
Under review as a conference paper at ICLR 2018

PARAMETRIZED DEEP Q-NETWORKS LEARNING:
PLAYING ONLINE BATTLE ARENA WITH DISCRETE-
CONTINUOUS HYBRID ACTION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Most existing deep reinforcement learning (DRL) frameworks consider action
spaces that are either discrete or continuous space. Motivated by the project of
design Game AI for King of Glory (KOG), one the world’s most popular mobile
game, we consider the scenario with the discrete-continuous hybrid action space.
To directly apply existing DLR frameworks, existing approaches either approximate
the hybrid space by a discrete set or relaxing it into a continuous set, which is
usually less efficient and robust. In this paper, we propose a parametrized deep
Q-network (P-DQN) farmework for the hybrid action space without approximation
or relaxation. Our algorithm combines DQN and DDPG and can be viewed as an
extension of the DQN to hybrid actions. The empirical study on the game KOG
validates the efficiency and effectiveness of our method.

1 INTRODUCTION

In recent years, the exciting field of deep reinforcement learning (DRL) have witnessed striking
empirical achievements in complicated sequential decision making problems that are once believed
unsolvable. One active area of the application of DRL methods is to design artificial intelligence
(AI) for games. The success of DRL in the game of Go (Silver et al., 2016) provides a promising
methodology for game AI. In addition to the game of Go, DRL has been widely used in other games
such as Atari (Mnih et al., 2015), Robot Soccer (Hausknecht & Stone, 2016; Masson et al., 2016),
and Torcs (Lillicrap et al., 2016) to achieve super-human performances.

However, most existing DRL methods only handle the environments with actions chosen from a set
which is either finite and discrete (e.g., Go and Atari) or continuous (e.g. MuJoCo and Torcs) For
example, the algorithms for discrete action space include deep Q-network (DQN) (Mnih et al., 2013),
Double DQN (Hasselt et al., 2016), A3C (Mnih et al., 2016); the algorithms for continuous action
space include deterministic policy gradients (DPG) (Silver et al., 2014) and its deep version DDPG
(Lillicrap et al., 2016).

Motivated by the applications in Real Time Strategic (RTS) games, we consider the reinforcement
learning problem with a discrete-continuous hybrid action space. Different from completely discrete
or continuous actions that are widely studied in the existing literature, in our setting, the action is
defined by the following hierarchical structure. We first choose a high level action k from a discrete
set {1, 2, · · · ,K}; upon choosing k, we further choose a low level parameter xk ∈ Xk which is
associated with the k-th high level action. Here Xk is a continuous set for all k ∈ {1, . . . ,K}.1
Therefore, we focus on a discrete-continuous hybrid action space

A =
{

(k, xk)
∣∣xk ∈ Xk for all 1 ≤ k ≤ K

}
.

To apply existing DRL approaches on this hybrid action space, two straightforward ideas include:

• Approximate A by an finite discrete set. We could approximate each Xk by a discrete
subset, which, however, might lose the natural structure of Xk. Moreover, when Xk is a

1The low level continuous parameter could be deficient. It would not affect any results or derivation in this
paper.

1

Under review as a conference paper at ICLR 2018

region in the Euclidean space, establishing a good approximation usually requires a huge
number discrete actions.

• Relax A into a continuous set. To apply existing DRL framework with continuous action
spaces, Hausknecht & Stone (2016) define the following approximate space

Ã =

{
(f1, f2, . . . , fK , x1, x2, · · · , xK)

∣∣∣∣fk ∈ Fk, xk ∈ Xk ∀k ∈ [K]

}
,

where Fk ⊆ R. Here f1, f2, . . . , fK is used to select the discrete action either determin-
istically (by picking arg maxi fi) or randomly (with probability softmax(f)). Compared
with the original action space A, Ã might significantly increases the complexity of the
action space. Furthermore, continuous relaxation can also lead to unnecessary confu-
sion by over-parametrization. For example, (1, 0, · · · , 0, x1, x2, x3, · · · , xK) ∈ Ã and
(1, 0, · · · , 0, x1, x

′
2, x
′
3, · · · , x′K) ∈ Ã indeed represent the same action (1, x1) in the origi-

nal space A.

In this paper, we propose a novel DRL framework, namely parametrized deep Q-network learning
(P-DQN), which directly work on the discrete-continuous hybrid action space without approximation
or relaxation. Our method can be viewed as an extension of the famous DQN algorithm to hybrid
action spaces. Similar to deterministic policy gradient methods, to handle the continuous parameters
within actions, we first define a deterministic function which maps the state and each discrete action
to its corresponding continuous parameter. Then we define a action-value function which maps the
state and finite hybrid actions to real values, where the continuous parameters are obtained from
the deterministic function in the first step. With the merits of both DQN and DDPG, we expect our
algorithm to find the optimal discrete action as well as avoid exhaustive search over continuous action
parameters. To evaluate the empirical performances, we apply our algorithm to King of Glory (KOG),
which is one of the most popular online games worldwide, with over 200 million active users per
month. KOG is a multi-agent online battle arena (MOBA) game on mobile devices, which requires
players to take hybrid actions to interact with other players in real-time. Empirical study indicates
that P-DQN is more efficient and robust than Hausknecht & Stone (2016)’s method that relaxes A
into a continuous set and applies DDPG.

2 BACKGROUND

In reinforcement learning, the environment is usually modeled by a Markov decision process (MDP)
M = {S,A, p, p0, γ, r}, where S is the state space, A is the action space, p is the Markov transition
probability distribution, p0 is the probability distribution of the initial state, r(s, a) is the reward
function, and γ ∈ [0, 1] is the discount factor. An agent interacts with the MDP sequentially as
follows. At the t-th step, suppose the MDP is at state st ∈ S and the agent selects an action at ∈ A,
then the agent observe an immediate reward r(st, at) and the next state st+1 ∼ p(st+1|st, at). A
stochastic policy π maps each state to a probability distribution over A, that is, π(a|s) is defined
as the probability of selecting action a at state s. Whereas a deterministic µ : S → A maps each
state to a particular action in A. Let Rt =

∑
j≥t γ

j−tr(sj , aj) be the cumulative discounted reward
starting from time-step t. We define the state-value function and the action-value function of policy
π as V π = E(Rt|St = s;π) and Qπ(s, a) = E(Rt|S0 = s,A0 = a;π), respectively. Moreover,
we define the optimal state- and action-value functions as V π = supπ V

π and Q∗ = supπ Q
π,

respectively, where the supremum is taken over all possible policies. The goal of the agent is to
find a policy the maximizes the expected total discounted reward J(π) = E(R0|π), which is can be
achieved by estimating Q∗.

2.1 REINFORCEMENT LEARNING METHODS FOR FINITE ACTION SPACE

Broadly speaking, reinforcement learning algorithms can be categorized into two classes: value-based
methods and policy-based methods. Value-based methods first estimate Q∗ and then output the
greedy policy with respect to that estimate. Whereas policy-based methods directly optimizes J(π)
as a functional of π.

2

Under review as a conference paper at ICLR 2018

The Q-learning algorithm (Watkins & Dayan, 1992) is based on the Bellman equation

Q(s, a) = E(rt,st+1)

[
rt + γ max

a′∈A
Q(st+1, a

′)
∣∣st = s

]
, (2.1)

which has Q∗ as the unique solution. In the tabular setting, the algorithm updates the Q-function by
iteratively applying the sample counterpart of the Bellman equation

Q(s, a)← Q(s, a) + α
[
rt + γ max

a′∈A
Q(s′, a′)−Q(s, a)

]
,

where α > 0 is the stepsize and s′ is the next state observed given the current state s and action a.
However, when the state space S is so large that it is impossible to store all the states in memory,
function approximation for Q∗ is applied. Deep Q-Networks (DQN) (Mnih et al., 2015) approximates
Q∗ using a neural network Q(s, a;w) ≈ Q(s, a), where w is the network weights. In the t-th
iteration, the DQN updates the parameter using the gradient of the least squares loss function

Lt(w) =
{
Q(st, at;w)−

[
rt + γ max

a′∈A
Q(st+1, a

′;wt)
]}2

. (2.2)

In practice, DQN is trained with techniques such as experience replay (Schaul et al., 2016) and
asynchronous stochastic gradient descent methods (Mnih et al., 2016) which enjoy great empirical
success.

In addition to the value-based methods, the policy-based methods directly models the optimal policy.
In specific, let π be any policy. We write pt(·|s;π) as the distribution of St given S1 = s with actions
executed according to policy π. We define the discounted probability distribution ρπ by

ρπ(s′) =

∫
S

∑
t≥1

p0(s) · γt · pt(s′|s;π)ds.

Then the objective of policy-based methods is to find a policy that maximizes the expected reward

J(π) =

∫
S
ρπ(s)

∫
A
π(s, a)r(s, a)dads = Es∼ρπ,a∼π[r(s, a)].

Let πθ be a stochastic policy parametrized by θ ∈ Θ. For example, πθ could be a neural network
in which the last layer is a softmax layer with |A| neurons. The stochastic gradient methods aims
at finding a parameter θ that maximizes J(πθ) via gradient descent. The stochastic policy gradient
theorem (Sutton et al., 2000) states that

∇θJ(πθ) = Es∼ρπθ ,a∼πθ [∇θ log πθ(a|s)Qπθ (s, a)] . (2.3)

The policy gradient algorithm iteratively updates θ using estimates of (2.3). For example, the
REINFORCE algorithm (Williams, 1992) updates θ using ∇θ log πθ(at|st) · rt. Moreover, the
actor-critic methods use another neural network Q(s, a;w) to estimate the value function Qπθ (s, a)
associated to policy πθ. This algorithm combines the value-based and policy-based perspectives
together, and is recently used to achieve superhuman performance in the game of Go Silver et al.
(2017).

2.2 REINFORCEMENT LEARNING METHODS FOR CONTINUOUS ACTION SPACE

When the action space is continuous, value-based methods will no longer be computationally tractable
because of taking maximum over the action space A in (2.2), which in general cannot be computed
efficiently. The reason is that the neural network Q(s, a;w) is nonconvex when viewed as a function
of a; maxa∈AQ(s, a;w) is the global minima of a nonconvex function, which is NP-hard to obtain
in the worst case. To resolve this issue, the continuous Q-learning (Gu et al., 2016) rewrite the
action value function as Q(s, a) = V (s) + A(s, a), where V (s) is the state value function and
A(s, a) is the advantage function that encodes the relative advantage of each action. These functions
are approximated by neural networks V (s; θV) and A(s, a; θA), respectively, where θV and θA are
network weights. The action value function is given by

Q(s, a; θV , θA) = V (s; θV) +A(s, a; θA).

Then in the t-th iteration, the continuous Q-learning updates θv and θa by taking a gradient step using
the least squares loss function

Lt(θ
V , θA) =

{
Q(st, at; θ

V , θA)−
[
rt + γV (st; θ

V
t)
]}2

.

3

Under review as a conference paper at ICLR 2018

Moreover, it is also possible to adapt policy-based methods to continuous action spaces by considering
deterministic policies. Let µθ : S → A be a deterministic policy. Similar to (2.3), the deterministic
policy gradient (DPG) theorem (Silver et al., 2014) states that

∇θJ(µθ) = Es∼ρµθ
[
∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)

]
. (2.4)

Furthermore, this deterministic version of the policy gradient theorem can be viewed as the limit of
(2.3) with the variance of πθ going to zero. Based on (2.4), the DPG algorithm (Silver et al., 2014)
and the deep deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2016) are proposed.

3 RELATED WORK

General reinforcement learning There is a huge body of literature in reinforcement learning, we
refer readers to textbooks by Sutton & Barto (1998); Szepesvári (2010) for detailed introduction.
Combined with the recent advancement of deep learning (Goodfellow et al., 2016), deep reinforcement
learning becomes a blossoming field of research with a plethora of new algorithms which achieve
surprising empirical success in a variety of applications that are previously considered extremely
difficult and challenging.

Finite discrete action space methods For reinforcement learning problems with finite action
spaces, Mnih et al. (2013; 2015) propose the DQN algorithm, which first combines the deep neural
networks with the classical Q-learning algorithm (Watkins & Dayan, 1992). A variety of extensions
are proposed to improve DQN, including Double DQN (Hasselt et al., 2016), dueling DQN (Wang
et al., 2016), bootstrap DQN (Osband et al., 2016), asynchronous DQN (Mnih et al., 2016), and
averaged-DQN Anschel et al. (2017).

In terms of policy-based methods, Sutton et al. (2000) propose the REINFORCE algorithm, which
is the basic form of policy gradient. An important extension is the actor-critic method (Konda &
Tsitsiklis, 2000), whose asynchronous deep version A3C (Mnih et al., 2016) produces the state-
of-the-art performances on the Arcade Learning Environment (ALE) benchmark (Bellemare et al.,
2013).

Continuous action space methods Moreover, for DRL on continuous action spaces, Silver et al.
(2014) proposes the deterministic policy gradient algorithm and deterministic actor-critic algorithms.
This work is further extended by Lillicrap et al. (2016), which propose the DDPG algorithm, which
is an model-free actor critic algorithm using deep neural networks to parametrize the policies. A
related line of work is policy optimization methods, which improve the policy gradient method using
novel optimization techniques. These methods include natural gradient descent (Kakade, 2002),
trust region optimization (Schulman et al., 2015), proximal gradient descent (Schulman et al., 2017),
mirror descent (Montgomery & Levine, 2016), and entropy regularization (O’Donoghue et al., 2017).

Hybrid actions A related body of literature is the recent work on reinforcement learning with a
structured action space, which contains finite actions each parametrized by a continuous parameter.
To handle such parametrized actions, Hausknecht & Stone (2016) applies the DDPG algorithm on the
relaxed action space directly, and Masson et al. (2016) proposes a learning framework updating the
parameters for discrete actions and continuous parameters alternately.

Game AI Recently remarkable advances have been made in building AI bots for computer games
using deep reinforcement learning. These games include Atari Games, a collection of video games,
Texas Hold’em, a multi-player poker game, and Doom, a first-person shooter game. See Mnih
et al. (2013); Heinrich & Silver (2016); Lample & Chaplot (2016); Bhatti et al. (2016) for details
and see Justesen et al. (2017) for a comprehensive survey. More notably, the computer Go agent
AlphaGo (Silver et al., 2016; 2017) achieves super-human performances by defeating the human
world champion Lee Sedol. Two more complicated class of games are the real-time strategy (RTS)
games and MOBA games. These are multi-agent games which involves searching within huge state
and action spaces that are possibly continuous. Due to the difficulty of these problems, current
research for these games are rather inadequate with most existing work consider specific scenarios
instead of the full-fledged RTS or MOBA games. See, e.g., Foerster et al. (2017); Peng et al. (2017)
for an recent attempt on applying DRL methods to RTS games.

4

Under review as a conference paper at ICLR 2018

4 PARAMETRIZED DEEP Q-NETWORKS (P-DQN)

This section introduces the proposed framework to handle the application with hybrid discrete-
continuous action space. We consider a MDP with a parametrized action space A, which consists
of K discrete actions each associated with a continuous parameter. In specific, we assume that
any action a ∈ A can be written as a = (k, xk), where k ∈ {1, . . . ,K} is the discrete action, and
xk ∈ Xk is a continuous parameter associated with the k-th discrete action. Thus action a is a hybrid
of discrete and continuous components with the value of the continuous action determined after the
discrete action is chosen. Then the parametrized action space A can be written as

A =
{

(k, xk)
∣∣xk ∈ Xk for all 1 ≤ k ≤ K

}
. (4.1)

In the sequel, we denote {1, . . . ,K} by [K] for short. For the action space A in (4.1), we denote the
action value function by Q(s, a) = Q(s, k, xk) where s ∈ S, 1 ≤ k ≤ K, and xk ∈ Xk. Let kt be
the discrete action selected at time t and let xkt be the associated continuous parameter. Then the
Bellman equation becomes

Q(st, kt, xkt) = E(rt,st+1)

[
rt + γ max

k∈[K]
sup
xk∈Xk

Q(st+1, k, xk)
∣∣∣st = s

]
. (4.2)

Here inside the conditional expectation on the right-hand side of (4.2), we first solve x∗k =
argsupxk∈Xk Q(st+1, k, xk) for each k ∈ [K], and then take the largest Q(st+1, k, x

∗
k). Note that

taking supremum over continuous space Xk is computationally intractable. However, the right-hand
side of (4.2) can be evaluated efficiently providing x∗k is given.

To elaborate this idea, first note that, when the function Q is fixed, for any s ∈ S and k ∈ [K], we
can view

xQk (s) = argsup
xk∈Xk

Q(s, k, xk) (4.3)

as a function of state s. That is, we identify (4.3) as a function xQk : S → Xk. Then we can rewrite
the Bellman equation in (4.2) as

Q(st, kt, xkt) = E(rt,st+1)

{
rt + γ max

k∈[K]
Q
[
st+1, k, x

Q
k (st+1)

]∣∣∣st = s
}
.

Note that this new Bellman equation resembles the classical Bellman equation in (2.1) with A = [K].
Similar to the deep Q-networks, we use a deep neural network Q(s, k, xk;ω) to approximate
Q(s, k, xk), where ω denotes the network weights. Moreover, for such a Q(s, k, xk;ω), we ap-
proximate xQk (s) in (4.3) with a deterministic policy network xk(·; θ) : S → Xk, where θ denotes
the network weights of the policy network. That is, when ω is fixed, we want to find θ such that

Q
[
s, k, xk(s; θ);ω

]
≈ sup
xk∈Xk

Q(s, k, xk;ω) (4.4)

for each k ∈ [K].
Remark 4.1. Readers who are familiar with the work by Hausknecht & Stone (2016), that also
claims to handle discrete-continuous hybrid action spaces, may be curious of its difference from the
proposed P-DQN. The key differences are as follows.

• In (Hausknecht & Stone, 2016), the discrete action types are parametrized as some con-
tinuous values, say f . And the discrete action that is actually executed is chosen via
k = arg maxi f(i). Such a trick actually turns the hybrid action space into a continuous
action space, upon which the classical DDPG algorithm can be applied. However, in our
framework, the discrete action type is chosen directly by maximizing the action’s Q value
explicitly.

• The Q network in (Hausknecht & Stone, 2016) uses the artificial parameters f as input,
which makes it an action-value function estimator of current policy (Qπ). While in our
framework, the Q network is actually an approximate estimator of the optimal policy’s
action-value function (Q?).

• We note that P-DQN is an off-policy method that can use historical data, while it is hard
to use historical data in Hausknecht & Stone (2016) because there is only discrete action k
without parameters f .

5

Under review as a conference paper at ICLR 2018

(a) Network of P-DQN (b) Network of DDPG

Figure 1: Illustration of the networks of P-DQN and DDPG (Hausknecht & Stone, 2016). P-DQN
selects the discrete action type by maximizing Q values explicitly; while in DDPG, the discrete action
with largest f , which can be seen as a continuous parameterization of K discrete action types, is
chosen. Also in P-DQN the state and action parameters are feed into the Q-network which outputs K
action values for each action type; while in DDPG, the continuous parameterization f , instead of the
actual action k taken, is feed into the Q-network.

5 ALGORITHM

Suppose that θ satisfies (4.4), then similar to DQN, we could estimate ω by minimizing the mean-
squared Bellman error via gradient descent. In specific, in the t-th step, let ωt and θt be the weights
of the value network and the deterministic policy network, respectively. To incorporate multi-step
algorithms, for a fixed n ≥ 1, we define the n-step target yt by

yt =

n−1∑
i=1

γi · rt+i + γn · max
k∈[K]

Q
[
st+n, k, xk(st+n, θt);ωt

]
. (5.1)

We define the least squares loss function for ω by

`Qt (ω) = 1/2 ·
{
Q
[
st, kt, xkt ;ω

]
− yt

}2
. (5.2)

Moreover, since we aim to find θ that minimizes Q[s, k, xk(s; θ);ω] with ω fixed, we define the loss
function for θ by

`Θt (θ) = −
K∑
k=1

Q
[
st, k, xk(st; θ);ωt

]
. (5.3)

Then we update ωt and θt by gradient-based optimization methods. Moreover, the gradients are given
by

∇ω`Qt (ω) =
{
Q
[
st, kt, xkt ;ω

]
− yt

}
· ∇ωQ(

[
st, kt, xkt ;ω

]
), (5.4)

∇θ`Θt (θ) = −
K∑
k=1

∇xQ
[
st, k, xk(st; θ);ωt

]
· ∇θxk(st; θ). (5.5)

Here ∇xQ(s, k, xk;ω) and ∇ωQ(s, k, xk;ω) are the gradients of the Q-network with respect to
its third argument and fourth argument, respectively. By (5.5) and (5.4) we update the parameters
using stochastic gradient methods. In addition, note that in the ideal case, we would minimize
the loss function `Θt (θ) in (5.3) when ωt is fixed. From the results in stochastic approximation
methods (Kushner & Yin, 2006), we could approximately achieve such a goal in an online fashion
via a two-timescale update rule (Borkar, 1997). In specific, we update ω with a stepsize αt that
is asymptotically negligible compared with the stepsize βt for θ. In addition, for the validity of

6

Under review as a conference paper at ICLR 2018

Algorithm 1 Parametrized Deep Q-Network (P-DQN) with Experience Replay
Input: Stepsizes {αt, βt}t≥0 , exploration parameter ε, minibatch size B, the replay memory D, and a
probability distribution µ over the action space A for exploration.
Initialize network weights ω1 and θ1.
for t = 1, 2, . . . , T do

Compute action parameters xk ← xk(s`, θt).
Select action at = (kt, xkt) according to the ε-greedy policy

at =

{
a sample from distribution µ with probability ε,
(kt, xkt) such that kt = arg maxk∈[K] Q(s`, k, xk;ωt) with probability 1− ε.

Take action at, observe reward rt and the next state st+1.
Store transition [st, at, rt, st+1] into D.
Sample B transitions {sb, ab, rb, sb+1}b∈[B] randomly from D.
Define the target yb by

yb =

{
rb if yb is the terminal state
rb +maxk∈[K] γ ·Q[sb+1, k, xk(sb+1, θt);ωt] otherwise.

Use data {yb, sb, ab}b∈[B] to compute the stochastic gradient∇ω`Qt (ω) and∇θ`Θt (θ) defined in (5.5) and
(5.4).
Update the parameters by ωt+1 ← ωt − αt · ∇ω`Qt (ωt) and θt+1 ← θt − βt · ∇θ`Θt (θt).

end for

stochastic approximation, we require {αt, βt} to satisfy the Robbins-Moron condition (Robbins &
Monro, 1951). We present the P-DQN algorithm with experienced replay in Algorithm 1.

Note that this algorithm requires a distribution µ defined on the action space A for exploration. In
each step, with probability ε, the agent sample an random action from µ; otherwise, it takes the
greedy action with respect to the current value function. In practice, if each Xk is a compact set in the
Euclidean space (as in our case), µ could be defined as the uniform distribution over A. In addition,
as in the DDPG algorithm (Lillicrap et al., 2016), we can also add additive noise to the continuous
part of the actions for exploration. Moreover, we use experience replay (Mnih et al., 2013) to reduce
the dependencies among the samples, which can be replaced by more sample-efficient methods such
as prioritized replay (Schaul et al., 2016).

Moreover, we note that our P-DQN algorithm can easily incorporate asynchronous gradient descent
to speed up the training process. Similar to the asynchronous n-step DQN in Mnih et al. (2016),
we consider a centralized distributed training framework where each process can compute its local
gradient and synchronize with a global parameter server. In specific, each local process runs an
independent game environment to generate transition trajectories and use its own transitions to
compute gradients with respect to ω and θ. These local gradients are then aggregated across multiple
processes to update the global parameters. Note that these local stochastic gradients are independent.
Thus tricks such as experience replay can be avoided in the distributed setting. Moreover, aggregating
independent stochastic gradient decrease the variance of gradient estimation, which yields better
algorithmic stability. We present the asynchronous P-DQN algorithm in Algorithm 2. For simplicity,
here we only lay out the algorithm for each local process, which fetches ω and θ from the parameter
server and computes the gradient. The parameter server stores the global parameters ω, θ . It updates
the global parameters using the gradients sent from the local processes . In addition we use the
RMSProp (Hinton et al., 2012) to update the network parameters, which is shown to be more stable
in practice.

6 GAME ENVIRONMENT: KING OF GLORY

The game King of Glory is a MOBA game, which is a special form of the RTS game where the
players are divided into two opposing teams fighting against each other. Each team has a team base
located in either the bottom-left or the top-right corner which are guarded by three towers on each of
the three lanes. The towers can attack the enemies when they are within its attack range. Each player
controls one hero, which is a powerful unit that is able to move, kill, perform skills, and purchase

7

Under review as a conference paper at ICLR 2018

Algorithm 2 The Asynchronous P-DQN Algorithm
Input: exploration parameter ε, a probability distribution µ over the action space A for exploration, the max
length of multi step return tmax, and maximum number of iterations Nstep.
Initialize global shared parameter ω and θ
Set global shared counter Nstep = 0
Initialize local step counter t← 1.
repeat

Clear local gradients dω ← 0, dθ ← 0.
tstart ← t
Synchronize local parameters ω′ ← ω and θ′ ← θ from the parameter server.
repeat

Observe state st and let xk ← xk(st, θ
′)

Select action at = (kt, xkt) according to the ε-greedy policy

at =

{
a sample from distribution µ with probability ε,
(kt, xkt) such that kt = arg maxk∈[K] Q(st, k, xk;ω

′) with probability 1− ε.

Take action at, observe reward rt and the next state st+1.
t← t+ 1
Nstep ← Nstep + 1

until st is the terminal state or t− tstart = tmax

Define the target y =

{
0 for terminal st
maxk∈[K] Q[st, k, xk(st, θ

′);ω′] for non-terminal st
for i = t− 1, . . . , tstart do
y ← ri + γ · y
Accumulate gradients: dθ ← dθ +∇θ`Θt (θ′), dω ← dω +∇ω`Qt (ω′)

end for
Update global θ and ω using dθ and dω with RMSProp (Hinton et al. (2012)).

until Nstep > Nmax

equipments. The goal of the heroes is to destroy the base of the opposing team. In addition, for both
teams, there are computer-controlled units spawned periodically that march towards the opposing
base in all the three lanes. These units can attack the enemies but cannot perform skills or purchase
equipments. An illustration of the map is in Figure 2-(a), where the blue or red circles on each lane
are the towers. During game play, the heroes advance their levels and obtain gold by killing units and
destroying the towers. With gold, the heros are able to purchase equipments such as weapons and
armors to enhance their power. In addition, by upgrading to the new level, a hero is able to improve
its unique skills. Whereas when a hero is killed by the enemy, it will wait for some time to reborn.

In this game, each team contains one, three, or five players. The five-versus-five model is the most
complicated mode which requires strategic collaboration among the five players. In contrast, the
one-versus-one mode, which is called solo, only depends on the player’s control of a single hero.
In a solo game, only the middle lane is active; both the two players move along the middle lane to
fight against each other. The map and a screenshot of a solo game are given in Figure 2-(b) and (c),
respectively. In our experiments, we play focus on the solo mode. We emphasize that a typical solo
game lasts about 10 to 20 minutes where each player must make instantaneous decisions. Moreover,
the players have to make different types of actions including attack, move and purchasing. Thus, as a
reinforcement learning problem, it has four main difficulties: first, the state space has huge capacity;
second, since there are various kinds of actions, the action space is complicated; third, the reward
function is not well defined; and fourth, heuristic search algorithms are not feasible since the game
is in real-time. Therefore, although we consider the simplest mode of King of Glory, it is still a
challenging game for artificial intelligence.

7 EXPERIMENTS

In this section, we applied the P-DQN algorithm to the solo mode of King of Glory. In our experiments,
we play against the default AI hero Lu Ban provided by the game, which is a shooter with long
attack range. To evaluate the performances, we compared our algorithm with the DDPG algorithm
(Hausknecht & Stone, 2016) under fair condition.

8

Under review as a conference paper at ICLR 2018

10/24/2017 Map of multiplayer online battle arena

file:///Users/zhuoranyang/Dropbox/2017_iclr_kogrl/iclr/source/figures/MOBA.svg 1/1

Team 1
base

Top lane

Bottom lane

Midd
le

Team 1
top jungle

Team 1
bottom jungle

Team 2
base

Top lane

Bottom
 lane

lan
e

Team 2
top jungle

Team 2
bottom jungle

(a) The map of a MOBA game. (b) The battle field for a solo game. (c) A screen shot of a solo game.

Figure 2: (a) An illustration of the map of a MOBA game, where there are three lanes connecting
two bases, with three towers on each lane for each side. (b). The map of a solo game of King of
Glory, where only the middle lane is active. (c). A screenshot of a solo game of King of Glory,
where the unit under a blue bar is a hero controlled by our algorithm and the rest of the units are the
computer-controlled units.

Table 1: Action Parameters

ActionType Parameter Description
Move α Move in the direction α
Attack - Attack default target

UseSkill1 (x, y) Use Skill 1 at the target position (x, y)
UseSkill2 α Use Skill 2 in the direction α
UseSkill3 α Use Skill 3 in the direction α

Retreat - Retreat back to our base

7.1 STATE

In our experiment, the state of the game is represented by a 179-dimensional feature vector which is
manually constructed using the output from the game engine. These features consist of two parts.
The first part is the basic attributes of the two heroes, the computer-controlled units, and buildings
such as the towers and the bases of the two teams. For example, the attributes of the heroes include
Health Point, Magic Point, Attack Damage, Armor, Magic Power, Physical Penetration/Resistance,
and Magic Penetration/Resistance, and the attributes of the towers include Health Point and Attack
Damage. The second component of the features is the relative positions of other units and buildings
with respect to the hero controlled by the P-DQN player as well as the attacking relations between
other units. We note that these features are directly extracted from the game engine without sophisti-
cated feature engineering. We conjecture that the overall performances could be improved with a
more careful engineered set of features.

7.2 ACTION SPACE

We simplify the actions of a hero intoK = 6 discrete action types: Move, Attack, UseSkill1, UseSkill2,
UseSkill3, and Retreat. Some of the actions may have additional continuous parameters to specify the
precise behavior. For example, when the action type is k = Move, the direction of movement is given
by the parameter xk = α, where α ∈ [0, 2π]. Recall that each hero’s skills are unique. For Lu Ban,
the first skill is to throw a grenade at some specified location, the second skill is to launch a missile in
a particular direction, and the last skill is to call an airship to fly in a specified direction. A complete
list of actions as well as the associated parameters are given in Table 1.

7.3 REWARD

The ultimate goal of a solo game is to destroy the opponent’s base. However, the final result is only
available when the game terminates. Using such kind of information as the reward for training might
not be very effective, as it is very sparse and delayed. In practice, we manually design the rewards
using information from each frame. Specifically, we define a variety of statistics as follows. (In

9

Under review as a conference paper at ICLR 2018

the sequel, we use subscript 0 to represent the attributes of our side and 1 to represent those of the
opponent.)

• Gold difference GD = Gold0 −Gold1. This statistic measures the difference of gold gained
from killing hero, soldiers and destroying towers of the opposing team. The gold can be
used to buy weapons and armors, which enhance the offending and defending attributes of
the hero. Using this value as the reward encourages the hero to gain more gold.

• Health Point difference (HPD = HeroRelativeHP0 − HeroRelativeHP1): This statistic
measures the difference of Health Point of the two competing heroes. A hero with higher
Health Point can bear more severe damages while hero with lower Health Point is more
likely to be killed. Using this value as the reward encourages the hero to avoid attacks and
last longer before being killed by the enemy.

• Kill/Death KD = Kills0 − Kills1. This statistic measures the historical performance of the
two heroes. If a hero is killed multiple times, it is usually considered more likely to lose the
game. Using this value as the reward can encourage the hero to kill the opponent and avoid
death.

• Tower/Base HP difference THP = TowerRelativeHP0 − TowerRelativeHP1, BHP =
BaseRelativeHP0 − BaseRelativeHP1. These two statistics measures the health difference
of the towers and bases of the two teams. Incorporating these two statistic in the reward
encourages our hero to attack towers of the opposing team and defend its own towers.

• Tower Destroyed TD = AliveTower0 − AliveTower1. This counts the number of destroyed
towers, which rewards the hero when it successfully destroy the opponent’s towers.

• Winning Game W = AliveBase0 − AliveBase1. This value indicates the winning or losing
of the game.

• Moving forward reward: MF = x+ y, where (x, y) is the coordinate of Hero0: This value
is used as part of the reward to guide our hero to move forward and compete actively in the
battle field.

The overall reward is calculated as a weighted sum of the time differentiated statistics defined above.
In specific, the exact formula is

rt = 0.5× 10−5(MFt −MFt−1) + 0.001(GDt − GDt−1) + 0.5(HPDt − HPDt−1

+KDt − KDt−1 + TDt − TDt−1) + (THPt − THPt−1 + BHPt − BHPt−1) + 2W.

The coefficients are set roughly inversely proportional to the scale of each statistic. We note that our
algorithm is not very sensitive to the change of these coefficients in a reasonable range.

7.4 EXPERIMENT DETAILS

In the experiments, we use the default parameters of skills provided by the game environment
(usually pointing to the opponent hero’s location). We found such kind of simplification does not
affect to the overall performance of our agent. In addition, to deal with the periodic problem of the
direction of movement, we use (cos(α), sin(α)) to represent the direction and learn a normalized
two-dimensional vector instead of a degree (in practice, we add a normalize layer at the end to ensure
this). In addition, the 6 discrete actions are not always usable, due to skills level up, lack of Magic
Point (MP), or skills Cool Down(CD). In order to deal with this problem, we replace the maxk∈[K]

with maxk∈[K] and k is usable when selecting the action to perform, and calculating multi-step target as
in Equation 5.1.

For the network structure, recall that we use a feature vector of 179 dimensions as the state. We set
both the value-network and the policy network as multi-layer fully-connected deep networks. The
networks are in the same size of 256-128-64 nodes in each hidden layer, with the Relu activation
function.

During the training and testing processes, we set the frame skipping parameter to 2. This means that
we take actions every 3 frames or equivalently, 0.2 second, which adapts to the human reaction time,
0.1 second. We set tmax = 20 (4 seconds) to alleviate the delayed reward. In order to encourage
exploration, we use ε-greedy sampling in training with ε = 0.255. In specific, the first 5 type actions

10

Under review as a conference paper at ICLR 2018

(a1) Episode length in training (b1) Episode length in training

(a2) Episode reward sum in training (b2)Episode reward sum in training

(a3) Episode reward sum in validation (b3) Episode reward sum in validation

Figure 3: Comparison of P-DQN and DDPG for solo games with the same hero Lu Ban. The learning
curves for different training workers are plotted in different colors. We further smooth the original
noisy curves (plotted in light colors) to their running average (plotted in dark colors). In the 3 rows,
we plot the average of episode lengths, reward sum averaged for each episode in training, and reward
sum averaged for each episode in validation, for the two algorithms respectively. Usually a positive
reward sum indicates a winning game, and vice versa. We can see that the proposed algorithm P-DQN
learns much faster than its precedent work in our setting. (a) Performance of P-DQN. (b) Performance
of DDPG

are sampled with probability of 0.05 each and the action “Retreat” with probability 0.005. For actions
with additional parameters, since the parameters are in bounded sets, we draw these parameters from
a uniform distribution. Moreover, if the sampled action is infeasible, we execute the greedy policy
from the feasible ones, so the effective exploration rate is less than ε. We uses 48 parallel workers
with constant learning rate 0.001 in training and 1 worker with deterministic sampling in validation.
The training and validating performances are plotted in Figure 3.

We implemented the DDPG (Hausknecht & Stone (2016)) algorithm within our learning environment
to have a fair comparison. The exact network structure is plotted in Figure 1. Each algorithm is
allowed to run for 15 million steps, which corresponds to roughly 140 minutes of wall clock time
when paralleled with 48 workers.

From the experiments results, we can see that our algorithm P-DQN can learn the value network and
the policy network much faster comparing to the other algorithm. In (a1), we see that the average
length of games increases at first, reaches its peak when the two player’s strength are close, and
decreases when our player can easily defeat the opponent. In addition, in (a2) and (a3), we see that
the total rewards in an episode increase consistently in training as well as in test settings. The DDPG
algorithm may not be suitable for hybrid actions with both a discrete part and a continuous part. The
major difference is that maximization over k when we need to select a action is computed explicitly
in P-DQN, instead of approximated implicitly with the policy network as in DDPG. Moreover, with a
deterministic policy network, we extend the DQN algorithm to hybrid action spaces of discrete and
continuous types, which makes the P-DQN algorithm more suitable for realistic scenarios.

11

Under review as a conference paper at ICLR 2018

8 CONCLUSION

Previous deep reinforcement learning algorithms mostly can work with either discrete or continuous
action space. In this work, we consider the scenario with discrete-continuous hybrid action space.
In contrast of existing approaches of approximating the hybrid space by a discrete set or relaxing it
into a continuous set, we propose the parameterized deep Q-network (P-DQN), which extends the
classical DQN with deterministic policy for the continuous part of actions. Empirical experiments
of training AI for King of Glory, one of the most popular games, demonstrate the efficiency and
effectiveness of P-DQN.

12

Under review as a conference paper at ICLR 2018

REFERENCES

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International Conference on Machine Learning, pp. 176–185,
2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, Nantas Nardelli, N Siddharth, and Philip HS Torr.
Playing doom with slam-augmented deep reinforcement learning. arXiv preprint arXiv:1612.00380,
2016.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Philip Torr, Pushmeet Kohli, Shimon Whiteson,
et al. Stabilising experience replay for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1702.08887, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning, pp. 2829–2838,
2016.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2094–2100. AAAI
Press, 2016.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
In Proceedings of the International Conference on Learning Representations (ICLR), 2016.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning-lecture
6a-overview of mini-batch gradient descent, 2012.

Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning for video game
playing. arXiv preprint arXiv:1708.07902, 2017.

Sham M Kakade. A natural policy gradient. In Advances in neural information processing systems,
pp. 1531–1538, 2002.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

H. Kushner and G.G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.
Stochastic Modelling and Applied Probability. Springer New York, 2006. ISBN 9780387217697.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learning.
arXiv preprint arXiv:1609.05521, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2016.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with parameter-
ized actions. In AAAI, pp. 1934–1940, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

13

Under review as a conference paper at ICLR 2018

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

William Montgomery and Sergey Levine. Guided policy search as approximate mirror descent. arXiv
preprint arXiv:1607.04614, 2016.

Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Pgq: Combining
policy gradient and q-learning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, pp. 4026–4034, 2016.

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, and Jun Wang.
Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Proceedings of the International Conference on Learning Representations (ICLR), 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 387–395, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Csaba Szepesvári. Algorithms for reinforcement learning. Morgan & Claypool Publishers, 2010.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine
Learning, pp. 1995–2003, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

14

	Introduction
	Background
	Reinforcement Learning Methods for Finite Action Space
	Reinforcement Learning Methods for Continuous Action Space

	Related Work
	Parametrized Deep Q-Networks (P-DQN)
	Algorithm
	Game Environment: King of Glory
	Experiments
	State
	Action Space
	Reward
	Experiment details

	Conclusion

