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Abstract

We propose a semantic segmentation model for histopathology that exploits rota-
tion and reflection symmetries inherent in histopathology images. We demonstrate
significant performance gains due to increased weight sharing, as well as improve-
ments in predictive stability. The group-equivariant CNN framework is extended
for segmentation by introducing a new (G → Z2)-convolution that transforms
feature maps on a group to planar feature maps. Also, equivariant transposed
convolution is formulated for up-sampling in an encoder-decoder network. We
further show the importance of exploiting more symmetries by varying the size of
the group.

1 Introduction

Recent advancements in the digitization of microscopic images have motivated the development of
image analysis algorithms to assist or automate diagnostic tasks in the field of digital pathology. Here
convolutional neural networks (CNNs) have shown their potential for pathologist-level performance
in a variety of tasks [1].

A core property that has contributed to the effectiveness of these models is the efficient sharing
of parameters in the convolutional layer which induces translation equivariance: shifting a layer’s
input produces a proportionate shift in the layer’s output. In other words, the translation symmetry
of images is preserved. However, such layers conventionally only exploit translation symmetries
and not the rotation and reflection symmetries that are inherent in whole-slide images (WSIs).

We propose a pixel-wise segmentation model that encodes these symmetries by using group convo-
lutions [2] that have been shown to improve classification performance. We extend this framework
with a convolution operation that maps from a group representation to the Z2 grid and we adopt
group convolution in a transposed convolution layer, which we show to be equivariant. We evalu-
ate the model on a Camelyon16 [3] derived dataset, showing that the increased weight sharing by
explicitly encoding rotation and reflection symmetries leads to consistent performance gains.

Furthermore, we establish that conventional CNNs trained on histopathology data demonstrate er-
ratic behavior under rotation and reflection. To accommodate the requirements of model predictabil-
ity in a clinical setting, it is critical to have stability guarantees. We show that the proposed group-
equivariant model improves upon the stability under π/2 rotations and reflections compared to an
equivalent standard CNN.
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2 Methodology

2.1 Mathematical framework

To exploit rotation and reflection symmetries in a semantic segmentation setting, we extend1 the
mathematical framework of Group equivariant Convolutional Neural Networks (G-CNNs) intro-
duced in [2]. G-CNNs utilize group convolutions, which enjoy increased weight sharing and better
statistical efficiency than regular convolutions. Specifically, it is implemented for the p4 group, con-
sisting of translations and rotations by multiples of π/2, and the p4m group, which additionally
includes reflections. In this framework, feature maps are considered as functions on these groups,
e.g. for the p4m group the orientation channels come in groups of 8 corresponding to the number of
roto-reflections in the group. The first layer transforms an input image f : Z2 → RK , with K the
number of channels using a filter ψ, which is defined as the (Z2 → G) convolution:

[f ∗ ψ](g) =
∑
y∈Z2

K∑
k=1

fk(y)ψk(g
−1y), (1)

where g = (r, t) is a roto-translation (in case G = p4) or a roto-reflection-translation (in case
G = p4m). In the next layers, the feature maps and filters are both functions on G, for which the
(G→ G)-convolution is used:

[f ∗ ψ](g) =
∑
h∈G

K∑
k=1

fk(h)ψk(g
−1h). (2)

Note that the transpose of this linear operation, the transposed convolution, is also equivariant.
Contrary to strided group convolution [2], the choice of stride for transposed group convolution
does not affect equivariance.

To allow for the equivariant transformation of a feature map inG to a two-dimensional segmentation
mask m : Z2 → RC , with C the number of classes, we present the (G→ Z2)-convolution:

[f ∗ ψ](y) =
∑
h∈G

K∑
k=1

fk(h)ψk(z(y)
−1h), (3)

where z(y) is the translation by y in Z2. This convolution uses a single planar filter per feature map
that is shared across the orientation channels to preserve equivariance.

2.2 GU-Net architecture

To obtain pixel-wise segmentation maps, we use the conventional U-Net architecture [4] as a base-
line for our rotation equivariant model. The GU-Net architecture is constructed by replacing all
(transposed) convolution and batch normalization layers with their group equivariant counterparts.
Two-layer convolution blocks are followed by a 3× 3 max-pool that incrementally reduces the spa-
tial size, up to a depth level of four. Then pooling is replaced by 3 × 3 transposed convolutions
with zero padding to recover the spatial size of the input image and enable per-pixel classification.
The proposed (G → Z2)-convolution is finally used to transform the orientation channels to the
two-dimensional grid of the output mask.

3 Experiments

3.1 Dataset

The proposed model is evaluated on the PatchCamelyon dataset [5] derived from the Camelyon16
challenge [3] with the task of tumor localization. The original challenge data contains 400 H&E
stained WSIs of sentinel lymph node sections with pixel-level annotations. The PatchCamelyon
dataset consists of 327.680 patches of 320 × 320 pixels at 10× magnification, with a 8:1:1 split
into training, validation and test sets. The patches were extracted by uniformly sampling WSIs and
drawing tumor/non-tumor patches with equal probability.

1Implementations of the equivariant layers are available at https://github.com/JasperLinmans/
gcnn-segmentation.
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Figure 1: (a) Example of a 630 µm2 patch and its ground truth tumor mask (marked by the yellow
border), (b) the mean tumor prediction of the patch across the eight roto-reflection transformations
in p4m as viewed in the original orientation using the P4M U-Net and (c) using the baseline U-Net.
(d) Standard deviation of the tumor predictions across the roto-reflection transformations using the
baseline U-Net. The standard deviation of the P4M U-Net model is omitted since the values are not
visible in the same range, as all values are lower than 1e−6.

3.2 Model stability

To assess the predictive stability of the P4M U-Net model, we examine the standard deviation of
predictive probabilities under roto-reflection transformations of the input as compared to the baseline
model. To ensure a fair comparison, the number of parameters is kept constant [2] by dividing the
number of filters per layer by

√
8 ≈ 3, the square root of the group size. Figure 1 shows the analysis

for an example patch. We observe that the standard U-Net is prone to unstable prediction behavior
under roto-reflections, especially at the tumor boundaries.

3.3 Segmentation performance

The segmentation performance of the proposed model is evaluated using the Dice similarity co-
efficient. To compare using group convolutions to a data augmentation strategy, the dataset was
augmented with roto-reflection transformations for the baseline model. We report Dice coefficients
on the test set of 0.80, 0.83 and 0.84 for the baseline U-Net, the P4 U-Net and the P4M U-Net
respectively. These results show that explicitly encoding rotation and reflection symmetries leads to
consistent performance gains. We further observe better performance when exploiting more sym-
metries due to increased weight sharing.

4 Conclusion

By extending the group-equivariant CNN framework and using it in an encoder-decoder architecture
for pixel-wise predictions, we show a consistent performance increase compared to an equivalent
conventional CNN. Notably, we also demonstrate that using group convolutions results in signifi-
cantly more stable segmentation, accommodating the model predictability requirements in a clinical
setting.
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