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ABSTRACT

We propose a deep reinforcement learning algorithm for semi-cooperative multi-
agent tasks, where agents are equipped with their separate reward functions, yet
with willingness to cooperate. Under these semi-cooperative scenarios, popular
methods of centralized training with decentralized execution for inducing coop-
eration and removing the non-stationarity problem do not work well due to lack
of a common shared reward as well as inscalability in centralized training. Our
algorithm, called Peer Evaluation based Dual DQN (PED-DQN), proposes to give
peer evaluation signals to observed agents, which quantifies how they feel about
a certain transition. This exchange of peer evaluation over time turns out to render
agents to gradually reshape their reward functions so that their action choices from
the myopic best-response tend to result in the good joint action with high coop-
eration. This evaluation-based method also allows flexible and scalable training
by not assuming knowledge of the number of other agents and their observation
and action spaces. We provide the performance evaluation of PED-DQN for the
scenarios ranging from a simple two-person prisoner’s dilemma to more complex
semi-cooperative multi-agent tasks. In special cases where agents share a common
reward function as in the centralized training methods, we show that inter-agent
evaluation leads to better performance.

1 INTRODUCTION

Recent advances in reinforcement learning have been focused on the utilization of deep learning
techniques. These deep learning methods have been applied to several challenging tasks such as
playing games (Mnih et al., 2015; Silver et al., 2016), and robotic control (Gu et al., 2017). However,
most of these recent techniques were developed under the assumption of controlling a single learning
agent. Applications such as robot swarms (Yogeswaran et al., 2013; Huttenrauch et al., 2017) and
network routing (Ye et al., 2015) are better modeled as multi-agent systems, where most RL methods
designed for single-agent purposes do not directly translate to their multi-agent counterparts. A
prominent reason is that other learning agents are usually regarded as part of the environment, where
it is difficult to learn cooperation because a small change in one agent’s policy may cause another
agent’s policy to perform sub-optimally (i.e., non-stationarity).
Many approaches have been proposed in order to induce cooperation among agents using multi-
agent reinforcement learning. A popular approach, referred to as centralized training and distributed
execution (CTDE), assumes that agents are fully cooperative, possibly controlled by a single admin-
istrative domain. It uses a centralized training module with a shared reward function that can be
detached from the individual policies during execution. Using a centralized module, they address
the non-stationarity problem and instill in agents the context of cooperation, which naturally appears
in distributed execution after training. Recent related work includes COMA (Foerster et al., 2018),
VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), CommNet (Sukhbaatar et al., 2016),
BiCNet (Peng et al., 2017), and DIAL (Foerster et al., 2016), just to name a few.
However, CTDE-based multi-agent reinforcement learning (MARL) has a couple of limitations.
First, many other multi-agent tasks exist with semi-cooperative agents. A semi-cooperative agent
naturally has its own separate reward function (the shared reward scenario is a special case), but is
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willing to cooperate if an incentive for cooperation1 is appropriately provided. Semi-cooperation
is often more practical due to the complexity of defining a global reward function, or the agents
are controlled under different administrative domains. Second, CTDE-based methods involve the
concerns of scalability and sampling inefficiency. The input for the centralized neural network
involves the concatenation of the observations and actions, and optionally, the full state. Since the
order of the agents in the input vector is likely to be pre-determined, the number of samples needed
in order to obtain all the possible action combinations for the same state increases drastically. The
concatenation of each agent’s information is also proportional to the number of agents, which is often
large depending on the task. This problem can be disregarded if a central state whose dimensionality
is not defined by the number of agents can be used as a sole input to the central module such
as Central-V (Foerster et al., 2018). MADDPG (Lowe et al., 2017) addresses individual reward
functions, yet through ‘pseudo-centralization’ by exchanging each agent’s observation and action
during training, still suffering from inscalability.
In this paper, we propose a deep MARL that addresses aforementioned two concerns. The key
idea is to look at the problem from the mechanism design’s perspective in game theory. In semi-
cooperative sequential tasks, agents will naturally choose the action that is the best response to its
current observation and local reward experience. In our approach, we gradually change the game that
agents play so that their local-view actions from the best responses become closer to a socially-good
joint action. To this end, each agent receives simple peer evaluations in the form of small feedback
messages from nearby agents. These peer evaluations quantify how an agent feels about a certain
transition, rendering each agent reshape its reward function, so as for agents’ local best responses to
result in the global cooperation. This approach is empowered to be scalable and flexible, because (i)
the knowledge of the number of existing agents beyond an agent’s observation is not required, and
(ii) this method does not require agents to share states and actions.
We instantiate our idea to a value-based algorithm and propose a Peer-Evaluation based Dual DQN
(PED-DQN). We use two DQNs trained on a separate timescale, defined by the length of their ex-
perience replays. One DQN, called Action DQN (A-DQN), is trained using the evaluated rewards
from the shorter experience replay, while another DQN, called Mission-DQN (M-SDQN) is trained
using the agent’s base reward from the long-term experience replay. We use the A-DQN to decide
the behavior of the agents, while the M-DQN is used for incentivization. We demonstrate the perfor-
mance of PED-DQN by comparing it with two variants of QMIX and independent DQN on various
levels of cooperation of the predator-prey environment.

Related Work Multi-agent reinforcement learning (MARL) with decentralized execution has
been studied extensively (Busoniu et al., 2008). One of the earlier approaches in fully decentral-
ized deep MARL is Tampuu et al. (2017) that used independent Q-learning in Deep Q-Networks.
Other fully decentralized approaches were mainly focused on solving the non-stationarity problem
in cooperative agents. This problem is especially prevalent in fully decentralized MARL due to the
agents’ lack of ability to communicate. Omidshafiei et al. (2017) and Palmer et al. (2017) proposed
a dynamic learning rate that depends on the TD-error.
Multiple studies about learning communication protocols have been published (Das et al., 2017;
Lazaridou et al., 2016; Mordatch & Abbeel, 2017). Closely related to our line of research is by
Foerster et al. (2016) which proposed to push gradients from one agent to another through the com-
munication channel. This can be regarded a form of providing a feedback from one agent to another.
A significant downside to their approach is inscalability when all agents are allowed to commu-
nicate at the same time. A more scalable communication approach was proposed by CommNet
(Sukhbaatar et al., 2016) where agents are allowed to “negotiate” before deciding their actions. This
is done by having a message output for each neural network layer and then averaging the messages
for each agent which will be fed to the next neural network layer. Peng et al. (2017) suggest using
Bi-directional RNNs before selecting the actions. Their approach induces a predetermined flow of
information since they used the Bi-directional RNN as the communication channel between agents.
More sophisticated approaches use centralized training with decentralized execution. MADDPG
(Lowe et al., 2017) proposed an algorithm, which includes the state-action pairs of the other agents
as an input to the critic network. This can be done because the critic network is not used during
execution. However, the complexity of training the critic network increases as the number of agent

1In cooperative game theory, Nash bargaining solution (Nash, 1950) and Shapley value (Shapley, 1953) are
the axiomatic rules for fair distribution of cooperation incentive. The way of allocating cooperation incentive
to agents is beyond the scope of this paper.

2



Under review as a conference paper at ICLR 2019

increases. A similar approach is COMA (Foerster et al., 2018), which tries to solve the credit assign-
ment problem. However, COMA assumes a fully-cooperative scenario in which there is a common,
shared reward among all the agents. For value-based approaches, QMIX (Rashid et al., 2018) and
VDN (Sunehag et al., 2018) uses some centralized extension to DQN for value function factoriza-
tion. Similar to Foerster et al. (2016) and Mordatch & Abbeel (2017), we allow communication
among agents. However, instead of using messages as supplementary observations, we use these
messages to communicate how an agent evaluates a certain transition.
Leibo et al. (2017) studied the environment where each agent has a separate reward function. In
particular, agents face a social dilemma where mutual cooperation may give them higher rewards,
but they have no guarantee of other agent’s cooperation. Hughes et al. (2018) attempts to solve these
social dilemmas by explicitly reshaping the rewards using inequity aversion terms. Their method
induces cooperation from the agent itself, whereas our method reshapes the payoff function of each
agent based on peer evaluations.

2 BACKGROUND

2.1 STOCHASTIC GAME MODEL

We consider a semi-cooperative multi-agent task by modeling it with a stochastic game. We consider
n agents, indexed by a ∈ A = {1, 2, ..., n}. We denote a−1 as the set of other agents A \ a. Since
we assume the possibility of heterogeneous agents, each agent a has a set of actions Ua. At each
time step, each agent has a partial observation oa, which it uses for its policy πa(ua|oa) to decide
its action ua ∈ Ua. The set of observations and states from all agents at a time is denoted by O and
S, respectively. A joint action of all the agents is denoted by u ∈ U , where U := U1 ⊗ · · · ⊗ Un is
the set of all joint actions. We represent the true state as s ∈ S. Once each agent takes its action,
forming a joint action, say u, a transition to the next state will occur, which follows a transition
function P (s′|s,u). Each agent will then receive a reward ra(s,u) that may differ across agents.
The agents’ goal is to maximize its own total expected return Ra = E[

∑T
t=0 γ

trta] where γ is the
discount factor and T is the length of an episode. Throughout this paper, we use time step ‘t’ in the
superscript and agent index ‘a’ in the subscript, in all notations having their dependence.

2.2 DEEP Q-NETWORKS

Deep Q-Network (DQN) is a widely accepted deep reinforcement learning method which di-
rectly approximates the optimal Q-function Qπ?(s,u) via a deep neural network Q(s,u; θ) with
parameter θ. The Q-function of the optimal policy π? satisfies Qπ?(s,u) = E[R(s,u) +
γmaxu′∈U Qπ?(s′,u′)] where s′ is the next state. One tries to approximate Qπ?(s,u) by a
deep neural network Q(s,u; θ) with parameter θ. The network optimizes the loss function de-
fined as l(s,u, r, s′; θ) := (Q(s,u; θ)− (r + γmaxu′∈U Q(s′,u′; θ′)))

2, where θ′ is the target
network parameter which is slowly updated with the current network parameter θ. During the train-
ing, the agent chooses the best action under its current Q-network parameter θ, i.e. it chooses
u = argmaxu′ Q(s,u′; θ) for state s and updates its parameter θ iteratively. For the practical sta-
bility of the DQN, people add the experience replay which stores the experiences (s,u, r, s′) (Mnih
et al., 2015).

3 METHODS

In this section, we elaborate on our idea of encouraging cooperation between agents without the
need for centralization. The mechanism design hails from the concept of peer evaluation, in which
agents are able to communicate their assessment of other agents’ performance. In the next subsec-
tions, we discuss the details on the network architecture of and the training method of our proposed
mechanism, for which we start by presenting how peer evaluations are quantified.

3.1 PEER EVALUATION BASED REWARD SHAPING

Temporal Difference as Peer Evaluation The concept is that at each time step t, each agent a
gives an evaluation to its observable agents, which we denote by the set Kt

a, when other agents
a−1 do actions that increases/decreases a’s reward. Then, using these evaluation exchange, agent
a will also receive peer evaluations from the agents in Kt

a, which is used to implicitly reshape its
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own reward function. The role of a’s evaluation is to to quantify how much help or harm the joint
actions u = (ua, ua−1) did with respect to a’s reward function, for which we use the temporal
difference (TD). The TD seems to be a good candidate of peer evaluation, since it is a good measure
of error in the estimation of state values. However, this interpretation of the TD is correct only in
stationary environments, where Q(s, u) is correct if the policies are stationary. In non-stationary
environments like our setting, changes in the policies of the other agents significantly affect the TD
as the Q-values are fitted according to the previous transition probabilities, which are in turn defined
by the joint policies. Thus, our idea is to attribute the local TD error to the change in other agents’
policy. Using this intuition, we define the evaluation given by agent a as:

zta(o
t
a, o

t+1
a , ut) = ra +

(
NOT DONE× γmax

u
Qa(o

t+1
a , u; θta)

)
−Qa(ota, uta; θta), (1)

where NOT DONE = 0 when the episode is terminated, and 1 otherwise.
The choice of local TD as a peer evaluation signal comes from the need to be able to evaluate
the transition without explicit knowledge about the actions done by the observed agents since the
number of encountered agents may vary over time. We argue that it is more sample efficient to learn
the value of the transition itself through the agent’s local observation than to tie the value of the
transition to some combination of the local observations and joint actions. This is because partially-
observed transitions involving different agents are not considered distinct. Thus, there is no need to
get samples of the same interaction for every other agent.

How to Reshape Rewards Since agents are basically reward-driven, a candidate approach is to
reshape the reward function such that it gives a higher reward when the agents are cooperating.
Those reshaped rewards should depend on a given task and other environmental factors. Thus, we
learn how to reshape it for cooperation. At each time step t, each agent a will now use the reshaped
reward r̂ta instead of the base reward ra, with the goal of approximating the following optimal Q-
function:

Q?a(o
t
a, u

t) = E
[
r̂ta + γmax

u
Q?a(o

t+1
a , u)

]
. (2)

The design of the reshaped reward r̂ta is of significant importance, since it will determine how
coordinated the converged game will be, i.e., each agent local best response leads to the global
cooperation. In our design, We use other agents’ evaluation of the transition, and define the following
evaluated reward r̂ta as:

r̂ta = ra + sgn(Zta)×min(|Zta|, |Zta − zta|, |Zta + zta|), (3)

where

Zta =
β

|Kt
a|
∑
k∈Kt

a

ztk. (4)

In the above, zta is the agent’s given evaluation as in (1), Zta is the agent’s received aggregated peer
evaluation, Kt

a is the set of observed agents that gave agent a an evaluation, and β is the weight
hyperparameter quantifying how each agent is willing to reshape its reward. Note that the case
when β = 0 corresponds to when agents are totally selfish. Note that sgn(Za) is the sign of Za.
In (3), one can choose a simpler formulation r̂a = ra + Za, but we apply the following scheme
for better stability. The minimization term attempts to take into account the agent’s own given
evaluation. This is to avoid overestimating the social value when Za and za go towards the same
direction, and to avoid a sudden change of direction when having different signs. In (4), mainly
for simplicity we use just an average of the agent’s received evaluations, which may reduce the
magnitude of the evaluations when the majority of evaluations has the same sign. However, other
schemes for aggregating peer evaluations such as individually-weighted evaluations may be applied,
left for a future study.

3.2 PEER-EVALUATION BASED DUAL DQN (PED-DQN)

Dual DQN We now describe the design of our architecture called Peer Evaluation based Dual
DQN (PED-DQN), which is composed of two timescale-separated DQNs. Each learning agent
contains an Action DQN (A-DQN) and a Mission DQN (M-DQN), which are used for the action-
selection and peer evaluation, respectively. The A-DQN considers other agent’s feedback when
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Figure 1: The flow of information during the training. Action DQN (A-DQN) outputs the Q-values
of the observation-action pairs at time t. We select an action uta using an ε-greedy policy and then
receive the reward rta and the next observation ot+1

a . We then calculate the evaluations by using the
TD of Mission DQN (M-DQN). After exchanging evaluations with observed agents, we calculate
the evaluated reward and add the transitions to their respective replay buffers.

deciding on an action and is trained on the evaluated reward r̂a. Thus, the A-DQN tries to minimize
the loss function:

lAa (o
t
a, u

t
a, r̂

t
a, o

t+1) =
(
QAa (o

t, ut; θta)− (r̂ta + γmax
u

QAa (o
t+1, u; θ′

t
a))
)2
. (5)

In contrast, M-DQN is trained according to its own “mission” defined by the base reward ra, utilizing
the classical DQN loss. Using the M-DQN, we calculate the agent’s evaluation as defined in (1),
making QAa a function of QM−a. The flow of data in PED-DQN is illustrated in Figure 1.
The problem with using a single DQN is that the peer evaluations are too unstable. This is because
the TD is fitted according to the latest policy of the other agents. For the same observations and
joint actions, the incentives given at times t and t + k might be too different even for a small k.
This confuses the receiving agents and may cause the DQNs to fail to converge. In addition, a single
DQN will not be able to differentiate between peer evaluations and actual rewards. Therefore, given
incentives are heavily affected by the evaluations received in the previous training steps.
An alternate design would be to have two sets of outputs for a single DQN. This may solve the
separation of the incentives and the base rewards, but this does not completely solve the instability
of the incentives. In order to address it, we have to use a separate DQN with a different timescale.
The key idea is that A-DQN is fitted according to the latest joint policies of the agents, while M-DQN
learns the Q-values according to the different joint policies of the agents across time. In addition,
we only train M-DQN using the base rewards. This allows the agents to give evaluations that are not
heavily influenced by the received evaluations.
Although there are no theoretical convergence guarantees for the DQN, the convergence of the al-
gorithm depends on the convergence of the M-DQN. Once the M-DQN converges, the evaluated
rewards become more stable, which in turn stabilizes the rewards perceived by the A-DQN.

Dual Replay Buffer and TD-error To achieve timescale differentiation between A-DQN and M-
DQN, we employ dual replay buffers with different capacities. A short replay buffer is used to store
transitions for training A-DQN, while a long replay buffer is used for the M-DQN. If the long replay
buffer is long enough, we can approximately say that M-DQN outputs the expected returns of the
agent with respect to the average policy of the observed agents. A negative TD means that observed
agents’ joint actions lead to lower expected returns, so as for the other agents to be penalized.

Scalability and Flexibility Since we use two DQNs for a single agent, the number of parameters
to be trained is also doubled. However, we argue that doubling the number of parameters does not
necessarily double the complexity of the task. We note that the scalability problems in a neural
network generally come from the complexity of the input, which in our case does not increase since
we only use local observations. In addition, the local observation assumption is more flexible to
the varying number of observed agents. This is in stark contrast to many existing algorithms with a
centralized training module whose input size increases as the number of agents n grows.

3.3 EXAMPLE: PRISONER’S DILEMMA

We illustrate how our peer evaluation based reward reshaping works using an example of two-person
Prisoner’s Dilemma (PD), as in Table 1a. It is widely known that the PD game has the property that
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(a) Q-values (b) perceived rewards (c) actions and rewards

Figure 2: Evolution of Q-values and perceived rewards for the Prisoner’s dilemma

the Nash equilibrium (formed by each agent’s best response) differs from the socially optimal joint
action. At each step, both agents choose their actions and receive a reward according to their joint
actions. The players play the game repeatedly for 500k times. Since it is a stateless game, we only
use the tabular Q-learning, where the learning rate α = 0.001, the discount factor γ = 0.9, the
evaluation weight β = 1.4. Agents use an ε-greedy policy where we linearly decrease ε from 1.0 to
0.05 in the first 50k steps. For testing purposes, we keep track of the evaluated rewards by simulating
all possible combination of actions.

A B
A 3, 3 0, 4
B 4, 0 1, 1

(a) original payoff

A B
A 3.6, 3.6 0.4, 3.2
B 3.2, 0.4 0.4, 0.4

(b) perceived payoff

Table 1: Prisoner’s dilemma

When agents use the best-response strategy, they
will both choose action B, which is a sub-optimal
point. This is observed when we use independent
Q-learning. However, when we use peer evaluation
signals, the perceived payoff tables are effectively
changed. The Q-values and reward evolution are
shown in Figures 2a and 2b, respectively. Only agent 1’s values are shown since the game is sym-
metric and the plots are similar. A zoomed-in plot of the evaluated rewards is shown in Figure 2c.
Notice that at around t = 22k, the game has already changed such that it has a single global opti-
mum. However, both agents still have not learned to choose action A. To encourage the other agent
into choosing A, they keep increasing the incentives for A whenever their actions don’t match, and
keep increasing the penalty for B in all cases. This goes on until they realize that the other agent
has changed policies or the Mission Q-table converges. Once the agents start acting cooperatively,
the evaluation decreases to a value that is just high enough to prevent agents from changing their
policies as can be seen in Figure 2b, and Table 1b.

4 EXPERIMENTS

4.1 ENVIRONMENTS

Fully-cooperative Pursuit A popular performance evaluation environment in cooperative multi-
agent systems is pursuit (a.k.a. predator-prey). The environment is an n × n grid world, where
each cell is either empty, a wall, or occupied by a predator or a prey. We only trained the predator
while the prey is a rule-based agent whose policy is to move to an adjacent empty cell. The goal
is to surround the prey with all the predators. A larger number of predators would require more
cooperation since they all have to be in the 3 × 3 area centered around the prey. Each agent has
five possible actions corresponding to north, south, east, west, and stay. Agents can only
observe a 5 × 5 grid centered at their own coordinates. Observations at the edge of the map are
padded with walls. Predators are rewarded with value 10 when they complete the task.

Selfish Quota-based Pursuit To show our method’s effectiveness for semi-cooperative agents, we
modified the pursuit scenario to allow individual rewards. For each episode, each predator will be
assigned a number of preys to capture, indicated by the quota. Only those within the 3 × 3 area
centered at the prey will be credited for the capture. A predator will only get a positive reward when
it achieves its quota. In this scenario, the agents get a penalty of −0.1, whenever they chose actions
aside from stay. This means that there is no reason to move after the agent has achieved its own
quota. The episode is done when all the agents achieve their respective quotas or the maximum
number of steps is reached. A prey will regenerate in a random location if the environment runs out
of prey. We change the difficulty of the task by varying the map size and the minimum number of
agents around the prey in order to capture.
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4.2 ABLATIONS, ARCHITECTURE, AND TRAINING

We perform ablation experiments to validate our claims that TD-based peer evaluation leads to more
prosocial strategies among agents. First, because of the initial stochasticity of received rewards, one
may claim that agents are cooperating in order to either shorten the episode’s length or get positive
rewards from observing other agents. To invalidate this claim, we compare our method with agents
that give random evaluation values. Second, we show that TD-based evaluation is a smarter way
of shaping cooperation than just naively sharing the rewards by comparing this to the case where
za = ra. Finally, we show the need for a separate DQN for peer evaluation by comparing it to a
scenario where the evaluations come from the TD error of the Action DQN. Since we removed the
second DQN, this peer evaluation scheme shall be called PE-DQN.
For our experiments, we used a single convolution layer followed by three fully-connected layers.
The convolution layer has 32 units, while the two hidden layers have 64 units each. Agents do not
share parameters for the independent DQN (I-DQN) and PED-DQN. The input to the convolution
layer is the 5× 5× 3 binary encoding of the agent’s observations. The quota and current number of
preys captured are appended to the flattened output of the convolution layer before passing through
the fully-connected layers.
For comparison in the fully-cooperative pursuit, we implemented QMIX with the same architecture
as the I-DQN, but allowed parameter sharing. We appended a onehot-vector encoding of the agent
index right after the convolution layer. Similarly, we encode the observation using a convolutional
layer before passing through QMIX’s hypernetworks. We tested using different learning rates, buffer
size, and training intervals. We present the best results of each algorithm in the what follows.

4.3 RESULTS AND DISCUSSIONS

To quantify the performance in the fully-cooperative pursuit scenario, we use the number of steps
per episode. We compare this against two versions of QMIX: (1) QMIX-full, which uses the entire
map and the coordinate of each agent as input to the hypernetworks, and (2) QMIX-partial, which
uses only a concatenation of the observations of each agent as input to the hypernetworks.
Figure 3 shows the performance of each algorithm for a different number of predators. When the
number of predators is small, QMIX-partial performs the best. However, we note that PED-DQN
performs the best in scenarios with a larger number of agents. Not surprisingly, the performance of
QMIX-partial degrades as the number of agents increases. This can be attributed to the increase in
the number of inputs needed to train the centralized part of QMIX. Similarly, the QMIX-full might
not have been able to factorize the q-values properly due to the number of agents.

(a) 2 predators, 7× 7 map (b) 4 predators, 7× 7 map (c) 5 predators, 8× 8 map

Figure 3: Performance evaluation on fully cooperative pursuit

For the selfish quota-based pursuit, we show the results for four agents and set quota = 4 for
one agent while the rest of the agents only have to capture one prey. We shuffle the quotas for each
episode. We compared to two baselines: (1) independent DQN (I-DQN), and (2) shared DQN (S-
DQN), in which the reward of each agent is equal to the summation of the rewards of all the agents.
Note that S-DQN practically transforms the game into a fully-cooperative scenario.
We measure the average success rates of the agents in three difficulty levels: (1) pair capture, (2) trio
capture, and (3) full capture. In pair and trio captures, the number of predators needed to capture
the prey is two and three, respectively. In full capture, the prey must not be able to move in any
direction. As shown in Figure 4, PED-DQN achieves a high success rate faster than both baselines.
We also note that for pair and trio captures, PED-DQN converges to the same success rate as S-
DQN. This means that the peer evaluation has successfully transformed the perceived individual
reward function of the agents into a cooperative reward function.
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(a) pair capture (b) trio capture (c) full capture

Figure 4: Performance evaluation on quota-based pursuit.

(a) 3 predators, 8× 8 map (b) 4 predators, 12× 12 map (c) 3 predators, 8× 8 map

Figure 5: Trio capture ablations and rewards

We performed our ablation experiments on the trio capture scenario. As seen in Figure 5a, the
TD-error based peer evaluation provides a stable way of transforming the original game into a coop-
erative one. Although the random peer evaluation values also improve through time, we expect that
the DQNs will not be able to stabilize. We also note that naively sharing rewards among observable
agents did not perform well because the agents learned to avoid each other because of the possibility
of sharing the -0.1 reward when observing a moving agent. PE-DQN achieves slower convergence,
but it works fairly well for some tasks. To show the need for a separate Mission DQN, we employed
a more challenging scenario by increasing the map size and the number of agents. As shown in
Figure 5b, the PE-DQN’s success rate starts to decrease after some time. We conjecture that this
is because of the Action DQN’s dependence on other agent’s evaluation since a small change can
cause an alternating positive and negative evaluations among agents.
We now attempt to analyze the evaluated rewards of the agents through training. We ran an experi-
ment on the trio capture scenario with three predators, and fixed their respective quotas as (3, 1, 1).
Figure 5c shows the graph of the total base rewards and evaluated rewards of the following two types
of agents. The high-quota (HQ) agent receives a reward of 90 when it completes the quota. As seen
in Figure 5c, the evaluated rewards of the high-quota agent is almost the same as the base reward.
This is because the low-quota (LQ) agents do not need to give a non-zero evaluation to the HQ agent.
In addition, once the LQ agents complete their quotas, there is no reason to give a high magnitude
evaluation. On the other hand, notice that the evaluated reward of the LQ agents converge to a value
that is close to the base reward. This happens because the TD of M-DQN decreases as the long
experience replay is filled with episodes where the joint policies of the other agents is to cooperate.
Another point of interest is that when the HQ agent gets a lower base reward, the LQ agents also get
a lower evaluation, thus confirming the effectiveness of our evaluation scheme.

5 CONCLUSION

In this paper, we presented Peer-evaluation based Dual DQN (PED-DQN) in order to induce co-
operation among semi-cooperative agents. Through PED-DQN, agents exchange peer evaluation
signals, which gradually changes the game so that an agent’s myopic best-response leads to a higher
global reward. Our results show that using the TD as an inter-agent evaluation smartly reshapes the
individual rewards into a global reward that encourages cooperative behaviors among agents. We
have also shown that PED-DQN can also work for fully-cooperative scenarios and achieve faster
training time. Future works will include smarter aggregation of peer evaluation, as well as run-time
peer evaluations in which agents could change policies during execution.
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SUPPLEMENTARY MATERIAL

A EXPERIMENT DETAILS

A.1 FULLY-COOPERATIVE PURSUIT

The observation of each agent is a 5× 5× 3 binary encoding of the 5× 5 grid centered around the
agent. The first channel encodes the presence of a wall, the second channel encodes the presence of
predators, and the third channel encodes the presence of a prey.
All agents have different neural networks in the Peer-evaluation based Dual DQN (PED-DQN). Each
DQN is composed of one convolution layer with 32 units, followed by two hidden layers with 64
units, and finally an output layer corresponding to the actions.
For the QMIX implementation, we used the same network architecture as I-DQN but appended a
onehot encoding of the agent’s ID to the flattened output of the convolution layer in order to allow
parameter sharing. In the QMIX-full version, we used the full encoding of the whole map as an input
to a 64-unit convolution layer, and then appended the normalized coordinates of all the predators to
the flattened output. We then use that as the input to the hypernetworks. In the QMIX-partial
version, we use the individual observations of each agent as an input to a 32-unit convolution layer.
We then concatenated the flattened outputs of the observations and used this as the input to the
hypernetworks. The mixing network uses two hidden layers with 64 units each. The hypernetworks
are constructed according to the required parameters of the mixing networks.
All networks are optimized using Adam. For PED-DQN, I-DQN, and QMIX-partial, we used a
learning rate of 0.0001 in all scenarios, except for the 5-predator case where 0.00005 performed best.
For the QMIX-full, a learning rate of 0.00005 performed best for all scenarios. We used a discount
factor γ = 0.99. The PED-DQN uses a peer evaluation weight of β = 1.0. The long experience
replay, which is also used by QMIX, has a capacity of 100,000 steps, while the short experience
replay contains the recent 1000 steps. Target networks are updated every 50 steps. Episode length
and training steps are specified in Table 2.

no. of agents map size training steps maximum episode length
2 7 ×7 50000 200
4 7 × 7 400000 400
5 8 × 8 500000 500

Table 2: Training steps and episode lengths

A.2 SELFISH QUOTA-BASED PURSUIT

The observation of each agent is a 5× 5× 3 binary encoding of the 5× 5 grid centered around the
agent. The first channel encodes the presence of a wall, the second channel encodes the presence of
predators, and third channel encodes the presence of a prey. In addition, the agent keeps track of its
quota during the episode and the number of prey it has already captured.
Multiple prey exists in the map. A prey disappears from the map after being captured. A new prey
will appear in a random location when all preys disappear before all the agents have achieved their
quota.
Agents have different neural networks each. The individual DQNs are composed of one convolution
layer with 32 units, followed by two hidden layers with 64 units, and finally an output layer corre-
sponding to the actions. The quota and progress tracker are appended to the flattened output of the
convolution layer before it enters the first hidden layer.
All networks are optimized using Adam with a learning rate of 0.0001. We used a discount factor
γ = 0.99 and a maximum episode length of 1000. The PED-DQN uses a peer evaluation weight
of β = 1.0. Since the non-stationarity problem is more apparent in this scenario, agents are trained
every 32 steps with only the recent 32 steps as training data. The long experience replay contains
the recent 100,000 steps. Target networks are updated every after 50 updates of the current network.
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B ADDITIONAL RESULTS

(a) 2 predators, 7× 7 map (b) 3 predators, 7× 7 map

(c) 4 predators, 7× 7 map (d) 5 predators, 8× 8 map

Figure 6: Success rate on fully cooperative pursuit

(a) pair capture (b) trio capture

(c) full capture

Figure 7: Episode lengths on selfish quota-based pursuit
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