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ABSTRACT

We capitalize on the natural compositional structure of images in order to learn
object segmentation with weakly labeled images. The intuition behind our approach
is that removing objects from images will yield natural images, however removing
random patches will yield unnatural images. We leverage this signal to develop a
generative model that decomposes an image into layers, and when all layers are
combined, it reconstructs the input image. However, when a layer is removed, the
model learns to produce a different image that still looks natural to an adversary,
which is possible by removing objects. Experiments and visualizations suggest
that this model automatically learns object segmentation on images labeled only by
scene better than baselines.

1 INTRODUCTION

Visual recognition models demand large amounts of annotated data that is expensive to collect, and
this cost is amplified for tasks that require densely labeled data, such as semantic segmentation. In
this paper, we develop an approach where object segmentation emerges automatically for images
only labeled by scene category.

We capitalize on the natural compositional structure of images to learn object segmentation through
counterfactual images. An image is counterfactual if it shows a real scene, except part of it has been
removed or changed. To learn to segment, we train a model to generate counterfactual images such
that they are perceptually realistic, a task the model can solve by removing objects and filling in
the holes. For example, if you fully remove the bed from the scene in Figure 1, the image is still
realistic. However, if you only partially remove the bed, the image is not realistic anymore. We use
this intuition to automatically learn object segmentation.

We develop a stochastic layered model that decomposes an input image into several layers. We train
this model so that when all layers are combined together in some order, it reconstructs the input
image. However, we also train the model so that if we randomly permute the layers and remove
a layer, the combination still appears perceptually real to an adversary. Consequently, the model
learns a layered image decomposition that allows parts of the image to be removed. We show that the
model automatically learns to isolate objects in different layers in order to make the output image
still appear realistic, a signal we capitalize on for learning to segment.

We present three main experiments to analyze this approach. Firstly, experiments show that our model
learns to automatically segment images into objects for some scene categories, with only weakly
labeled training data, and our approach outperforms several baselines. Secondly, we show that we use
a small amount of densely labeled data with our approach to further improve performance. Finally,
visualizations suggest that the model can generate the scene behind objects that it learns to segment,
enabling us to remove pictures from a wall or take off the bed sheets.

Our main contribution is to introduce a novel method for object segmentation on data only labeled by
scene by capitalizing on natural compositional structures in images. While the focus of this paper is
on images, the method is general and could be applied to other signals, such as audio. The remainder
of this paper describes this contribution. Section 2 reviews related work. Section 3 present our method
to auto-encode images with a layered decomposition, and shows how removing image regions is a
useful signal for segmentation. Section 4 shows several experiments for semantic segmentation, and
section 5 offers concluding remarks. We plan to release all code, data, and models.
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Figure 1: We make the simple observation that if you remove an object from an image, the image still
looks natural (middle). However, if you remove a random patch, the image likely looks unnatural
(right). In this paper, we leverage this counterfactual signal for image segmentation.

2 RELATED WORK

Image Segmentation: Pixel-wise segmentation is widely studied in computer vision. Edge and
boundary detection seek to recognize contours between objects (Canny, 1986; Martin et al., 2004;
Dollar et al., 2006; Isola et al., 2014), but does not attach category labels to segments. Semantic
segmentation instead seeks to both segment objects and assign labels, which is the task that we
consider. Tighe & Lazebnik (2011); Yang et al. (2014); Badrinarayanan et al. (2015); Bansal et al.
(2016) learn to semantically segment objects in images, however they require large amounts of manual
supervision. In this work, we do not require pixel-wise labeled data in order to learn to segment
objects; we only require images that are known to be within a certain scene category. In related work,
Li & Malik (2016) investigate segmenting objects behind occlusions, but also require supervision.
Ehsani et al. (2017) explore how to remove occlusions from images, but require specifying the
occlusions a priori. Our work is most related to Sudderth & Jordan (2009), which use layered
models for segmentation. However, our work differs because we learn a single model for semantic
segmentation that can work across multiple images.

Layered Visual Models: Layered image models are widely used in computer vision (Wang &
Adelson, 1994; Yang et al., 2012; Sun et al., 2015; Yang et al., 2017; Finn et al., 2016; Vondrick et al.,
2016; Huang & Murphy, 2015; Eslami et al., 2016), however here we are leveraging them to segment
images without pixel-level human supervision. We develop a model that learns to decompose an
image into separate layers, which we use for segmentation. (Yang et al., 2012) is similar to our work
in that they generate images by layers, however they do not show that randomly removing layers is a
signal for semantic segmentations.

Noise in Learning: Dropout (Srivastava et al., 2014) is commonly used in neural networks to
regularize training by randomly dropping hidden unit activations. (Huang et al., 2016) also randomly
drops neural layers to facilitate training. Our work uses similar mechanism to randomly drop
generated layers, but we do it to encourage a semantic decomposition of images into layers of objects.
Note that the layers we drop are image layers, not layers of a neural network.

Emergent Units: Our work is related to emergent representations for neural networks. For example,
recent work shows that hidden units automatically emerge to detect some concepts in visual classifi-
cation tasks (Zhou et al., 2014) and natural language tasks (Radford et al., 2017). In this work, we
also rely on the emergent behavior of deep neural networks, but for object segmentation.

Unsupervised Representation Learning: Methods to learn representations from unlabeled data
are related but different to this work. For example, spatial context (Doersch et al., 2015) and word
context (Mikolov et al., 2013) can be used as supervisory signals for vision and language respectively.
While our work is also using unlabeled data within a scene class, we are not learning representations.
Rather, we show that object segmentation emerges automatically in our approach.

3 COUNTERFACTUAL IMAGE NETWORKS

Our method uses layered models in order to generate counterfactual scenes given an input image. Let
xi ∈ RW×H be an image in our dataset. Note that for simplicity of notation, we assume gray-scale
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Figure 2: Network Architecture: We visualize our neural network architecture. Given an input
image, we generate K layers and masks to combine them. However, each layer only has a certain
probability of being combined with the current composite.

images, however our method trivially extends to color images. We follow an encoder-decoder setup.
We will encode an image into a latent code zi ∈ RD, then decode the code into K image layers.

3.1 GENERATION MODEL

We use a simple layered model for image generation. Given a latent code z ∈ RD, we stochastically
and recursively decode it to produce an image:

G0(z) = f0(z) (1)

Gk(z) =

{
fσ(k)(z)�mσ(k)(z) +Gk−1(z)�

(
1−mσ(k)(z)

)
with prob. pk

Gk−1(z) otherwise
(2)

where the kth layer is only added with probability pk, and σ is a permutation. Our intention is that
the neural networks mσ(k)(z) ∈ RW×H will generate a mask and fσ(k)(z) ∈ RW×H will generate a
foreground image to be combined with the previous layer. In our experiments, the the mask m and
foreground f networks are shared except for the last layer. To ensure the mask and foreground are in
a valid range, we use a sigmoid and tanh activation function respectively. � denotes element-wise
product. The base case of the recursion, G0(z), is the background layer. To obtain the final image,
we recurse a fixed number of times K to obtain the result GK(z).

3.2 STOCHASTIC COMPOSITION

The generation model GK(z) is stochastic because each layer is only added with a given probability.
We will train GK(z) to generate images that still look perceptually real to an adversary even when
some layers are removed. To be robust to this type of corruption, we hypothesize that the model will
learn to place objects in each layer. Removing objects will fool the adversary, however removing an
arbitrary patch will not fool the adversary because those images do not occur in nature.

We introduce an additional form of stochasticity by noting that objects in images are not often in the
same order with respect to each other. We want the layers to specialize to objects without explicitly
enforcing an ordering, so in our model we also randomly permute the foreground layers before
disposing and composing to form the counterfactual. Specifically, each foreground layer has an equal
probability of being in any position when composing.
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(a) “Window”-like layer (b) “Bed”-like layer

(c) “Kitchen Appliance”-like layer (d) “Kitchen Counter”-like layer

Figure 3: Example Layers: We visualize some generations from different layers. For example, some
layers specialize to segmenting and generating windows, while others specialize to beds. We note that
the model does not attach semantics to the layers. Each layer is given a name by hand after training.

We train GK(z) to generate images that fool an adversary. To do this, we use generative adversarial
networks (Goodfellow et al., 2014; Radford et al., 2015). We use a convolutional network D
as a discriminator and optimize our generator G to fool D while simultaneously training D to
distinguish between generated images and images from the dataset. Figure 3 shows a few qualitative
examples of learned layer generations from this model. Notice the network can automatically learn a
decomposition of objects and their boundaries.

3.3 INFERENCE MODEL

We have so far described the generation process given a latent code z. To segment an image x, we need
to infer this code. We will train an encoder E(x) to predict the code given an image x. One possible
strategy is to train E to minimize the pixel-wise reconstruction error over our unlabeled dataset, i.e.
minE

∑
i‖GK(E(xi))− xi‖22. While this will yield better reconstructions, the reconstruction will

be low-level and not necessarily semantic.

We therefore use a different strategy. We will train E to reconstruct the latent codes from sampled
scenes from the generator, i.e. minE

∑
z∼N (0,I)‖E (GK(z))− z‖22. While this does not guarantee a

strong reconstruction in pixel space, it may enable a more semantic reconstruction, which is our goal.
We note this strategy is discussed but not experimented by Dumoulin et al. (2016).

3.4 LEARNING

We learn the parameters of the neural networks D, E, and G jointly. We optimize:

min
D,E

∑
z∼U

[
logD (GK(z)) + λ‖E

(
ḠK(z)

)
− z‖22

]
+
∑
i

log (1−D (xi)) (3)

max
G

∑
z∼U

logD (GK(z)) (4)

where U is the uniform distribution on the interval [−1, 1] and Ḡ indicates that no layers are dropped.
To optimize this min-max objective, we alternate between minimizing Equation 3 and maximizing
Equation 4 using mini-batch stochastic gradient descent. Note that this objective is similar to a
generative adversarial network (Goodfellow et al., 2014), however there is also an encoder E. We use
λ = 1. Importantly, to train our model, we only need a collection of unlabeled images within a scene
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category. The model will learn to auto-encode images such that layers can be randomly removed and
still produce a realistic image.

3.5 SEMANTIC SEGMENTATION

We take advantage of the emergent masks of the layers for semantic segmentation. After training, we
will have K different masks mk(z). Since K is typically small (we use K = 5), we can manually
inspect a few examples on the training set and attach a name to each one. We use these masks as the
semantic segmentation prediction. Figure 3 shows a few examples of learned masks from this model.

3.6 NETWORK ARCHITECTURE AND IMPLEMENTATION DETAILS

Our network architecture is similar to DCGAN (Radford et al., 2015) when possible. The encoder
contains 3 layers of 4x4 convolutions with a stride of 2, followed by a single layer of 3x3 convolutions
of stride 1, and then another single layer of 4x4 convolutions of stride 2. Since we use reconstructions
for image segmentation, we care about encoding spatial location of the objects, so we use a latent
vector of size 64 x 4 x 4. The decoder has identical architecture, but contains up-convolutions
instead. Each layer is generated independently from the hidden state vector without tied weights. We
add batch normalization (Ioffe & Szegedy, 2015) between layers, leaky ReLU for the encoder and
discriminator and ReLU for the generator. We train with Adam (Kingma & Ba, 2014) with learning
rate 0.0002 and beta 0.5 for the object discovery experiments and learning rate 0.00002 for finetuning.
We train for 2 epochs over the dataset for both scene categories. In all examples we use 5 foreground
layers and set the probability that a layer is included to 0.4. We plan on making all code and data
publicly available.

4 EXPERIMENTS

We present three experiments to evaluate our model. In the quantitative experiments, we evaluate
how well layers automatically emerge to classify pixels to belong to a specific object category. In
the qualitative experiment, we give examples as to how we can use our layered reconstruction to
decompose an image into semantic layers.

4.1 EXPERIMENTAL SETUP

We experiment with our approach using images of bedrooms and kitchen scene categories from the
LSUN dataset (Yu et al., 2015). For bedrooms, we focus on segmenting bed and window. For kitchens,
we focus on segmenting appliances and countertop. The dataset contains a total of 3, 033, 042 images
of bedrooms and 2, 212, 277 images of kitchens which we train separate models on. Note that apart
from scene category, these images are unlabeled; they do not have any pixel level annotations. We
random crop images to 3× 64× 64 and scale to [−1, 1].

We do require some images with ground truth for evaluation. We use images and labels from the
ADE20K dataset (Zhou et al., 2016) for the kitchen and bedroom scene categories as the test set.
For each scene category, we create a training dataset and validation dataset of randomly selected
examples. For bedrooms, the training and validation each contain 640 examples. For kitchens, they
each contain 320 examples. The sizes are limited by the number of annotations available in ADE20K
for each scene category. We chose kitchens and bedrooms as they are the largest scene categories in
the LSUN dataset and because we have a sufficient number of densely labeled examples in ADE20K.

For each identified object category in each scene, we create binary masks from the ADE20K dataset
and pair them with their corresponding images. Due to the fact that ADE20K does not label behind
occlusions, we combine labels to form the appropriate ground truth map. For example, pillows are
often on the bed. We therefore define beds as the combination of beds, pillows, and comforters.
For kitchen appliances, we define them as microwaves, ovens, dishwashers, stoves, and sinks. We
evaluate the model versus baselines as pixel-wise binary classification. The mask represents the
confidence of model that the pixel belongs to the specified object category. We run each experiment
on a scene category and report the average precision as our metric.
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(a) Bedroom: Beds

(b) Bedroom: Windows

(c) Kitchen: Counters

(d) Kitchen: Appliances

Figure 4: Example Results: The left image contains some cases where we correctly segment the
mask of objects, and the right image contains some failure cases. The first row is the generated mask,
second row is the ground truth mask, and third row is the input image.

Bedrooms Kitchens
Bed Window Appliance Counter

Unsupervised

Random 0.31 0.13 0.10 0.07
Autoencoder 0.37 0.20 0.10 0.11
Kmeans 1× 1 0.34 0.17 0.15 0.08
Kmeans 7× 7 0.34 0.15 0.14 0.07
Our Approach 0.53 0.30 0.14 0.13

Semi-Supervised

Average Mask 0.52 0.19 0.12 0.10
Random Init 0.58 0.32 0.17 0.11
Ours + Finetune 0.71 0.51 0.21 0.19

Table 1: Semantic Segmentation Average Precision: We report average precision (area under
precision-recall curve) on pixel-wise classification for four object categories. Our approach can
segment images without supervision better than baselines. Moreover, the model can be fine-tuned
with a little bit of labeled data to further improve results. We note that the unsupervised models still
have access to scene labels.
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(a) Windows (b) Beds

Figure 5: Precision-Recall: We plot precision-recall curves for each layer’s mask. Our approach
obtains good precision with low recall, suggesting that the model’s most confident segmentations are
fairly accurate. Notice how layers tend to specialize to certain object categories. The mask from layer
4 works well for segmenting windows, but the same layer does not work for beds. A similar trend
exists for mask 5, but segments beds. This suggests that the model learns to group objects.

(a) Bedroom: Windows (b) Kitchen: Counter

Figure 6: Performance versus size of labeled data. We plot segmentation performance versus the
size of the labeled dataset during fine-tuning. In general, more labeled data improves performance.

7



Under review as a conference paper at ICLR 2018

4.2 OBJECT SEGMENTATION

We quantitatively evaluate how well our model is able to do segmentation without pixel annotated
training images in Table 1. Our results suggest that a decomposition of objects is automatically
emerging in our model, which can segment objects better than unsupervised baselines. We note that
unsupervised in our case refers to no pixel-level annotations. The models only have access to the
scene class of each image.

For each scene category, we train on the LSUN dataset with 5 foreground layers. We extract the
masks from each of the layers that are learned. We use the outputs of these masks as scores and
calculate average precision as our metric. We compute the average precision for each layer on the
isolated training set in ADE20K, and pick the layer that performs the best. We then report the average
precision on the validation set. We also graph the precision-recall curves for the two objects for
bedrooms in Figure 5.

Interestingly, each mask tends to capture a single object, suggesting the masks are learning a semantic
decomposition. When evaluated on the bed objects, masks 5 performs the best, while mask 4 does
worse than random. When evaluated on window objects, however, mask 4 does the best and mask 5
does worse than random.

We compare to a few baselines that also do not have access to pixel-level annotations. The random
baseline corresponds to a random guess for each pixel. The autoencoder baseline corresponds to
training the model with the composition probability set to 0 and with no permutations. In every case,
our model with stochastic compositions receives a higher average precision, suggesting that removing
and reordering layers does help to obtain an object segmentation. The kmeans baseline corresponds
to clustering RGB patches across the dataset, and using distance to cluster centers as a segmentation
score. We try both 1× 1 and 7× 7 patches with the same number of clusters as our model (K = 5).
For each object category, we find the best performing cluster center on the ADE20K training set and
evaluate with this cluster center on the validation set. In almost every case, our model outperforms
this baseline.

Finally, we conduct an ablation on the model to understand why each layers learn to segment different
objects. Normally in our experiments, each layer is initialized both randomly and independently. We
tried initializing each stream to be the same (but not tying weights in training). We found that each
stream tends to produce similar objects, and performance significantly drops (beds dropped to 0.41
AP and windows dropped to 0.16 AP). Since we also randomly permute foreground layers during
each training iteration, this seems to effectively isolate initialization as a factor that leads to diverse
outputs.

4.3 REFINING WITH LABELS

We can incorporate some pixel-level human labels into the model to improve performance with
semi-supervised learning. After training the model without labels as before, we finetune masks on
the ADE20K training set for each object class.

As an additional baseline, we calculate the average segmentation over the ADE20K dataset for each
object category. Recall that even our model did not have access to this prior because it never saw a
densely labeled image! For each object category we average each mask from the labeled dataset and
we evaluate with this single mask.

The bottom rows of Table 1 shows that our approach provides a better initialization for supervised
segmentation than baselines. For all object categories, the unlabeled model outperforms the average
mask, suggesting the model outperforms naive priors estimated with labeled data, even though it
never saw labels. For the bed objects, the simple prior comes close, possibly because beds are large
and usually in a certain location (bottom). Windows, on the other hand, could be in many different
locations and are usually smaller, hence the prior could not perform as well.

Figure 6 shows how performance changes with the size of the labeled data in our finetuning ex-
periments. Interestingly, our supervised outperforms scratch initialization even with 20% of the
training data. This shows that in the semi-supervised setting the model can be trained with much
fewer examples. Another interesting note is that for the window object class our unsupervised model
obtains performance close to the supervised random initialization model.
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Figure 7: Visualizing Layer Decomposition: We visualize the outputs of different layers from our
model given an input image. Different layers automatically emerge to both reconstruct objects and
their masks, which we use for semantic segmentation. Moreover, this enables potential graphics
applications, such as de-occluding objects in an image.

4.4 LAYER VISUALIZATION

We qualitatively show examples of images that are built up layer by layer in Figure 7. For each
example we give the original image that was used as input, partial reconstructions for each layer
that is added, the layer that is added, and the mask that the layer uses. These results suggest that as
the generative model improves we will be able to remove layers that the model learns to see behind
objects. For example, in the bottom right we can see that when the bed layer (layer 5) is removed we
are able to uncover the headboard behind it.

The visualization highlights that our model learns a layer decomposition that allows counterfactual
images to be realistic, however layers can emerge to capture other semantics besides objects. For
example, some layers appear to capture lighting or textures in the scene. When these layers are
removed, the resulting composition still looks realistic, but the lighting has changed. This suggests
our approach can be useful for automatically learning semantic compositions of natural data, such as
images or audio.

5 CONCLUSION

We propose a simple principle for learning object segmentation with data only labeled by scene. We
capitalize on the observation that images are naturally compositional, and counterfactual images can
provide a signal for learning to segment. Since annotating large-scale and pixel dense training data
for segmentation is expensive, we believe developing approaches for segmentation requiring minimal
labeling can have significant impact on many applications.
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