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ABSTRACT

Deep networks for classification are typically trained by maximizing the log
likelihood of the training data. However, the conditional probabilities learned
in this way are often not well-calibrated and are thus not well-suited for cost-
sensitive learning where making different errors incurs different rewards or penal-
ties. In this paper, we propose to directly train neural networks to optimize a cost
sensitive loss via Empirical Risk Minimization (ERM). Empirical results show
that, with proper initialization, ERM training with cost-sensitive loss outperforms
maximum-likelihood training with various form of post-processing on a range of
cost-sensitive classification tasks.

1 INTRODUCTION

For many real-world prediction problems, different errors incur different costs (Domingos, 1999;
Elkan, 2001). For example, consider a bank having to decide whether to provide a loan to an ap-
plicant, where mistakenly providing a loan or mistakenly denying a loan clearly has different costs.
In principle, training deep networks via maximum likelihood (ML) and classifying via Bayes de-
cision rule can address such cost-sensitive classification problems, but the conditional probabilities
learned via ML are known to often be badly calibrated (Guo et al., 2017). In the context of deep
networks and beyond, this has led to a number of post-processing approaches aiming to remedy the
calibration problem (Platt, 1999; Zadrozny & Elkan, 2001; 2002; Niculescu-Mizil & Caruana, 2005;
Naeini et al., 2015; Guo et al., 2017) and the resulting bad cost-sensitive classification performance.

Instead of trying to fix ML training, we propose to directly learn a cost-sensitive decision policy
through empirical risk minimization (ERM) (Vapnik, 1998). In this way, we can train any network
architecture that ends in a softmax layer as a stochastic policy that takes cost-sensitive actions,
instead of using it to model the conditional probability of class membership as in ML training. Our
ERM approach directly trains the network policy to minimize cost, thus avoiding the hard problem
of learning calibrated probabilities.

We evaluate the proposed cost-sensitive policy learning method on CIFAR-10, CIFAR-
100 (Krizhevsky & Hinton, 2009) and the Yelp Review Full (Zhang et al., 2015) dataset. We find that
when initialized with ML training in the beginning, directly optimizing a deep network policy to the
cost-sensitive loss results in better performance than conventional ML training with post-processing.
We note, however, that initialization is important for successful Stochastic Gradient Descent (SGD)
training, raising interesting questions around the need for SGD procedures for non-ML objectives.

2 COST-SENSITIVE DEEP LEARNING

In the cost-sensitive classification setting, we are given a set of n training examples S =
{(xi, yi)}ni=1 where xi ∈ X is the input feature vector and yi ∈ Y is the label, as well as a cost
matrixC ∈ RK×K whereK is the number of classes. Each entry ci,j in the cost matrixC represents
the cost of classifying an example that belongs to class i as class j. The goal is to learn a classifier
such that the expected misclassification cost at prediction time is small.

Works on cost-sensitive learning can be divided into two categories. The first type of work uses
probabilities learned by a machine learning model to make cost-sensitive predictions via Bayes
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rule (Kukar & Kononenko, 1998; Domingos, 1999). The problem is that the probability estimate is
often not accurate especially in deep neural networks. The second category of work extends partic-
ular type of classification models to be cost sensitive, such as support vector machines (Tu & Lin,
2010), decision tree (Bradford et al., 1998; Ting, 2002) and neural networks (Kukar & Kononenko,
1998; Zhou & Liu, 2006; Chung et al., 2016). Our work belongs to the second category, but we
approach cost-sensitive deep learning from a stochastic policy-learning perspective via ERM.

2.1 MAXIMUM-LIKELIHOOD TRAINING WITH POST-PROCESSING

The most common approach to multi-class classification with a deep network fw(y|x) is to model
the conditional probability of label y given feature vector x using a softmax output layer

pw(y|x) =
exp(fw(x, y))∑

y′∈Y exp(fw(x, y
′))
. (1)

Training is done by maximizing the log likelihood of the training set S

ŵ = argminw

n∑
i=1

−log(pw(yi|xi)). (2)

If the resulting network pŵ(y|x) succeeds in accurately modeling the conditional probabilities, the
optimal cost-sensitive classification rule can be derived via Bayes decision rule

ŷ = argminy∈Y
∑
y′∈Y

pŵ(y
′|x)cy,y′ . (3)

Unfortunately, it was found that the learned pŵ(y|x) is often not well calibrated, which in turn can
lead to bad cost-sensitive classification performance.

2.2 COST-SENSITIVE POLICY LEARNING VIA ERM

Instead of modeling the conditional probability, we directly model and train the policy that makes the
cost-sensitive classification decisions, thus avoiding the intermediate step of learning the conditional
class probabilities. In particular, we reinterpret a deep network fw(y|x) with a softmax layer as a
stochastic policy that selects actions (Joachims et al., 2018)

πw(y|x) =
exp(fw(x, y))∑

y′∈Y exp(fw(x, y
′))
. (4)

The training objective is to find a policy πŵ that minimizes the cost-sensitive empirical risk

ŵ = argminw

n∑
i=1

∑
y∈Y

cyi,yπw(y|xi). (5)

A regularizer can be added as well. To pick an action y for a new example x, we can either sample
an action from the learned policy y ∼ πŵ(Y |x), or pick the action corresponding to the mode

ŷ = argmaxy∈Y πŵ(y|x). (6)

We use mode predictions in the following, because we found that mode predictions perform slightly
better than sampling predictions.

3 EXPERIMENTS

The following experiments compare the empirical performance of our cost-sensitive policy opti-
mization approach (CS Policy) with several variants of ML training with post-processing. In par-
ticular, we compare against ML Max – predict the class with the maximum value of pŵ(y|x), ML
Bayes – predict the class that minimizes the expected loss according to Equation (3), and ML Cali-
brated Bayes – first calibrate the model with temperature scaling (Guo et al., 2017) and then predict
according to Equation (3). In the following, we present results for image classification and text
classification.
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Table 1: Cost-sensitive prediction loss on the CIFAR and the Yelp datasets.
Methods CS Policy ML Max ML Bayes ML Calibrated Bayes
CIFAR-10 0.016±0.001 0.019±0.001 0.019±0.001 0.019±0.001
CIFAR-100 0.201±0.002 0.212±0.002 0.210±0.003 0.209±0.003
Yelp Review 0.1090±0.0003 0.118±0.006 0.115±0.005 0.114±0.004

Table 2: Const-sensitive prediction loss for different intermediate losses on CIFAR10.
Intermediate Loss i 0 0.2 0.4 0.6 0.8 1
ML Max 0.0132 0.0262 0.0391 0.0521 0.065 0.0780
ML Bayes 0.0127 0.0259 0.0387 0.0518 0.0651 0.0780
ML Calibrated Bayes 0.0119 0.0252 0.0383 0.0517 0.0647 0.0780
CS Policy (ML init) 0.0117 0.0227 0.0366 0.0490 0.0596 0.0756
CS Policy (random init) 0.0156 0.1026 0.1505 0.1025 0.0673 0.0728

For image classification, we perform experiments on the CIFAR-10 and CIFAR-100 (Krizhevsky
& Hinton, 2009) datasets, which consist of images of 10 classes in 2 super classes and 100 classes
in 20 superclasses respectively. We define the cost sensitive loss as: (1) If an example is classified
correctly, then the loss is 0. (2) If an example is misclassified but in the same super class, the loss is a
constant intermediate loss i ∈ [0, 1]. (3) If an example is misclassified into another super class, then
the loss is 1. For text classification, we perform experiments on the Yelp Review Full dataset (Zhang
et al., 2015). The dataset consists of reviews of 5 classes which are the number of stars users rated
the items. The cost sensitive loss of classifying a review of star a as star b is defined as 0.25∗ |a− b|.
Throughout our experiments, we randomly select 10% of the training dataset as validation set and
the rest as the new training set for all the three datasets.

We use the ResNet20 architecture (He et al., 2016) for image classification and the Very Deep Con-
volutional Neural Network with MaxPooling (Conneau et al., 2016) for text classification. All of the
experiments are trained with regular SGD with momentum parameter 0.9 (Sutskever et al., 2013).
For image classification, the models are trained for 1000 epochs and the learning rates are decayed
by factors of 10 at 500 and 750 epochs. For text classification, models are trained for 12 epochs with
the learning rate schedule from (Conneau et al., 2016). For ML training, we grid-search the learn-
ing rate in {0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.5} and {0.001,0.002,0.005,0.01,0.02,0.05}
and weight decay in {1e-5,2e-5,5e-5,1e-4,2e-4,5e-4} and {1e-6,2e-6,5e-6,1e-5,2e-5,5e-5} for image
classification and text classification respectively. For CS Policy training with ML initialization, we
initialize the policy networks with ML training (hyperparameters selected for ML training) for half
of the epochs, and then train using the ERM objective from that starting point. We also grid-search
the learning rate and weight decay in the same range. For CS Policy with random initialization, we
train the policy from scratch, again grid-searching the hyperparameters as above. Experiments with
the final hyperparameters are repeated 5 times to assess statistical significance.

The results for image classification with intermediate loss i = 0.1 and text classification are given
in Table 1. The results show that training with cost-sensitive loss significantly outperforms models
trained on log loss even when they are post-calibrated. More details about the relative performance
of the methods is given in Table 2 for the CIFAR10 dataset for different intermediate losses. First,
it shows that initialization of the policy-learning objective is very important. Second, the policy op-
timization approach with such initialization gives superior cost-sensitive classification performance
over a range of intermediate losses i.

4 DISCUSSION

In this paper we proposed to optimize the cost-sensitive classification performance of deep networks
via policy learning and ERM. We found that with good initialization, ERM training with cost sen-
sitive loss leads to performance gains, avoiding the difficult problem of well-calibrated conditional
probability estimation. Future work includes improved SGD algorithms that are less reliant on
initialization, and extending full-information cost-sensitive learning to conterfactual cost-sensitive
learning (Joachims et al., 2018). This work was supported in part by NSF award IIS-1615706.
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