and operations involved in
the network layers, and the performance of the hardware to be used. The communication time
is estimated based on the computational dependencies imposed by the network, the communication
bandwidth of the hardware, and the assumed parallelization schemes. Once the network architecture
and design space choices are fixed, all of the key factors in PALEO can be derived, and we can
estimate execution time without actually implementing the entire network and/or an underlying
software package.

2Training a neural network involves both forward and backward propagation, whereas deploying a trained
network on a new data point involves only forward propagation. Thus, estimating the execution time of model
training encompasses both model training and deployment, and is the focus of this work.

2

Published as a conference paper at ICLR 2017

Network architecture

GPUs

CPUs

GPU
cluster

CPU
cluster

scale-out

scale-up

Complexity
(e.g. FLOP counts)

Communication bandwidth
(GB/s)

Computation speed
(TFLOPS)

Memory
(Data, weights, gradients, activations)

Dependencies
(Network architecture)

Communication

Computation

Execution TimeSoftware framework

compute

network

Parallelization strategies
(Model parallel, data parallel)

Operation selection
(e.g. GEMM, FFT, Tiled FFT)

Communication scheme
(OneToAll, Tree AllReduce, Butterfly AllReduce)

Figure 1: Overview of the PALEO modeling approach. PALEO decomposes execution time into
computation time and communication time, which can be derived from various factors implicitly
specified by network architectures and hardware configurations.

3.1 COMPUTATION MODELING

We first describe the computation model on a single machine. The computation in a neural network
can be expressed as a directed graph N = 〈{u(i)}ni=1, {(u(i), u(j))}〉, where each node u(i) is
associated with an operation f (i) on a device d(i); each directed edge (u(i), u(j)) represents the
dependency that operation f (j) cannot be executed until f (i) is finished. We use Pa(u(j)) to represent
the set of immediate parent nodes of u(j). We model each layer in the neural network as a node, and
the connections between layers as edges. In the following text, we omit the superscript index when
there is no ambiguity.

3.1.1 COMPUTATION TIME FOR A SINGLE LAYER

To model the runtime of a layer u, we consider the operation f and decompose the execution time
of this operation into three terms (as shown in Figure 2a): the time to fetch the input produced by
its parent layers R(Pa(u)); the time to perform the computation of f on the designated device d,
i.e., C(f, d); and the time to write the outputs to the local memoryW(f, d). Assuming a sequential
execution, the runtime for a node u can be written as a simple summation:

T (u) = R(Pa(u)) + C(f, d) +W(f, d). (1)

Among the three terms, the computation time C(f, d) is calculated as the FLOP (floating-point op-
eration) counts of the operation divided by the computation speed (FLOPS; floating-point operation
per second) of the device: C(f, d) = FLOPs(f)/speed(d). The IO times R(Pa(u)) and W(u) are
calculated as the size of memory footprints involved in the computation divided by the IO bandwidth
of the device. When inputs must be fetched from other devices, e.g. in the case of model parallelism,
this IO bandwidth refers to the communication bandwidth between two devices. PALEO treats the
speed and bandwidth of devices as parameters given to the model so that users can configure them
to reflect user-specific configurations.

Using this per-layer model, we will next describe how to model the computation time of an entire
network. We will subsequently we present FLOP counts for layer operations commonly used in
modern DNNs in Section 4.

3.1.2 COMPUTATION TIME FOR NETWORKS

We first consider simple sequential structures where layers are constructed one after another, as in
Figure 2b. The total execution time can be calculated as the sum of execution time of all layers
T (N) =

∑n
i=1 T (u

(i)). While this calculation may seem trivial at first glance, it forms the founda-
tion for modeling execution time for more complex architectures.

3

Published as a conference paper at ICLR 2017

Operation f

x

y Write outputs

Fetch inputs

Conv

Pooling

Conv

Pooling

...

...

Pooling Pooling

ConvConv

Pooling

FC

...

...

Device 1 Device 2

(a) (b) (c)

Figure 2: (a) The execution time of a node in the computation graph consists of the time for fetching
input, computing results, and writing results to memory. (b) An example of a sequential computation
graph segment. (c) An example of a parallel computation graph segment.

Parallel structures are not uncommon in DNNs; for example, the Inception model (Szegedy et al.,
2015a) contains layers that can be evaluated simultaneously, and layers on different workers can
run in parallel in model parallel setups (Dean et al., 2012). Figure 2c illustrates a parallel structure,
where two convolutional layers (each followed by a pooling layer) are scheduled to be executed on
two devices.

To model computation time of parallel structures, we identify synchronization barriers before and
after every parallel structure and introduce a notation of supernode U = {G(i)}ki=1 as a set of disjoint
subgraphs sandwiched by the synchronization barriers in the computation graph. When substituting
the subgraphs with the supernode, the network is reduced to a sequential structure described above.
For the supernode, the execution time T (U) is within the range [maxi T (G(i)),

∑
i T (G(i))], where

the lower bound corresponds to perfect parallelization, the upper bound corresponds to sequential
execution. Note that the execution time of a subgraph T (G(i)) can be calculated recursively.

3.1.3 COMPUTATION MODELING FOR LAYER OPERATIONS

In modern DNNs, the convolutional layer is one of the most commonly used and computation-
ally intensive type of layer. For this reason, there has been many heavily optimized implementa-
tions (Chetlur et al., 2014; Vasilache et al., 2015; Lavin, 2016). Deriving plausible FLOP counts
for other types of layers is a straightforward process, and in this section, we consider two leading
implementations for convolutional operations: matrix multiplication and Fast Fourier Transform.

Following the notation used by Chetlur et al. (2014), a 2D convolutional layer during forward prop-
agation3 takes an input feature map DN×C×H×W (which has a batch of N input feature maps with
shape H ×W and C channels) and a set of convolutional filters FK×C×R×S (K filters with shape
R×S and C channels). It produces N ×K feature maps each of shape P ×Q which can be calcu-
lated from the shapes of inputs and filters together with additional striding and padding parameters.
The FLOP counts for the convolution operation can be expressed as 2KCRSNPQ. A commonly
used implementation is to reduce convolution operations to matrix multiplications, which can be
efficiently computed with well-optimized SGEMM routines on various platforms. Although these
FLOP counts ignore auxiliary operations (e.g. indexing arithmetic in efficient implementations),
they nonetheless provide a good estimate of FLOP counts for matrix multiplication implementa-
tions.

Another implementation is based on Fast Fourier Transform (Vasilache et al., 2015): both input fea-
ture maps and filters are transformed into the frequency domain, then element-wise multiplications
are performed followed by an inverse Fourier transform. This implementation introduces computa-
tion and memory overhead in discrete Fourier transforms, but reduces the computation complexity
to O(NCKHW +(NC+CK+NK)HW log(HW)). Convolutional layers with large filters or a

3Our arguments generalize to N-dimensional settings, and similar arguments apply for the backward pass.

4

Published as a conference paper at ICLR 2017

large problem size can benefit from FFT implementations. When counting FLOPs, it is not possible
to get exact counts without knowing the underlying implementation details. In PALEO, we adopt the
commonly used FFT complexity 5n log2 n as the FLOP counts for complex-valued transformations
of size n (Cooley & Tukey, 1965). To account for the IO overhead caused by auxiliary memories,
PALEO estimates the memory size required for complex-valued matrices in the frequency domain
and incorporates it into the data reading and writing terms. For FFT-based implementations with
tilings, PALEO estimates the number of tiles from the convolution specifications.

The choice of algorithm – matrix multiplication or FFT – is problem specific, as it depends on the
filter size, strides, input size of the convolutional layers, and memory workspace. In order to derive
reasonable estimations for user-specific DNNs comparable to real executions, it is important for PA-
LEO to make decisions comparable to real-world systems. Two common approaches are employed
in existing DNN software frameworks and libraries to choose between these algorithms: (i) using
predefined heuristics based on offline benchmarks; (ii) autotuning to empirically evaluate available
algorithms on the given specification. Since autotuning is tied to platform and software implementa-
tions, for maximum generality PALEO by default takes the first approach. In particular, PALEO uses
heuristics from cuDNN to make algorithm choices while also accounting for user preferences.

3.2 COMMUNICATION MODELING

We now describe our modeling for communication among multiple workers. Let |D| be the size of
data to be communicated between two workers, and define B as the bandwidth of the communica-
tion channel. Then the communication time can simply be written as Tcomm = |D|/B. By using
different bandwidth configurations, PALEO works for both scale-up setups (multiple GPUs on one
machine) and scale-out setups (multiple machines in a cluster). Moreover, in data-parallel settings,
an AllReduce operation is performed to synchronize model parameters across all workers after every
backward pass. PALEO considers three communications schemes: OneToAll, Tree AllReduce, and
Butterfly AllReduce. The communication time under these three schemes is described in Section 2.

3.3 PLATFORM PERCENT OF PEAK

Thus far, we have assumed that deep learning software platforms make perfect use of their underly-
ing hardware. That is, that the CPUs and GPUs are operating at “peak FLOPS”, and that network
and IO links are fully saturated. This has allowed our model to be platform independent.

However, this assumption is unreasonable in practice. For instance, achieving peak FLOPS is a
difficult proposition, usually requiring customized libraries developed by organizations with intimate
knowledge of the underlying hardware, e.g., Intel’s MKL (int, 2009), ATLAS (Whaley & Petitet,
2005), and cuDNN. Even these specially tuned libraries may fall short of peak execution by as much
as 40% (atl). Further, any computation done outside the scope of PALEO (e.g. job scheduling, data
copying) will exacerbate the observed inefficiency in practice. Sometimes such inefficiencies are
warranted from the perspective of ease of programmability or maintenance of the learning platforms.

Rather than trying to measure and capture every source of inefficiency in every learning framework,
we take a small number of representative deep learning workloads which contain convolutions,
pooling, dropout, and fully connected layers and run them for a short time on a single GPU. Given
observed total throughput and estimated total throughput on this benchmark we fit a scaling constant
to estimate a platform percent of peak (PPP) parameter which captures the average relative ineffi-
ciency of the platform compared to peak FLOPS. Highly specialized frameworks (e.g. cuDNN) will
in general have a computational PPP that is close to 100%, while frameworks with higher overheads
may have PPP constants closer to 50% or less.

We follow a similar benchmarking procedure to estimate PPP for the communication link for Ten-
sorFlow. For the FireCaffe experiments, we estimate the communication PPP based on the empirical
results for communication reported in Table 4 of the paper.

4 EXPERIMENTS

We now present empirical results which illustrate that PALEO is robust to the choice of network
architecture, hardware, communication schemes, and parallelization strategies.

5

Published as a conference paper at ICLR 2017

4.1 LAYER-WISE EVALUATION

We first compare PALEO-estimated runtimes with actual runtimes measured from Tensor-
Flow4 (Abadi et al., 2015) execution in two popular CNN architectures: the one-tower variant of
AlexNet (Krizhevsky, 2014b) and the 16-layer VGG network (Simonyan & Zisserman, 2014). PA-
LEO uses cuDNN heuristics to choose algorithms and the auto-tuning mechanism in TensorFlow is
disabled. Experiments are run on a NVIDIA TITAN X GPU with a 4 GB workspace limit.

For convolutional and fully connected layers, we evaluate forward computation, backward compu-
tation with respect to layer inputs, and backward computation with respect to filters separately (see
Figure 4 in the appendix for the plots of layer-by-layer comparison.) Table 1 shows a comparison
of full forward pass and backward pass with all layers included. PALEO’s per layer estimates are
quite close to the actual TensorFlow execution, with only one layer – ‘fc6’ – consistently being
underestimated by PALEO.5 In spite of this issue with ‘fc6’, our full pass estimates are remarkably
accurate.

Table 1: Full pass time of TensorFlow and PALEO estimation on AlexNet and VGG-16.

Forward pass (ms) Backward pass (ms)
AlexNet TensorFlow 44.00 155.10

PALEO Estimation 45.96 118.44
VGG-16 TensorFlow 400.46 1117.48

PALEO Estimation 435.46 1077.27

4.2 CASE STUDIES

We now revisit the questions posed at the beginning of the paper and demonstrate how PALEO can
help in answering them. In this subsection we present three case studies. We extract experiment se-
tups including network architectures, hardware specifications, communication schemes, and paral-
lelization strategies from selected publications focusing on scalability of CNNs. We then plug those
configurations into PALEO and compare the simulated scalability results with the reported results in
the original publications. Table 2 summaries the configurations of PALEO in these experiments.

Table 2: PALEO configurations used in the case studies.

Case 1 Case 2 Case 3
Net NiN Inception v3 AlexNet
Device NVIDIA K20X NVIDIA K20 NVIDIA K20
Workers Up to 128 Up to 100 Up to 8
Bandwidth 70 Gbps 10 Gbps 6 GB/s
Communication Tree AllReduce Parameter Server Various
Parallelization Data Parallelism Data Parallelism Hybrid
Platform Caffe TensorFlow cuda-convnet2
One Step Time6

PALEO Estimation 1918 ms 4269 ms 402 ms
Reported Time7 2275 ms – 418 ms

4TensorFlow 0.9 with cuDNN 4 backend.
5Examining the TensorFlow execution with the NVIDIA profiler revealed that TensorFlow spent two-thirds

of its reported ‘fc6’ time in transforming data layout between NHWC and NCHW when calling the underlying
cuBLAS primitives.

6Total time of forward pass, backward pass, and parameter update for one mini-batch on one worker.
7Reported times for Cases 1 and 3 are derived approximately from information in the publications. For Case

2 no run time information is provided.

6

Published as a conference paper at ICLR 2017

4.2.1 CASE 1: NIN WITH FIRECAFFE

FireCaffe (Iandola et al., 2016) adopts the Tree AllReduce communication scheme when training a
NiN model (Lin et al., 2013) in data parallel settings with up to 128 servers on the Titan supercom-
puter. They report a 38× speedup for NiN with batch size 1024 relative to single-GPU performance.
Tabel 3 shows the results from PALEO compared with the results reported by FireCaffe.

Table 3: Comparison between PALEO estimation and FireCaffe for training NiN.

FireCaffe PALEO Estimation
Workers Batch size Train Time Speedup Train Time Speedup

1 256 5.8 days 1× 4.9 days 1×
32 256 11 hours 13× 7.6 hours 15.5×
32 1024 6 hours 23× 4.6 hours 25.3×
128 1024 3.6 hours 39× 2.3 hours 51.6×

4.2.2 CASE 2: INCEPTION WITH TENSORFLOW

Murray et al. (2016) reported their results in synchronously training the Inception model (Szegedy
et al., 2015b) with TensorFlow and achieved a 56× speedup with 100 workers. They apply a weak
scaling strategy with batch size 256 to keep GPUs saturated. Although Murray et al. (2016) lever-
aged a distributed parameter server rather than one of the three communications schemes considered
in PALEO, the communication cost of Butterfly AllReduce can be viewed as a lower bound (Zhao &
Canny, 2013). To account for the fact that they train with worker nodes each of which have 8 GPUs,
we assumes a linear speedup for GPUs on the same host. Figure 3a shows a comparison between
reported speedups and PALEO estimated speedups. For absolute runtime, in one of the experiments,
their model completes 20 epochs of training after 100 hours when using 8 Tesla K40’s and a batch
size 256. PALEO projects a 111 hours runtime under the same setting.

4.2.3 CASE 3: ALEXNET WITH HYBRID PARALLELISM

Krizhevsky (2014b) describes a hybrid model and data parallelism approach for training AlexNet
using up to 8 GPUs with a weak scaling strategy. In his setup, each of the two CPUs connects to 4
GPUs, the communication bandwidth is penalized by 50% across the two groups as mentioned in
the paper. Table 4 shows the comparison between PALEO’s projection and the original result, which
are quite similar. Moreover, whereas Krizhevsky (2014b) does not quantify the speedup of hybrid
parallelism relative to strict data parallelism, PALEO simulates training the entire network with only
data parallelism (see last two columns of Table 4) in order to estimate this speedup.

Table 4: Comparison between PALEO estimation and Krizhevsky (2014b) for training AlexNet.

One Weird Trick PALEO Estimation
Hybrid parallelism Hybrid parallelism Data parallelism

Workers Train Time (h) Speedup Train Time (h) Speedup Train Time (h) Speedup
1 98.95 1× 96.31 1× 96.31 1×
2 50.24 1.95× 49.57 1.94× 55.90 1.72×
4 26.20 3.74× 25.42 3.79× 32.82 3.03×
8 16.68 6.25× 14.37 6.70× 23.65 5.40×

4.3 HYPOTHETICAL SETUPS

In this subsection, we use PALEO in two hypothetical setups to analyze the scalability of AlexNet
and a GAN model under different communication schemes.

7

Published as a conference paper at ICLR 2017

4.3.1 ALEXNET IN A CLOUD-BASED SETUP

In this study, we present an analysis of data parallel training of AlexNet. We assume a modern cloud
setup with a cluster of servers each equipped with a NVIDIA K80 GPU connected to a 20 Gbps
network. In contrast to the Inception model with 23 million parameter, the one-tower variant of
AlexNet has 50 million parameters and therefore doubles communication workload when training
with data parallelism.

We show strong scaling for all three communication schemes in Figure 3c. Even when assuming
a fairly large batch size of 2048 which is beneficial in distributed settings, we see very modest
speedups. The OneToAll scheme achieves a max speedup of less than a 2× using 4 workers, while
the communication-efficient Butterfly AllReduce scheme achieves a max speedup of roughly 5×
when using 32 workers. The weak scaling results, shown in Figure 3b, show drastically improved
scaling results, as we observe nearly linear speedups as we increase the number of workers. How-
ever, it is important to note that we are increasing the effective batch size as we increase the number
of workers, and it is well-known that training with large effective batch-sizes can yield models with
substandard accuracy (Breuel, 2015).

1 2 4 8 16 50 100
Workers

0

20

40

60

80

100

Sp
ee

du
p

Paleo: OneToAll
Paleo: Tree AllReduce
Paleo: Butterfly AllReduce
Murray el at. (2016)

(a) Inception / weak

1 2 4 8 16 32 64 128
Workers

0

20

40

60

80

100

120

E
st

im
at

ed
Sp

ee
du

p

OneToAll
Tree AllReduce
Butterfly AllReduce

(b) AlexNet / weak

1 2 4 8 16 32 64 128
Workers

0
1
2
3
4
5
6
7
8

E
st

im
at

ed
Sp

ee
du

p

OneToAll
Tree AllReduce
Butterfly AllReduce

(c) AlexNet / strong

1 2 4 8 16 32 64 128
Workers

0
1
2
3
4
5
6
7
8
9

E
st

im
at

ed
Sp

ee
du

p

OneToAll
Tree AllReduce
Butterfly AllReduce

(d) GAN / strong

Figure 3: Comparison of PALEO projected speedups for various networks under different scaling
strategies and communication schemes. (a-b) weak scaling. (c-d) strong scaling.

4.3.2 GAN ARCHITECTURE

PALEO can be applied to architectures other than CNNs. We profile a generative adversarial network
(GAN) inspired by Radford et al. (2015) for the LSUN dataset with the same hardware assumptions
as the previous case study. Table 5 shows that PALEO estimations are close to empirical TensorFlow
run time for both the discriminator and generator networks. Figure 3d plots the estimated speedups
for training the model with a batch size 256 on up to 128 workers under strong scaling. With-
out communication-intensive fully-connected layers, while training this GAN architecture is more
scalable than AlexNet, PALEO still only predicts an 8× sub-linear speedup with 64 workers.

Table 5: Full pass time of the discriminator and generator in a GAN architecture.

Forward pass (ms) Backward pass (ms)
Discriminator TensorFlow 30.19 77.39

PALEO Estimation 27.55 79.25
Generator TensorFlow 110.11 374.18

PALEO Estimation 117.02 324.49

5 CONCLUSION

We introduced PALEO – an analytical performance model for exploring the space of scalable deep
learning systems. By extracting computational requirements carried by neural network architectures
and mapping them to the design space of software, hardware, and communication strategies, PA-
LEO can effectively and accurately model the expected scalability and performance of a putative
deep learning system.

8

Published as a conference paper at ICLR 2017

REFERENCES

Atlas timings. URL http://math-atlas.sourceforge.net/timing/.

Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009. Santa Clara, USA. ISBN 630813-
054US.

Martın Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow. org, 2015.

Thomas Breuel. The effects of hyperparameters on sgd training of neural networks. arXiv:1508.02788, 2015.

Tianqi Chen et al. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv:1512.01274, 2015.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning. arXiv:1410.0759, 2014.

Soumith Chintala et al. convnet-benchmarks, 2016. URL https://github.com/soumith/
convnet-benchmarks.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew. Deep learning with
cots hpc systems. In Proceedings of the 30th international conference on machine learning, pp. 1337–1345,
2013.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297–301, 1965.

Jeffrey Dean et al. Large scale distributed deep networks. In NIPS, pp. 1223–1231, 2012.

Forrest N Iandola, Khalid Ashraf, Mattthew W Moskewicz, and Kurt Keutzer. Firecaffe: near-linear accelera-
tion of deep neural network training on compute clusters. In CVPR, 2016.

Norm Jouppi. Google supercharges machine learning tasks with tpu custom
chip, 2016. URL https://cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-learning-tasks-with-custom-chip.html.

Alex Krizhevsky. cuda-convnet2, 2014a. URL https://github.com/akrizhevsky/
cuda-convnet2.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv:1404.5997, 2014b.

Andrew Lavin. Fast algorithms for convolutional neural networks. In CVPR, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet: Training deep networks in spark.
arXiv:1511.06051, 2015.

Derek Murray et al. Announcing tensorflow 0.8 now with distributed computing support!, 2016. URL https:
//research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.
html.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, pp. 1–9, 2015a.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015b.

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann LeCun. Fast
convolutional nets with fbfft: A gpu performance evaluation. In ICLR, 2015.

R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in supporting persistently
optimized BLAS. Software: Practice and Experience, 2005.

Huasha Zhao and John Canny. Butterfly mixing: Accelerating incremental-update algorithms on clusters. In
SIAM Conf. on Data Mining. SIAM, 2013.

9

http://math-atlas.sourceforge.net/timing/
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://github.com/akrizhevsky/cuda-convnet2
https://github.com/akrizhevsky/cuda-convnet2
https://research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html
https://research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html
https://research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html

Published as a conference paper at ICLR 2017

A

We include supplementary figures in appendix due to the space constraint.

0 2 4 6 8 10 12 14
Time (ms)

fc8
fc7
fc6

conv5
conv4
conv3
conv2
conv1

L
ay

er
s

Forward

0 10 20 30 40 50 60
Time (ms)

Backward wrt inputs

0 5 10 15 20
Time (ms)

Backward wrt filters

Paleo Estimation
TensorFlow

(a) Layer-wise comparison in AlexNet.

0 10 20 30 40 50 60 70
Time (ms)

fc8
fc7
fc6

conv5-3
conv5-2
conv5-1
conv4-3
conv4-2
conv4-1
conv3-3
conv3-2
conv3-1
conv2-2
conv2-1
conv1-2
conv1-1

L
ay

er
s

Forward

0 50 100 150
Time (ms)

Backward wrt inputs

0 20 40 60 80 100
Time (ms)

Backward wrt filters

(b) Layer-wise comparison in VGG-16.

Figure 4: Layer-wise comparison between PALEO Estimation and TensorFlow in
AlexNet (Krizhevsky, 2014b) and VGG-16 (Simonyan & Zisserman, 2014).

10

	Introduction
	Background and Related Work
	Paleo
	Computation Modeling
	Computation Time for a Single Layer
	Computation Time for Networks
	Computation Modeling for Layer Operations

	Communication Modeling
	Platform Percent of Peak

	Experiments
	Layer-wise Evaluation
	Case Studies
	Case 1: NiN with FireCaffe
	Case 2: Inception with TensorFlow
	Case 3: AlexNet with Hybrid Parallelism

	Hypothetical Setups
	AlexNet in a Cloud-based Setup
	GAN Architecture

	Conclusion
	

