
Published as a conference paper at ICLR 2018

DECISION-BASED ADVERSARIAL ATTACKS:
RELIABLE ATTACKS AGAINST BLACK-BOX MACHINE
LEARNING MODELS

Wieland Brendel∗, Jonas Rauber∗ & Matthias Bethge
Werner Reichardt Centre for Integrative Neuroscience,
Eberhard Karls University Tübingen, Germany
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ABSTRACT

Many machine learning algorithms are vulnerable to almost imperceptible pertur-
bations of their inputs. So far it was unclear how much risk adversarial pertur-
bations carry for the safety of real-world machine learning applications because
most methods used to generate such perturbations rely either on detailed model
information (gradient-based attacks) or on confidence scores such as class prob-
abilities (score-based attacks), neither of which are available in most real-world
scenarios. In many such cases one currently needs to retreat to transfer-based
attacks which rely on cumbersome substitute models, need access to the training
data and can be defended against. Here we emphasise the importance of attacks
which solely rely on the final model decision. Such decision-based attacks are (1)
applicable to real-world black-box models such as autonomous cars, (2) need less
knowledge and are easier to apply than transfer-based attacks and (3) are more ro-
bust to simple defences than gradient- or score-based attacks. Previous attacks in
this category were limited to simple models or simple datasets. Here we introduce
the Boundary Attack, a decision-based attack that starts from a large adversarial
perturbation and then seeks to reduce the perturbation while staying adversarial.
The attack is conceptually simple, requires close to no hyperparameter tuning,
does not rely on substitute models and is competitive with the best gradient-based
attacks in standard computer vision tasks like ImageNet. We apply the attack on
two black-box algorithms from Clarifai.com. The Boundary Attack in particu-
lar and the class of decision-based attacks in general open new avenues to study
the robustness of machine learning models and raise new questions regarding the
safety of deployed machine learning systems. An implementation of the attack is
available as part of Foolbox (https://github.com/bethgelab/foolbox).
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Figure 1: (Left) Taxonomy of adversarial attack methods. The Boundary Attack is applicable to real-
world ML algorithms because it only needs access to the final decision of a model (e.g. class-label
or transcribed sentence) and does not rely on model information like the gradient or the confidence
scores. (Right) Application to the Clarifai Brand Recognition Model.
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1 INTRODUCTION

Many high-performance machine learning algorithms used in computer vision, speech recognition
and other areas are susceptible to minimal changes of their inputs (Szegedy et al., 2013). As a
concrete example, a modern deep neural network like VGG-19 trained on object recognition might
perfectly recognize the main object in an image as a tiger cat, but if the pixel values are only slightly
perturbed in a specific way then the prediction of the very same network is drastically altered (e.g.
to bus). These so-called adversarial perturbations are ubiquitous in many machine learning models
and are often imperceptible to humans. Algorithms that seek to find such adversarial perturbations
are generally denoted as adversarial attacks.

Adversarial perturbations have drawn interest from two different sides. On the one side, they
are worrisome for the integrity and security of deployed machine learning algorithms such as au-
tonomous cars or face recognition systems. Minimal perturbations on street signs (e.g. turning a
stop-sign into a 200 km/h speed limit) or street lights (e.g. turning a red into a green light) can have
severe consequences. On the other hand, adversarial perturbations provide an exciting spotlight
on the gap between the sensory information processing in humans and machines and thus provide
guidance towards more robust, human-like architectures.

Adversarial attacks can be roughly divided into three categories: gradient-based, score-based and
transfer-based attacks (cp. Figure 1). Gradient-based and score-based attacks are often denoted
as white-box and oracle attacks respectively, but we try to be as explicit as possible as to what
information is being used in each category1. A severe problem affecting attacks in all of these
categories is that they are surprisingly straight-forward to defend against:

• Gradient-based attacks. Most existing attacks rely on detailed model information includ-
ing the gradient of the loss w.r.t. the input. Examples are the Fast-Gradient Sign Method
(FGSM), the Basic Iterative Method (BIM) (Kurakin et al., 2016), DeepFool (Moosavi-
Dezfooli et al., 2015), the Jacobian-based Saliency Map Attack (JSMA) (Papernot et al.,
2015), Houdini (Cisse et al., 2017) and the Carlini & Wagner attack (Carlini & Wagner,
2016a).
Defence: A simple way to defend against gradient-based attacks is to mask the gradients,
for example by adding non-differentiable elements either implicitly through means like de-
fensive distillation (Papernot et al., 2016) or saturated non-linearities (Nayebi & Ganguli,
2017), or explicitly through means like non-differentiable classifiers (Lu et al., 2017).

• Score-based attacks. A few attacks are more agnostic and only rely on the predicted scores
(e.g. class probabilities or logits) of the model. On a conceptual level these attacks use the
predictions to numerically estimate the gradient. This includes black-box variants of JSMA
(Narodytska & Kasiviswanathan, 2016) and of the Carlini & Wagner attack (Chen et al.,
2017) as well as generator networks that predict adversarials (Hayes & Danezis, 2017).
Defence: It is straight-forward to severely impede the numerical gradient estimate by
adding stochastic elements like dropout into the model. Also, many robust training meth-
ods introduce a sharp-edged plateau around samples (Tramer et al., 2017) which not only
masks gradients themselves but also their numerical estimate.

• Transfer-based attacks. Transfer-based attacks do not rely on model information but need
information about the training data. This data is used to train a fully observable substitute
model from which adversarial perturbations can be synthesized (Papernot et al., 2017a).
They rely on the empirical observation that adversarial examples often transfer between
models. If adversarial examples are created on an ensemble of substitute models the success
rate on the attacked model can reach up to 100% in certain scenarios (Liu et al., 2016).
Defence: A recent defence method against transfer attacks (Tramer et al., 2017), which is
based on robust training on a dataset augmented by adversarial examples from an ensemble
of substitute models, has proven highly successful against basically all attacks in the 2017
Kaggle Competition on Adversarial Attacks2.

1For example, the term oracle does not convey what information is used by attacks in this category.
2https://www.kaggle.com/c/nips-2017-defense-against-adversarial-attack
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The fact that many attacks can be easily averted makes it often extremely difficult to assess whether
a model is truly robust or whether the attacks are just too weak, which has lead to premature claims
of robustness for DNNs (Carlini & Wagner, 2016b; Brendel & Bethge, 2017).

This motivates us to focus on a category of adversarial attacks that has so far received fairly little
attention:

• Decision-based attacks. Direct attacks that solely rely on the final decision of the model
(such as the top-1 class label or the transcribed sentence).

The delineation of this category is justified for the following reasons: First, compared to score-based
attacks decision-based attacks are much more relevant in real-world machine learning applications
where confidence scores or logits are rarely accessible. At the same time decision-based attacks
have the potential to be much more robust to standard defences like gradient masking, intrinsic
stochasticity or robust training than attacks from the other categories. Finally, compared to transfer-
based attacks they need much less information about the model (neither architecture nor training
data) and are much simpler to apply.

There currently exists no effective decision-based attack that scales to natural datasets such as Ima-
geNet and is applicable to deep neural networks (DNNs). The most relevant prior work is a variant
of transfer attacks in which the training set needed to learn the substitute model is replaced by
a synthetic dataset (Papernot et al., 2017b). This synthetic dataset is generated by the adversary
alongside the training of the substitute; the labels for each synthetic sample are drawn from the
black-box model. While this approach works well on datasets for which the intra-class variabil-
ity is low (such as MNIST) it has yet to be shown that it scales to more complex natural datasets
such as CIFAR or ImageNet. Other decision-based attacks are specific to linear or convex-inducing
classifiers (Dalvi et al., 2004; Lowd & Meek, 2005; Nelson et al., 2012) and are not applicable to
other machine learning models. The work by (Biggio et al., 2013) basically stands between transfer
attacks and decision-based attacks in that the substitute model is trained on a dataset for which the
labels have been observed from the black-box model. This attack still requires knowledge about the
data distribution on which the black-box models was trained on and so we don’t consider it a pure
decision-based attack. Finally, some naive attacks such as a line-search along a random direction
away from the original sample can qualify as decision-based attacks but they induce large and very
visible perturbations that are orders of magnitude larger than typical gradient-based, score-based or
transfer-based attacks.

Throughout the paper we focus on the threat scenario in which the adversary aims to change the de-
cision of a model (either targeted or untargeted) for a particular input sample by inducing a minimal
perturbation to the sample. The adversary can observe the final decision of the model for arbitrary
inputs and it knows at least one perturbation, however large, for which the perturbed sample is
adversarial.

The contributions of this paper are as follows:

• We emphasise decision-based attacks as an important category of adversarial attacks that
are highly relevant for real-world applications and important to gauge model robustness.

• We introduce the first effective decision-based attack that scales to complex machine learn-
ing models and natural datasets. The Boundary Attack is (1) conceptually surprisingly
simple, (2) extremely flexible, (3) requires little hyperparameter tuning and (4) is compet-
itive with the best gradient-based attacks in both targeted and untargeted computer vision
scenarios.

• We show that the Boundary Attack is able to break previously suggested defence mecha-
nisms like defensive distillation.

• We demonstrate the practical applicability of the Boundary Attack on two black-box ma-
chine learning models for brand and celebrity recognition available on Clarifai.com.

1.1 NOTATION

Throughout the paper we use the following notation: o refers to the original input (e.g. an image),
y = F (o) refers to the full prediction of the model F (·) (e.g. logits or probabilities), ymax is the
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predicted label (e.g. class-label). Similarly, õ refers to the adversarially perturbed image, õk refers
to the perturbed image at the k-th step of an attack algorithm. Vectors are denoted in bold.

2 BOUNDARY ATTACK

The basic intuition behind the boundary attack algorithm is depicted in Figure 2: the algorithm is
initialized from a point that is already adversarial and then performs a random walk along the bound-
ary between the adversarial and the non-adversarial region such that (1) it stays in the adversarial
region and (2) the distance towards the target image is reduced. In other words we perform rejection
sampling with a suitable proposal distribution P to find progressively smaller adversarial perturba-
tions according to a given adversarial criterion c(.). The basic logic of the algorithm is described in
Algorithm 1, each individual building block is detailed in the next subsections.

Data: original image o, adversarial criterion c(.), decision of model d(.)
Result: adversarial example õ such that the distance d(o, õ) = ‖o− õ‖22 is minimized
initialization: k = 0, õ0 ∼ U(0, 1) s.t. õ0 is adversarial;
while k < maximum number of steps do

draw random perturbation from proposal distribution ηk ∼ P(õk−1);
if õk−1 + ηk is adversarial then

set õk = õk−1 + ηk;
else

set õk = õk−1;
end
k = k + 1

end
Algorithm 1: Minimal version of the Boundary Attack.

2.1 INITIALISATION

The Boundary Attack needs to be initialized with a sample that is already adversarial3. In an untar-
geted scenario we simply sample from a maximum entropy distribution given the valid domain of
the input. In the computer vision applications below, where the input is constrained to a range of
[0, 255] per pixel, we sample each pixel in the initial image õ0 from a uniform distribution U(0, 255).
We reject samples that are not adversarial. In a targeted scenario we start from any sample that is
classified by the model as being from the target class.

2.2 PROPOSAL DISTRIBUTION

The efficiency of the algorithm crucially depends on the proposal distribution P , i.e. which random
directions are explored in each step of the algorithm. The optimal proposal distribution will generally
depend on the domain and / or model to be attacked, but for all vision-related problems tested here
a very simple proposal distribution worked surprisingly well. The basic idea behind this proposal
distribution is as follows: in the k-th step we want to draw perturbations ηk from a maximum
entropy distribution subject to the following constraints:

1. The perturbed sample lies within the input domain,

õk−1
i + ηki ∈ [0, 255]. (1)

2. The perturbation has a relative size of δ,∥∥ηk
∥∥
2
= δ · d(o, õk−1). (2)

3. The perturbation reduces the distance of the perturbed image towards the original input by
a relative amount ε,

d(o, õk−1)− d(o, õk−1 + ηk) = ε · d(o, õk−1). (3)
3Note that here adversarial does not mean that the decision of the model is wrong—it might make perfect

sense to humans—but that the perturbation fulfills the adversarial criterion (e.g. changes the model decision).
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Figure 2: (Left) In essence the Boundary Attack performs rejection sampling along the boundary
between adversarial and non-adversarial images. (Center) In each step we draw a new random
direction by (#1) drawing from an iid Gaussian and projecting on a sphere, and by (#2) making
a small move towards the target image. (Right) The two step-sizes (orthogonal and towards the
original input) are dynamically adjusted according to the local geometry of the boundary.

In practice it is difficult to sample from this distribution, and so we resort to a simpler heuristic: first,
we sample from an iid Gaussian distribution ηk

i ∼ N (0, 1) and then rescale and clip the sample such
that (1) and (2) hold. In a second step we project ηk onto a sphere around the original image o such
that d(o, õk−1 + ηk) = d(o, õk−1) and (1) hold. We denote this as the orthogonal perturbation
and use it later for hyperparameter tuning. In the last step we make a small movement towards the
original image such that (1) and (3) hold. For high-dimensional inputs and small δ, ε the constraint
(2) will also hold approximately.

2.3 ADVERSARIAL CRITERION

A typical criterion by which an input is classified as adversarial is misclassification, i.e. whether
the model assigns the perturbed input to some class different from the class label of the original
input. Another common choice is targeted misclassification for which the perturbed input has to
be classified in a given target class. Other choices include top-k misclassification (the top-k classes
predicted for the perturbed input do not contain the original class label) or thresholds on certain
confidence scores. Outside of computer vision many other choices exist such as criteria on the word-
error rates. In comparison to most other attacks, the Boundary Attack is extremely flexible with
regards to the adversarial criterion. It basically allows any criterion (including non-differentiable
ones) as long as for that criterion an initial adversarial can be found (which is trivial in most cases).

2.4 HYPERPARAMETER ADJUSTMENT

The Boundary Attack has only two relevant parameters: the length of the total perturbation δ and the
length of the step ε towards the original input (see Fig. 2). We adjust both parameters dynamically
according to the local geometry of the boundary. The adjustment is inspired by Trust Region meth-
ods. In essence, we first test whether the orthogonal perturbation is still adversarial. If this is true,
then we make a small movement towards the target and test again. The orthogonal step tests whether
the step-size is small enough so that we can treat the decision boundary between the adversarial and
the non-adversarial region as being approximately linear. If this is the case, then we expect around
50% of the orthogonal perturbations to still be adversarial. If this ratio is much lower, we reduce
the step-size δ, if it is close to 50% or higher we increase it. If the orthogonal perturbation is still
adversarial we add a small step towards the original input. The maximum size of this step depends
on the angle of the decision boundary in the local neighbourhood (see also Figure 2). If the success
rate is too small we decrease ε, if it is too large we increase it. Typically, the closer we get to the
original image, the flatter the decision boundary becomes and the smaller ε has to be to still make
progress. The attack is converged whenever ε converges to zero.
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3 COMPARISON WITH OTHER ATTACKS

We quantify the performance of the Boundary Attack on three different standard datasets:
MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet-1000 (Deng
et al., 2009). To make the comparison with previous results as easy and transparent as possible, we
here use the same MNIST and CIFAR networks as Carlini & Wagner (2016a)4. In a nutshell, both
the MNIST and CIFAR model feature nine layers with four convolutional layers, two max-pooling
layers and two fully-connected layers. For all details, including training parameters, we refer the
reader to (Carlini & Wagner, 2016a). On ImageNet we use the pretrained networks VGG-19 (Si-
monyan & Zisserman, 2014), ResNet-50 (He et al., 2015) and Inception-v3 (Szegedy et al., 2015)
provided by Keras5.

We evaluate the Boundary Attack in two settings: an (1) untargeted setting in which the adversarial
perturbation flips the label of the original sample to any other label, and a (2) targeted setting in
which the adversarial flips the label to a specific target class. In the untargeted setting we compare
the Boundary Attack against three gradient-based attack algorithms:

• Fast-Gradient Sign Method (FGSM). FGSM is among the simplest and most widely used
untargeted adversarial attack methods. In a nutshell, FGSM computes the gradient g =
∇oL(o, c) that maximizes the loss L for the true class-label c and then seeks the smallest ε
for which o+ε·g is still adversarial. We use the implementation in Foolbox 0.10.0 (Rauber
et al., 2017).
• DeepFool. DeepFool is a simple yet very effective attack. In each iteration it computes for

each class ` 6= `0 the minimum distance d(`, `0) that it takes to reach the class boundary by
approximating the model classifier with a linear classifier. It then makes a corresponding
step in the direction of the class with the smallest distance. We use the implementation in
Foolbox 0.10.0 (Rauber et al., 2017).

• Carlini & Wagner. The attack by Carlini & Wagner (Carlini & Wagner, 2016a) is es-
sentially a refined iterative gradient attack that uses the Adam optimizer, multiple starting
points, a tanh-nonlinearity to respect box-constraints and a max-based adversarial con-
straint function. We use the original implementation provided by the authors with all hy-
perparameters left at their default values4.

To evaluate the success of each attack we use the following metric: let ηA,M (oi) ∈ RN be the
adversarial perturbation that the attack A finds on model M for the i-th sample oi. The total score
SA for A is the median squared L2-distance across all samples,

SA(M) = median
i

(
1

N
‖ηA,M (oi)‖22

)
. (4)

For MNIST and CIFAR we evaluate 1000 randomly drawn samples from the validation set, for
ImageNet we use 250 images.

3.1 UNTARGETED ATTACK

In the untargeted setting an adversarial is any image for which the predicted label is different from
the label of the original image. We show adversarial samples synthesized by the Boundary Attack
for each dataset in Figure 3. The score (4) for each attack and each dataset is as follows:

ImageNet
Attack Type MNIST CIFAR VGG-19 ResNet-50 Inception-v3

FGSM gradient-based 4.2e-02 2.5e-05 1.0e-06 1.0e-06 9.7e-07
DeepFool gradient-based 4.3e-03 5.8e-06 1.9e-07 7.5e-08 5.2e-08
Carlini & Wagner gradient-based 2.2e-03 7.5e-06 5.7e-07 2.2e-07 7.6e-08
Boundary (ours) decision-based 3.6e-03 5.6e-06 2.9e-07 1.0e-07 6.5e-08

4https://github.com/carlini/nn_robust_attacks (commit 1193c79)
5https://github.com/fchollet/keras (commit 1b5d54)
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Figure 3: Adversarial examples generated by the Boundary Attack for an MNIST, CIFAR and Im-
ageNet network. For MNIST, the difference shows positive (blue) and negative (red) changes. For
CIFAR and ImageNet, we take the norm across color channels. All differences have been scaled up
for improved visibility.
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Figure 4: Example of an untargeted attack. Here the goal is to synthesize an image that is as close
as possible (in L2-metric) to the original image while being misclassified (the original image is
correctly classified). For each image we report the total number of model calls (predictions) until
that point (above the image) and the mean squared error between the adversarial and the original
(below the image).

Despite its simplicity the Boundary Attack is competitive with gradient-based attacks in terms of
the minimal adversarial perturbations and very stable against the choice of the initial point (Fig-
ure 5). This finding is quite remarkable given that gradient-based attacks can fully observe the model
whereas the Boundary Attack is severely restricted to the final class prediction. To compensate for
this lack of information the Boundary Attack needs many more iterations to converge. As a rough
measure for the run-time of an attack independent of the quality of its implementation we tracked
the number of forward passes (predictions) and backward passes (gradients) through the network
requested by each of the attacks to find an adversarial for ResNet-50: averaged over 20 samples and
under the same conditions as before, DeepFool needs about 7 forward and 37 backward passes, the
Carlini & Wagner attack requires 16.000 forward and the same number of backward passes, and the
Boundary Attack uses 1.200.000 forward passes but zero backward passes. While that (unsurpris-
ingly) makes the Boundary Attack more expensive to run it is important to note that the Boundary
Attacks needs much fewer iterations if one is only interested in imperceptible perturbations, see
figures 4 and 6.

3.2 TARGETED ATTACK

We can also apply the Boundary Attack in a targeted setting. In this case we initialize the attack
from a sample of the target class that is correctly identified by the model. A sample trajectory from
the starting point to the original sample is shown in Figure 7. After around 104 calls to the model
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Figure 5: Adversarial perturbation (difference between
the adversarial and the original image) for ten repetitions
of the Boundary Attack on the same image. There are
basically two different minima with similar distance (first
row and second row) to which the Boundary Attack con-
verges.
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Figure 7: Example of a targeted attack. Here the goal is to synthesize an image that is as close as
possible (in L2-metric) to a given image of a tiger cat (2nd row, right) but is classified as a dalmatian
dog. For each image we report the total number of model calls (predictions) until that point.

the perturbed image is already clearly identified as a cat by humans and contains no trace of the
Dalmatian dog, as which the image is still classified by the model.

In order to compare the Boundary Attack to Carlini & Wagner we define the target target label for
each sample in the following way: on MNIST and CIFAR a sample with label ` gets the target label
`+1 modulo 10. On ImageNet we draw the target label randomly but consistent across attacks. The
results are as follows:

Attack Type MNIST CIFAR VGG-19
Carlini & Wagner gradient-based 4.8e-03 3.0e-05 5.7e-06
Boundary (ours) decision-based 6.5e-03 3.3e-05 9.9e-06

4 THE IMPORTANCE OF DECISION-BASED ATTACKS TO EVALUATE
MODEL ROBUSTNESS

As discussed in the introduction, many attack methods are straight-forward to defend against. One
common nuisance is gradient masking in which a model is implicitely or explicitely modified to yield
masked gradients. An interesting example is the saturated sigmoid network (Nayebi & Ganguli,
2017) in which an additional regularization term leads the sigmoid activations to saturate, which in
turn leads to vanishing gradients and failing gradient-based attacks (Brendel & Bethge, 2017).
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Another example is defensive distillation (Papernot et al., 2016). In a nutshell defensive distillation
uses a temperature-augmented softmax of the type

softmax(x, T )i =
exi/T∑
j e

xj/T
(5)

and works as follows:

1. Train a teacher network as usual but with temperature T .
2. Train a distilled network—with the same architecture as the teacher—on the softmax out-

puts of the teacher. Both the distilled network and the teacher use temperature T .
3. Evaluate the distilled network at temperature T = 1 at test time.

Initial results were promising: the success rate of gradient-based attacks dropped from close to 100%
down to 0.5%. It later became clear that the distilled networks only appeared to be robust because
they masked their gradients of the cross-entropy loss (Carlini & Wagner, 2016b): as the temperature
of the softmax is decreased at test time, the input to the softmax increases by a factor of T and so
the probabilities saturate at 0 and 1. This leads to vanishing gradients of the cross-entropy loss w.r.t.
to the input on which gradient-based attacks rely. If the same attacks are instead applied to the logits
the success rate recovers to almost 100% (Carlini & Wagner, 2016a).

Decision-based attacks are immune to such defences. To demonstrate this we here apply the Bound-
ary Attack to two distilled networks trained on MNIST and CIFAR. The architecture is the same
as in section 3 and we use the implementation and training protocol by (Carlini & Wagner, 2016a)
which is available at https://github.com/carlini/nn_robust_attacks. Most im-
portantly, we do not operate on the logits but provide only the class label with maximum probability
to the Boundary Attack. The results are as follows:

MNIST CIFAR
Attack Type standard distilled standard distilled

FGSM gradient-based 4.2e-02 fails 2.5e-05 fails
Boundary (ours) decision-based 3.6e-03 4.2e-03 5.6e-06 1.3e-05

The size of the adversarial perturbations that the Boundary Attack finds is fairly similar for the dis-
tilled and the undistilled network. This demonstrates that defensive distillation does not significantly
increase the robustness of network models and that the Boundary Attack is able to break defences
based on gradient masking.

5 ATTACKS ON REAL-WORLD APPLICATIONS

In many real-world machine learning applications the attacker has no access to the architecture or
the training data but can only observe the final decision. This is true for security systems (e.g. face
identification), autonomous cars or speech recognition systems like Alexa or Cortana.

In this section we apply the Boundary Attack to two models of the cloud-based computer vision
API by Clarifai6. The first model identifies brand names in natural images and recognizes over 500
brands. The second model identifies celebrities and can recognize over 10.000 individuals. Multiple
identifications per image are possible but we only consider the one with the highest confidence score.
It is important to note that Clarifai does provide confidence scores for each identified class (but not
for all possible classes). However, in our experiments we do not provide this confidence score to the
Boundary Attack. Instead, our attack only receives the name of the identified object (e.g. Pepsi or
Verizon in the brand-name detection task).

We selected several samples of natural images with clearly visible brand names or portraits of
celebrities. We then make a square crop and resize the image to 100× 100 pixels. For each sample
we make sure that the brand or the celebrity is clearly visible and that the corresponding Clarifai

6www.clarifai.com
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Figure 8: Adversarial examples generated by the Boundary Attack for two black-box models by
Clarifai for brand-detection (left side) and celebrity detection (right side).

model correctly identifies the content. The adversarial criterion was misclassification, i.e. Clarifai
should report a different brand / celebrity or None on the adversarially perturbed sample.

We show five samples for each model alongside the adversarial image generated by the Boundary
Attack in Figure 8. We generally observed that the Clarifai models were more difficult to attack
than ImageNet models like VGG-19: while for some samples we did succeed to find adversarial
perturbations of the same order (1e−7) as in section 3 (e.g. for Shell or SAP), most adversarial
perturbations were on the order of 1e−2 to 1e−3 resulting in some slightly noticeable noise in some
adversarial examples. Nonetheless, for most samples the original and the adversarial image are close
to being perceptually indistinguishable.

6 DISCUSSION & OUTLOOK

In this paper we emphasised the importance of a mostly neglected category of adversarial attacks—
decision-based attacks—that can find adversarial examples in models for which only the final deci-
sion can be observed. We argue that this category is important for three reasons: first, attacks in this
class are highly relevant for many real-world deployed machine learning systems like autonomous
cars for which the internal decision making process is unobservable. Second, attacks in this class do
not rely on substitute models that are trained on similar data as the model to be attacked, thus making
real-world applications much more straight-forward. Third, attacks in this class have the potential
to be much more robust against common deceptions like gradient masking, intrinsic stochasticity or
robust training.

We also introduced the first effective attack in this category that is applicable to general machine
learning algorithms and complex natural datasets: the Boundary Attack. At its core the Bound-
ary Attack follows the decision boundary between adversarial and non-adversarial samples using
a very simple rejection sampling algorithm in conjunction with a simple proposal distribution and
a dynamic step-size adjustment inspired by Trust Region methods. Its basic operating principle—
starting from a large perturbation and successively reducing it—inverts the logic of essentially all
previous adversarial attacks. Besides being surprisingly simple, the Boundary attack is also ex-
tremely flexible in terms of the possible adversarial criteria and performs on par with gradient-based
attacks on standard computer vision tasks in terms of the size of minimal perturbations.

The mere fact that a simple constrained iid Gaussian distribution can serve as an effective proposal
perturbation for each step of the Boundary attack is surprising and sheds light on the brittle informa-
tion processing of current computer vision architectures. Nonetheless, there are many ways in which
the Boundary attack can be made even more effective, in particular by learning a suitable proposal
distribution for a given model or by conditioning the proposal distribution on the recent history of
successful and unsuccessful proposals.

Decision-based attacks will be highly relevant to assess the robustness of machine learning models
and to highlight the security risks of closed-source machine learning systems like autonomous cars.
We hope that the Boundary attack will inspire future work in this area.
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