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ABSTRACT

Graph kernels have been successfully applied to many graph classification prob-
lems. Typically, a kernel is first designed, and then an SVM classifier is trained
based on the features defined implicitly by this kernel. This two-stage approach
decouples data representation from learning, which is suboptimal. On the other
hand, Convolutional Neural Networks (CNNs) have the capability to learn their
own features directly from the raw data during training. Unfortunately, they can-
not handle irregular data such as graphs. We address this challenge by using graph
kernels to embed meaningful local neighborhoods of the graphs in a continuous
vector space. A set of filters is then convolved with these patches, pooled, and
the output is then passed to a feedforward network. With limited parameter tun-
ing, our approach outperforms strong baselines on 7 out of 10 benchmark datasets,
and reaches comparable performance elsewhere. Code and data are publicly avail-
able1.

1 INTRODUCTION

Graphs are powerful structures that can be used to model almost any kind of data. Social networks
(Kitsak et al., 2010), textual documents (Mihalcea & Tarau, 2004), the World Wide Web (Page et al.,
1999), chemical compounds (Mahé & Vert, 2009), and protein-protein interaction networks (Borg-
wardt et al., 2007), are all examples of data that are commonly represented as graphs. As such, graph
classification is a very important task, with numerous significant real-world applications. However,
due to the absence of a unified, standard vector representation of graphs, graph classification cannot
be tackled with classical machine learning algorithms.

Kernel methods offer a solution to those cases where instances cannot be readily vectorized. The
trick is to define a suitable object-object similarity function (known as a kernel function). Then,
the matrix of pairwise similarities can be passed to a kernel-based supervised algorithm such as the
Support Vector Machine (Cortes & Vapnik, 1995) to perform classification. With properly crafted
kernels, this two-step approach was shown to give state-of-the-art results on many datasets (Sher-
vashidze et al., 2011), and has become standard and widely used. One major limitation of the graph
kernel + SVM approach, though, is that representation and learning are two independent steps. In
other words, the features are precomputed in separation from the training phase, and are not opti-
mized for the downstream task.

Conversely, Convolutional Neural Networks (CNNs) learn their own features from the raw data
during training, to maximize performance on the task at hand. CNNs thus provide a very attractive
alternative to the aforementioned two-step approach. However, CNNs are designed to work on
regular grids, and thus cannot process graphs.

We propose to address this challenge by extracting patches from each input graph via community
detection, and by embedding these patches with graph kernels. The patch vectors are then convolved
with the filters of a 1D CNN and pooling is applied. Finally, to perform graph classification, a fully-
connected layer with a softmax completes the architecture.

We compare our proposed method with state-of-the-art graph kernels and a recently introduced
neural architecture on 10 bioinformatics and social network datasets. Results show that our Kernel
CNN model is very competitive, and offers in many cases significant accuracy gains.

1https://goo.gl/WG7nkD
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2 RELATED WORK

2.1 GRAPH KERNELS

A kernel implicitly represents objects as vectors in a Hilbert space H (Schölkopf & Smola, 2001).
Given a setX , let k : X 2 → R be a positive semidefinite kernel function. Then, there exists a Hilbert
spaceH, known as the Reproducing Kernel Hilbert Space (RKHS) associated with k. Furthermore,
there exists a mapping φ : X → H, such that, for any (x, x′) ∈ X 2 the kernel value k(x, x′) is equal
to the inner product 〈φ(x), φ(x′)〉H.

A graph kernel is a kernel defined on pairs of graphs. Graph kernels can be viewed as graph similar-
ity functions, and currently serve as the dominant tool for graph classification. Most graph kernels
compute the similarity between two networks by comparing their substructures, which can be spe-
cific subgraphs (Shervashidze et al., 2009), random walks (Kashima et al., 2003; Gärtner et al.,
2003; Mahé et al., 2004; Borgwardt et al., 2005; Vishwanathan et al., 2010; Sugiyama & Borg-
wardt, 2015), cycles (Horváth et al., 2004), or paths (Borgwardt & Kriegel, 2005; Feragen et al.,
2013), among others. The Weisfeiler-Lehman framework operates on top of existing kernels and
improves their performance by using a relabeling procedure based on the Weisfeiler-Lehman test
of isomorphism (Shervashidze et al., 2011). Recently, two other frameworks were presented for
deriving variants of popular graph kernels (Yanardag & Vishwanathan, 2015a;b). Inspired by re-
cent advances in NLP, they offer a way to take into account substructure similarity. Some graph
kernels not restricted to comparing substructures of graphs but that also capture their global proper-
ties have also been proposed. Examples include graph kernels based on the Lovsz number and the
corresponding orthonormal representation (Johansson et al., 2014), the pyramid match graph kernel
that embeds vertices in a feature space and computes an approximate correspondence between them
(Nikolentzos et al., 2017), and the Multiscale Laplacian graph kernel, which captures similarity at
different granularity levels by considering a hierarchy of nested subgraphs (Kondor & Pan, 2016).

2.2 GRAPH CNNS

Extending CNNs to graphs has experienced a surge of interest in recent years, following the impres-
sive results reached by CNNs in computer vision (Vinyals et al., 2015; Krizhevsky et al., 2012) and
NLP (Kim, 2014). With the exception of (Tixier et al., 2017), in which graphs are represented as
images using stacked bivariate histograms of their node embeddings and passed to a classical 2D
CNN, most of the CNN-based graph classification approaches proposed in the literature introduce
either operational or architectural modifications to CNNs.

A first class of methods use spectral properties of graphs. An early generalization of the convolution
operator to graphs was based on the eigenvectors of the Laplacian matrix (Bruna et al., 2014). This
work was later generalized to high-dimensional datasets, and to settings where the graph structure
is not known a priori (Henaff et al., 2015). A more efficient model using Chebyshev polynomials
approximation to represent the spectral filters was later presented (Defferrard et al., 2016). All of
these methods, however, assume a fixed graph structure and are thus not applicable to our setting.
The model of (Defferrard et al., 2016) was then simplified by using a first-order approximation of
the spectral filters (Kipf & Welling, 2017), but within the context of a node classification problem
(which again, differs from our graph classification setting).

Unlike spectral methods, spatial methods (Niepert et al., 2016; Vialatte et al., 2016) operate directly
on the topology of the graph. The work closest to ours is probably (Niepert et al., 2016). To extract a
set of patches from the input graph, the authors (1) construct an ordered sequence of vertices from the
graph, (2) create a neighborhood graph of constant size for each selected vertex, and (3) generate a
vector representation (patch) for each neighborhood using graph labeling procedures such that nodes
with similar structural roles in the neighborhood graph are positioned similarly in the vector space.
The extracted patches are then fed to a 1D CNN.

In contrast to the above work, we extract neighborhoods of varying sizes from the graph in a more
direct and natural way (via community detection), and use graph kernels to normalize our patches.
We present our approach in more details in the next section.
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Figure 1: Overview of our Kernel Graph CNN approach.

3 PROPOSED APPROACH

In what follows, we present the main ideas and building blocks of our model. The overarching
process flow is illustrated in Figure 1.

3.1 PATCH EXTRACTION AND NORMALIZATION

Many types of real world data are regular grids, and can thus be decomposed into units that are
inherently ordered along spatial dimensions. This makes the task of patch extraction easy, and
normalization unnecessary. For example, in computer vision (2D), meaningful patches are given by
instantiating a rectangle window over the image. Furthermore, for all images, pixels are uniquely
ordered along width and height, so there is a correspondence between the pixels in each patch, given
by the spatial coordinates of the pixels. This removes the need for normalization. Likewise, in NLP,
words in sentences are uniquely ordered from left to right, and a 1D window applied over the text
provides again natural regions.

However, graphs do not exhibit such an underlying grid-like structure. They are irregular objects
for which there exist no canonical ordering of the elementary units (nodes). Hence, generating
patches from graphs, and normalizing them so that they are comparable and combinable, is a very
challenging problem. To address these challenges, our approach leverages community detection and
graph kernels.

Patch extraction with community detection. There is a large variety of approaches for sampling
from graphs. We can extract subgraphs for all vertices (which may be computationally intractable
for large graphs) or for only a subset of them, such as the most central ones according to some metric.
Furthermore, subgraphs may contain only the hop-1 neighborhood of a root vertex, or vertices that
are further away from it. They may also be walks passing through the root vertex. A more natural
way is to capitalize on community detection algorithms (Fortunato & Hric, 2016), as the clusters
correspond to meaningful graph partitions. Indeed, a community typically corresponds to a set
of vertices that highly interact among each other, as expressed by the number and weight of the
edges between them, compared to the other vertices in the graph. In this paper, we employ the
Louvain clustering algorithm, which extracts non-overlapping communities of various sizes from a
given graph (Blondel et al., 2008). This multilevel algorithm aggregates each node with one of its
neighbors such that the gain in modularity is maximized. Then, the groupings obtained at the first
step are turned into nodes, yielding a new graph. The process iterates until a peak in modularity is
attained and no more change occurs. Note that since our goal here is only to sample relevant local
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neighborhoods from the graph, we could have used any other state-of-the-art community detection
algorithm. We opted for Louvain as it is very fast and scalable.

Patch normalization with graph kernels. After extracting the subgraphs (communities) from a
given input graph, standardization is necessary before being able to pass them to a CNN. We can
define this step as that of patch normalization. To this purpose, we leverage graph kernels, as
described next. Note that since the steps below do not depend on the way the subgraphs were
obtained, we use the term subgraph (or patch) rather than community in what follows, to highlight
the generality of our approach.

Let G = {G1, G2, . . . , GN} be the collection of input graphs. Let S1,S2, . . . ,SN be the sets
of subgraphs extracted from graphs G1, G2, . . . , GN respectively. Since the number of subgraphs
extracted from each graph may depend on the graph (like in our case with the Louvain community
detection algorithm), these sets are likely to vary in size (see Table 2).

Given a graph Gi and its set of subgraphs Si, we denote by Sj
i the jth subgraph and by Pi the total

number of subgraphs extracted from Gi. Let then S = {Sj
i : i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , Pi}}

be the set of subgraphs extracted from all the graphs in the collection, and P its cardinality. Let
finally K ∈ RP×P be the symmetric positive semidefinite kernel matrix constructed from S using
a graph kernel k. Since the total number P of subgraphs for all the graphs in the collection is very
large, populating the full kernel matrix K and factorizing it to obtain low-dimensional representa-
tions of the subgraphs isO(P 3). Fortunately, the Nyström method (Williams & Seeger, 2000) allows
us to obtain Q ∈ RP×p (with p� P ) such that K ≈ QQ> at the reduced cost ofO(p2P ), by using
only a small subset of p columns (or rows) of the kernel matrix. The rows of Q are low-dimensional
representations of the subgraphs and serve as our normalized patches.

3.2 GRAPH PROCESSING

Convolution. To process a given input graph, numerous filters are convolved with the normalized
representations of the patches contained in the graph. For example, for a given filter w ∈ Rp, a
feature ci is generated from the jth patch of graph Gi z

j
i as:

cj = σ(w>zji )

where σ is an activation function. In this study, we used the identity function σ(c) = c, as we
observed no difference in results compared to nonlinear activations. Therefore, when applied to a
patch zji , the pooling operation corresponds to the inner product 〈w, zji 〉. We show in the Appendix
that the filters live in the RKHS of the kernel k that was used to normalize the patches.

By convolvingw with all the normalized patches of the graph, the following feature map is produced:

c = [c1, c2, . . . , cPmax
]>

where Pmax = max(Pi : i ∈ {1, 2, . . . , N}) is the largest number of subgraphs extracted from
a given graph in the collection. For graphs featuring less than Pmax patches, zero-padding is em-
ployed.

Note that this approach is similar to concatenating all the vector representations of the patches
contained in a given graph (padding where necessary), thus obtaining a single vector representation
of the graph, and sliding a unidimensional filter of same size as the length of a single patch vector,
with stride equal to the size of the filter (i.e., no overspanning patches).

Pooling. We then apply a max-pooling operation over the feature map, thus retaining only the
maximum value of c, max(c1, c2, . . . , cPmax), as the signal associated with w. The intuition is
that some subgraphs of a graph are good indicators of the class the graph belongs to, and that this
information will be picked up by the max-pooling operation.

3.3 PROCESSING NEW GRAPHS

When provided with a never-seen graph (at test time), we first sample subgraphs from it (here, via
community detection), and then project them to the feature space of the subgraphs in the training
set. Given a new subgraph Sj , its projection is computed as follows:

zj = Q†v
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whereQ† ∈ Rp×P is the pseudoinverse ofQ ∈ RP×p and v ∈ RP is the vector containing the kernel
value between Sj and all subgraphs in the training set (those contained in set S). The dimensionality
of the emerging vector (p) is the same as that of the normalized patches in the training set. Thus,
this vector can be convolved with the filters of the CNN as previously described.

3.4 CHANNELS

Rather than selecting one graph kernel in particular to normalize the patches, several kernels can
be jointly used. The different representations provided by each kernel can then be passed to the
CNN through different channels, or depth dimensions. Intuitively, this can be very beneficial, as
each kernel might capture different, complementary aspects of similarity between subgraphs. We
experimented with the following popular kernels:

• Shortest path kernel (SP) (Borgwardt & Kriegel, 2005): to compute the similarity between two
graphs, this kernel counts how many pairs of shortest paths have the same source and sink labels,
and identical length, in the two graphs. The runtime complexity for a pair of graphs featuring n1
and n2 nodes is O(n12n22).
•Weisfeiler-Lehman subtree kernel (WL) (Shervashidze et al., 2011): for a certain number h of
iterations, this kernel performs an exact matching between the compressed multiset labels of the two
graphs, while at each iteration it updates these labels. It requires O(hm) time for a pair of graphs
with m edges. For our experiments, we set the h parameter of the WL kernel equal to 5.

This gave us two single channel models (KCNN SP, KCNN WL), and one model with two channels
(KCNN SP+WL).

4 EXPERIMENTAL SETUP

4.1 SYNTHETIC DATASET

Dataset. As previously mentioned, the intuition is that our proposed KCNN model is particularly
well suited for settings where some regions in the graphs are good class indicators. To empirically
verify this claim, we created a dataset featuring 1000 synthetic graphs generated as follows:
First, we generate an Erdos-Rényi graph (Erdös & Rényi, 1959) with number of vertices sampled
from

[
100, 200

]
∩ Z with uniform probability, and edge probability equal to 0.1. We then add to

the graph either a 10-clique or a 10-star graph by connecting their vertices with probability 0.1. An
n-clique is a graph that contains n vertices, and every pair of vertices is connected by an edge. An
n-star graph is a tree consisting of n vertices where one vertex has degree n − 1 and all the other
vertices have degree 1. The first class of the dataset is finally made of the graphs containing a 10-
clique, while the second class features the graphs containing a 10-star subgraph. The two classes are
of equal size (500 graphs each).

Baselines. We compared our model against the shortest-path kernel (SP) (Borgwardt & Kriegel,
2005), the Weisfeiler-Lehman subtree kernel (WL) (Shervashidze et al., 2011), and the graphlet
kernel (GR) (Shervashidze et al., 2009). The first two kernels were presented in subsection 3.4.
The graphlet kernel counts identical pairs of subgraphs up to a certain size k in the two graphs.
Exhaustive enumeration of these subgraphs requires O(nk) time. For large graphs, enumerating all
graphlets is infeasible and sampling schemes are usually employed.

Configuration. We performed 10-fold cross-validation. The C parameter of the SVM (for all graph
kernel baselines) and the number of iterations (for the WL kernel baseline) were optimized on a 90-
10 split of the training set of each fold. We respectively chose from {10n;n ∈ seq(−3, 4,by = 1)}
and {3, 4, 5, 6}. For the graphlet kernel, we sampled 1000 graphlets of size up to 6 from each graph.
For our proposed KCNN, we used an architecture with one convolutional-pooling block followed
by a fully connected layer with 128 units. The ReLU activation was used, and regularization was
ensured with dropout (0.5 rate) (Srivastava et al., 2014). A final softmax layer was added to com-
plete the architecture. It outputs a probability distribution over classes. The dimensionality of the
normalized patches (number of columns in Q) was set to p = 100, and we used 256 filters. The
model was implemented in Python 3.6 using the PyTorch2 library. Batch size was set to 64, and

2https://github.com/pytorch/pytorch
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Table 1: Classification accuracy of state-of-the-art graph kernels: shortest path (SP), graphlet (GR),
and Weisfeiler-Lehman subtree (WL); and the single and multichannel variants of our approach
(KCNN), on the synthetic dataset.

Dataset
Method SP GR WL KCNN

SP
KCNN

WL
KCNN
SP+WL

SYNTHETIC 75.47 69.34 65.88 98.20 97.25 98.40

Table 2: Summary of the 10 real-world datasets used in our experiments.

ENZYMES NCI1 PROTEINS PTC-MR D&D
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

Max # vertices 126 111 620 109 5748 136 89 3782 3648 492

Min # vertices 2 3 4 2 30 12 7 6 22 32

Avg. # vertices 32.63 29.87 39.05 25.56 284.32 19.77 13.00 429.61 508.50 74.49

Max # edges 149 119 1049 108 14267 1249 1467 4071 4783 40119

Min # edges 1 2 5 1 63 26 12 4 21 60

Avg. # edges 62.14 32.30 72.81 25.96 715.66 96.53 65.93 497.75 594.87 2457.34

Total # communities 2856 20168 5197 1193 14981 2752 2591 44015 114152 15499

Avg. # communities 4.76 4.90 4.66 3.46 12.71 2.75 1.72 22.00 22.83 3.09

Avg. # vertices
6.85 6.08 8.36 4.11 22.35 7.18 7.52 19.52 22.26 24.03

per community
# labels 3 37 3 19 82 - - - - -
# graphs 600 4110 1113 344 1178 1000 1500 2000 4999 5000

# classes 6 2 2 2 2 2 3 2 5 3

the number of epochs and learning rate were optimized by performing 10-fold cross-validation on
the training set of each fold. Number of epochs was chosen from the set {25, 50, 100, 200}, and the
learning rate from {10−3, 10−4}. All experiments were run on a single machine consisting of a 3.4
GHz Intel Core i7 CPU with 16 GB of RAM and an NVidia GeForce Titan Xp GPU.
Results. We report in Table 1 average prediction accuracies of our three models in comparison to the
baselines. The results shown in Table 1 confirm our hypothesis that our proposed model (KCNN)
can identify those areas in the graphs that are most predictive of the class labels, as its three vari-
ants achieved accuracies greater than 98%. Conversely, the baseline kernels failed to discriminate
between the two categories. Hence, it is clear that in such settings, our model is more effective than
existing methods. Finally, it is interesting to note that the performance of KCNN with 16 filters was
very close to that reported (with 256 filters).

4.2 REAL-WORLD DATASETS

We also evaluated the performance of our approach on five bioinformatics and five social network
datasets, publicly available at (Kersting et al., 2016). Notice that the bioinformatics datasets are
labeled (labels on vertices), while the social interaction datasets are not. Table 2 shows summary
statistics about these datasets.

Bioinformatics datasets. ENZYMES (Borgwardt et al., 2005) is a dataset of 600 protein tertiary
structures obtained from the BRENDA enzyme database. Each enzyme is a member of one of the
Enzyme Commission top level enzyme classes (EC classes) and the task is to correctly assign the
enzymes to their classes. NCI1 (Wale et al., 2008) contains 4110 chemical compounds screened for
activity against non-small cell lung cancer and ovarian cancer cell lines. PROTEINS (Borgwardt
et al., 2005) consists of 1113 proteins represented as graphs where vertices are secondary structure
elements and there is an edge between two vertices if they are neighbors in the amino-acid sequence
or in 3D space. PTC-MR (Toivonen et al., 2003) is a dataset of 344 organic molecules where
classes indicate carcinogenicity for male rats. D&D (Dobson & Doig, 2003) consists of 1178 protein
structures classified into enzymes and non-enzymes.

Social network datasets. All these datasets were put together by (Yanardag & Vishwanathan,
2015a). IMDB-BINARY and IMDB-MULTI are movie collaboration datasets. The vertices of each
graph represent actors and two vertices are linked by an edge if the corresponding actors appear
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Table 3: 10-fold CV average test set classification accuracy (± standard deviation) of state-of-the-
art graph kernels: shortest path (SP), graphlet (GR), random walk (RW), and Weisfeiler-Lehman
subtree (WL); Deep Kernels (Yanardag & Vishwanathan, 2015a) (unless specified, with the best
performing kernel); a state-of-the-art graph CNN (PSCN k=10) (Niepert et al., 2016); and the single
and multichannel variants of our approach (KCNN); on 10 bioinformatics (top) and social network
(bottom) datasets. Best performance per dataset in bold, among the variants of our Kernel CNN
method underlined.

Method
Dataset

ENZYMES NCI1 PROTEINS PTC-MR D&D

SP 40.10 (± 1.50) 73.00 (± 0.51) 75.07 (± 0.54) 58.24 (± 2.44) > 3 days
GR 26.61 (± 0.99) 62.28 (± 0.29) 71.67 (± 0.55) 57.26 (± 1.41) 78.45 (± 0.26)
RW 24.16 (± 1.64) > 3 days 74.22 (± 0.42) 57.85 (± 1.30) > 3 days
WL 53.15 (± 1.14) 80.13 (± 0.50) 72.92 (± 0.56) 56.97 (± 2.01) 77.95 (± 0.70)
Deep Kernels 53.43 (± 0.91) 80.31 (± 0.46) 75.68 (± 0.54) 60.08 (± 2.55) NA
PSCN k = 10 NA 76.34 (± 1.68) 75.00 (± 2.51) 62.29 (± 5.68) 76.27 (± 2.64)

KCNN SP 46.35 (± 0.39) 75.70 (± 0.31) 74.27 (± 0.22) 62.94 (± 1.69) 76.63 (± 0.09)
KCNN WL 43.08 (± 0.68) 75.83 (± 0.25) 75.76 (± 0.28) 61.52 (± 1.41) 75.80 (± 0.07)

KCNN SP + WL 48.12 (± 0.23) 77.21 (± 0.22) 73.79 (± 0.29) 62.05 (± 1.41) 78.83 (± 0.29)

Method
Dataset IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

GR 65.87 (± 0.98) 43.89 (± 0.38) 77.34 (± 0.18) 41.01 (± 0.17) 72.84 (± 0.28)
Deep GR 66.96 (± 0.56) 44.55 (± 0.52) 78.04 (± 0.39) 41.27 (± 0.18) 73.09 (± 0.25)
PSCN k = 10 71.00 (± 2.29) 45.23 (± 2.84) 86.30 (± 1.58) 49.10 (± 0.70) 72.60 (± 2.15)

KCNN SP 69.60 (± 0.44) 45.99 (± 0.23) 77.23 (± 0.15) 44.86 (± 0.24) 70.78 (± 0.12)
KCNN WL 70.46 (± 0.45) 46.44 (± 0.24) 81.85 (± 0.12) 50.04 (± 0.19) 74.93 (± 0.14)

KCNN SP + WL 71.45 (± 0.15) 47.46 (± 0.21) 78.35 (± 0.11) 44.63 (± 0.18) 74.12 (± 0.17)

in the same movie. Each graph is the ego-network of an actor, and the task is to predict which
genre an ego-network belongs to. REDDIT-BINARY and REDDIT-MULTI-5K are social interac-
tion datasets, where graphs represent online discussion threads crawled from Reddit. Each vertex
corresponds to a user, and two users are connected with an edge if one of them responded to at
least one comment from the other. The task is to classify graphs into either communities or sub-
reddits. Finally, COLLAB is a scientific collaboration dataset containing ego-networks of different
researchers from three subfields of Physics, and the task is to determine the subfield to which the
collaboration graph of each researcher belongs.

Baselines. We evaluated our model in comparison with the shortest-path kernel (SP) (Borgwardt
& Kriegel, 2005), the random walk kernel (RW) (Gärtner et al., 2003), the graphlet kernel (GR)
(Shervashidze et al., 2009), and the Weisfeiler-Lehman subtree kernel (WL) (Shervashidze et al.,
2011). The SP, WL and GR kernels were presented in subsections 3.4 and 4.1. Given a pair of
graphs, the RW kernel performs random walks on both graphs, and counts the number of matching
walks. The computational complexity of the RW kernel isO(n3) (Vishwanathan et al., 2010). Since
the experimental setup is the same, we also report the results of (Yanardag & Vishwanathan, 2015a)
(Deep Graph Kernels) and (Niepert et al., 2016) (Graph CNN, PSCN k = 10), for comparison
purposes.

Configuration. Same as 4.1 above.

Results. The 10-fold cross-validation average test set accuracy of our approach and the baselines
is reported in Table 3. Our approach outperforms all baselines on 7 out of the 10 datasets. In some
cases, the gains in accuracy over the best performing competitors are considerable. For instance,
on the IMDB-MULTI, COLLAB, and D&D datasets, we offer respective absolute improvements of
2.23, 2.33, and 2.56 in accuracy over the best competitor, the state-of-the-art graph CNN (PSCN k =
10). Finally, it should be noted that on the IMDB-MULTI dataset, every variant of our architecture
outperforms all the baselines.
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Table 4: 10-fold cross validation runtime of our approaches on the 10 real-world graph classification
datasets.

ENZYMES NCI1 PROTEINS PTC-MR D&D
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

KCNN SP 28” 4’ 26” 42” 22” 54” 36” 1’ 41” 5’ 29” 15’ 2” 7’ 2”
KCNN WL 53” 4’ 54” 48” 22” 1’ 33” 41” 58” 5’ 22” 14’ 23” 8’ 58”
KCNN SP+WL 1’ 13” 5’ 1” 53” 25” 1’ 46” 45” 1’ 44” 9’ 57” 24’ 28” 10’ 24”

Overall, our Kernel CNN model reaches better performance than the classical graph kernels (SP, GR,
RW, and WL), showing that the ability of CNNs to learn their own features during training is superior
to disjoint feature computation and learning. It is true that our approach also comprises two disjoint
steps. However, the first step is only a data preprocessing step, where we extract neighborhoods
from the graphs, and normalize them with graph kernels. The features used for classification are
then learned during training by our neural architecture, unlike the GK + SVM approach, where the
features, given by the kernel matrix, are computed in advance, independently from the downstream
task.

Single-channel variants. Our two single-channel architectures performed comparably on the bioin-
formatics datasets, while the KCNN WL variant was superior on the social network datasets. On the
REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB datasets, KCNN WL also outperforms the
multichannel architecture, with quite wide margins.

Multi-channel variants. The multi-channel architecture (KCNN SP + WL) leads to better results
on 5 out of the 10 datasets, showing that capturing subgraph similarity from a variety of angles
sometimes helps.

Runtimes. We also report the time cost of our three models in Table 4. Runtime includes all steps
of the process: patch extraction, path normalization, and 10-fold cross validation procedure. We
can see that the computational complexity of the proposed models is not high. Our most compu-
tationally intensive model (KCNN SP+WL) took less than 25 minutes to perform the full 10-fold
cross validation procedure on the largest dataset (REDDIT-MULTI-5K). Moreover, in most cases,
the running times are lower or comparable to the ones of the state-of-the-art Graph CNN and Deep
Graph Kernels models (Niepert et al., 2016; Yanardag & Vishwanathan, 2015a).

5 CONCLUSION AND NEXT STEPS

In this paper, we proposed a deep learning framework for graph classification with convolutional
neural networks, Kernel Graph CNN. We extract meaningful patches from the input graphs with
community detection, and use graph kernels to normalize the patches. This addresses the disjoint
representation/learning limitation of the traditional graph kernel + SVM approach, while jointly
capitalizing on the flexibility of graph kernels to process irregular objects, and on the unrivaled
representational power and learning ability of CNNs. Furthermore, we show that patches can be
normalized with a combination of multiple graph kernels to increase expressiveness. Results show
that our model outperforms state-of-the-art baselines on 7 datasets out of 10. Finally, our framework
offers the advantage of being very general: any graph kernel can be used, many different graph
kernels can be combined, and the subgraphs can be obtained via any graph sampling method (not
necessarily via community detection).

Ideally, we would like filters to be represented as graphs. Since convolution is just a dot product
between a patch and a filter, computing the convolution would then simply require evaluating the
kernel function on the two graphs. To generate those filters, we could use an algorithm that extracts
frequent subgraphs from a collection of graphs, or we could sample a set of subgraphs from the
extracted communities. However, backpropagating the error during training to those graph filters,
and updating them accordingly, is a major challenge. We would also like to investigate the behav-
ior of other methods for extracting patches, such as for instance overlapping community detection
algorithms. Another important problem that needs to be solved is how to arrange patches in an
order such that they can be convolved with overlapping filters (currently, convolution is performed
independently for each filter). Finally, we would like to experiment with other neural network archi-
tectures, such as recurrent ones.
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6 APPENDIX

6.1 FILTERS LIVE IN RKHS

We will show next that any filter w with ||w|| <∞ learned by our network belongs to the RKHS of
the employed graph kernel k.

Given two subgraphs Sj
i and Sj′

i′ extracted from Gi and G′i and their associated normalized patches
zji and zj

′

i′ , it holds that

〈zji , z
j′

i′ 〉 = k(Sj
i , S

j′

i′ ) = 〈φ(S
j
i ), φ(S

j′

i′ )〉H

Let Z = {zji : i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , Pi}} be the set containing all patches of the input
graphs. Then, Span(Z) is either the space of all vectors in RP if the rank of the kernel matrix is P
or the space of all vectors in RP whose last t components are zero if the rank of the kernel matrix is
P − t where t > 0. Then, given a patch zji , vector w is contained in the span of the set Z , hence

σ(w>zji ) = 〈w, z
j
i 〉 = 〈

N∑
i′=1

Pi∑
j′=1

aj
′

i′ z
j′

i′ , z
j
i 〉 =

N∑
i′=1

Pi∑
j′=1

aj
′

i′ 〈z
j′

i′ , z
j
i 〉 =

N∑
i′=1

Pi∑
j′=1

aj
′

i′ k(S
j′

i′ , S
j
i )

which shows that the filters live in the RKHS associated to graph kernel k. For other smooth acti-
vation functions, one can also show that the filters will be contained in the corresponding RKHS of
the kernel function (Zhang et al., 2017).
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