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ABSTRACT

Agents powered by large language models have shown remarkable abilities in
solving complex tasks. However, most agent systems remain reactive, limit-
ing their effectiveness in scenarios requiring foresight and autonomous decision-
making. In this paper, we tackle the challenge of developing proactive agents
capable of anticipating and initiating tasks without explicit human instructions.
We propose a novel data-driven approach for this problem. Firstly, we collect
real-world human activities to generate proactive task predictions. These predic-
tions are then labeled by human annotators as either accepted or rejected. The
labeled data is used to train a reward model that simulates human judgment and
serves as an automatic evaluator of the proactiveness of LLM agents. Building
on this, we develop a comprehensive data generation pipeline to create a di-
verse dataset, ProactiveBench, containing 6, 790 events. Finally, we demonstrate
that fine-tuning models with the proposed ProactiveBench can significantly elicit
the proactiveness of LLM agents. Experimental results show that our fine-tuned
model achieves an F1-Score of 66.47% in proactively offering assistance, out-
performing all open-source and close-source models. These results highlight the
potential of our method in creating more proactive and effective agent systems,
paving the way for future advancements in human-agent collaboration.

1 INTRODUCTION

From John
I would like to request a meeting to discuss collaboration on October 
9th at 3:00 PM at Starbucks.

Self-initiating to solve tasks before instructing

Proactive

Agent

User

Yes! Please schedule it!

Would you need my help to 

schedule a meeting with John on 

October 9th at 3:00 PM at Starbucks ?

Solving tasks after receiving instruction

User

Of course, I will update 

your calendar . 

Reactive

Agent

1
Environment

Observation

Can you help me to schedule a 

meeting with John on October 9th 

at 3:00 PM at Starbucks?

Figure 1: Comparison of agent systems with two types of human-agent interaction. Reactive agents
passively receive user queries and then generate responses. Proactive agents infer tasks based on
environmental observations and propose possible assistance requests accordingly.

The emergence of large language models (LLMs) like ChatGPT (OpenAI, 2022) has significantly
advanced the development of autonomous agent (Chen et al., 2023; Hong et al., 2023; Zhang et al.,
2023; Wu et al., 2023). These LLM-based agents can understand human instructions, make plans,
explore environments, and utilize tools to solve complex tasks (Wu et al., 2023; Li et al., 2023)
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and have shown substantial potential in various applications such as robotics (Firoozi et al., 2023),
personal assistants (Li et al., 2024), and process automation (Ye et al., 2023b).

Currently, most existing LLM-based agents predominantly work in the reactive paradigm: they
require explicit human instructions to initiate task completion and remain dormant in terms of pro-
viding services until prompted by user instructions (Ouyang et al., 2022). This paradigm limits their
capacity for proactive assistance and autonomous service provision in the absence of direct human
instructions. We argue that LLM-based agents should be proactive, capable of autonomously
initiating tasks by understanding and responding to their environment. For instance, as illus-
trated in Figure 1, the reactive agent should wait for explicit instructions from the user to execute
tasks such as “show unread emails” or “schedule a meeting with John”. In contrast, a proactive
agent would predict its task automatically by noticing an email from John suggesting a meeting and
automatically offering to schedule it. This ability of context awareness (Schilit & Theimer, 1994)
enables the proactive agent to interpret signals and proactively propose and execute tasks without
explicit human instructions. Thus, it not only significantly reduces the cognitive burden on the user
but also identifies latent needs not explicitly articulated by humans. Consequently, the proactive
agent could provide more comprehensive and seamless services to the user.

Subsets Scenarios Entries (Tr/Ts)

Agent Model 136 6,790 / 233
Coding 46 2,275
Writing 46 2,354
Daily Life 44 2,161

Reward Model - 1,640 / 120

Table 1: Statistics of the ProactiveBench,
which includes three distinct settings: Coding,
Writing, and Daily Life. The subset for the
agent model contains 6, 790 events for train-
ing and 233 for testing. The subset for the
reward model contains 1, 640 annotated labels
for training and 120 for testing.

In this work, we propose a novel data-driven for-
malization for developing a proactive agent that
anticipates user needs and takes the initiative by
suggesting tasks or providing information without
explicit requests. Our approach centers on con-
structing ProactiveBench, allowing us to evaluate
and enhance the agent’s proactive behavior. Firstly,
we collect real-world human activity data in three
settings: coding, writing, and daily life. This in-
cludes but is not limited to, user keyboard and
mouse inputs, clipboard content, browser activity,
etc. Then, we build an LLM-driven gym to gen-
erate events that reflect the raw real-world con-
texts we collected. We obtain a total of 233 events
across 12 scenarios as the test set of the Proac-
tiveBench. To further refine the proactive behav-
ior of the LLM-based agent, we construct various
events and proactive tasks under synthetic contexts with the gym. By iterative generating more
events and predictions, we obtain up to 6, 790 events as the train set of the ProactiveBench, as
shown in Table 1. We fine-tune the LLaMA-3.1-8B-Instruct (Touvron et al., 2023; Meta, 2024) and
the Qwen2-7B-Instruct (Bai et al., 2023) on this training set to refine their proactive behavior.

To automatically evaluate the proactiveness of LLMs, we train a reward model that achieves up to
91.80% consistency with human judgments in terms of F1-Score, serving as an evaluator. Using
the reward model, we compared the performance of different language models on ProactiveBench.
The results indicate that even the latest open-source models struggle to effectively predict proactive
tasks. For instance, the LLaMA-3.1-8B-Instruct model only achieved a 55.06% F1-Score on Proac-
tiveBench. In contrast, our fine-tuned model demonstrated significant improvements, achieving a
66.25% F1-Score. Besides, our fine-tuned Qwen2-7B-Instruct model achieves 66.47% F1-Score,
outperforming all existing open-source and closed-source LLMs. This underscores the effectiveness
of our data-driven approach in developing proactive agents, highlighting their potential to enhance
user experiences across various applications.

2 RELATED WORKS

Recent advancement in large language models (OpenAI et al., 2023; Chowdhery et al., 2022; Tou-
vron et al., 2023; Zeng et al., 2023) has shown great progress in complex reasoning, task plan-
ning (Wei et al., 2022; Gao et al., 2023; Yao et al., 2023b;a; Liu et al., 2023; Ye et al., 2023a;b),
tool utilization (Schick et al., 2023; Qin et al., 2023b;c; Qian et al., 2024b), etc. Consequently, a
growing number of agent systems have been developed to utilize these models to tackle diverse tasks
like automatic web search (Qin et al., 2023a), software development (Qian et al., 2023; Chen et al.,
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2023), behavior simulation (Park et al., 2023). Despite these advancements, most current agents
remain predominantly reactive, passively following human instructions without sufficient context
awareness (Schilit & Theimer, 1994) to proactively meet user needs. These reactive agents typically
wait for explicit user commands, which can lead to inefficiencies as task complexity increases. As a
result, users must constantly provide specific inputs, hindering the flow of interaction. In response,
several works have attempted to improve the proactivity of agents. For example, Xuan (Zhang et al.,
2024) proposes proactive agent planning, where agents refine their tasks by actively seeking in-
formation to better understand user intentions. Other studies (Wu et al., 2021; Chen et al., 2020;
Wiethof et al., 2021; Qian et al., 2024a) focus on enabling multi-turn interactions to clarify ambigu-
ous user instructions, which further increased cognitive load for the user. However, these works
still require the user to give an initial query before interacting with the agent. Our approach takes
a different direction by focusing on anticipating potential tasks based on monitoring user activities
and environmental states, which allows the agent to proactively initialize the interaction and provide
assistance.

To clarify, there are also previous works (Deng et al., 2023) that use the term “Proactive Agent” to
describe their dialogue systems. However, most of these efforts (Bi et al., 2021; Ren et al., 2021;
LI & LIAO; Liu et al., 2024) aim to enhance the helpfulness or quality of responses in a proactive
manner, which differs from our focus on task anticipation and initiation.10814

3 METHODOLOGY

3.1 TASK DEFINITION

In our proposed proactive agent, which is distinct from traditional agent systems powered by large
language models that rely on explicit user instructions, we investigate a new scenario where the agent
autonomously predicts tasks users might assign, aiming to offer assistance proactively, as depicted
in Figure 1. The proactive agent’s mission is to give predictions based on the user’s activities At,
environmental events Et, and state St, which can be formalized as:

Pt = fθ(Et, At, St), (1)

where fθ represents the proactive agent, parameterized by θ, and Pt denotes the prediction about
possible task at time t. It should be noticed that the prediction Pt can be the predicted task or
nothing if the agent believes that no task is needed. Specifically, user activities At contain the user’s
interactions with the environment and the agent, like keyboard input or chatting with the agent.
Environmental events Et contain the event that the proactive agent captured, ranging from receiving
a new email to an application closed. Environmental state St represents the state of the current
environment, like the file system state or the content of opened web pages.

In our proactive agent framework, the objective is to maximize the user’s acceptance rate of the
proposed tasks. Given the user’s historical activities At, current environmental state St, and the
prediction proposed by the proactive agent Pt, the user makes a binary decision:

Rt = g(Pt, At, St), (2)

where Rt is a binary variable indicating acceptance (Rt = 1) or rejection (Rt = 0) of the prediction.
To unify the handling of cases where the prediction Pt contains no task and where it contains a task,
we introduce an auxiliary variable Nt that indicates whether the user needs assistance:

• Nt = 1 if the user needs assistance.
• Nt = 0 if the user does not need assistance.

The user’s acceptance Rt is then defined as:

Rt =

{
1 if (Pt ̸= ∅ and user accepts Pt) or (Pt = ∅ and Nt = 0)

0 otherwise
.

In this way, if the prediction Pt contains no task (i.e., the agent believes the user does not need
assistance), we check the user’s actual need for assistance Nt. If the user indeed does not require
assistance (Nt = 0), this is marked as acceptance (Rt = 1). Conversely, if the user requires
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assistance (Nt = 1), this is marked as rejection (Rt = 0). Our proactive agent aims to maximize the
expected acceptance rate of the proposed tasks:

max
θ

E[Rt]. (3)

3.2 PIPELINE OVERVIEW

Environment Gym

Real-world

Data

Scenario

Job

Env. Status

Event Gen.

Action Exec.

Update

Support

Proactive

Agent

Event

Action

User

Agent

Predicted

Tasks

Accepted

Task

Figure 2: Overview of the data generation process. Taking daily life as an example, this process
includes modules such as the initial scenario and job setup, events generation, proactive prediction,
user judgment, and action execution.

To enhance the proactive capabilities of our large language model-powered agent, we adopt a data-
driven approach by building an automatic data generation pipeline. This pipeline simulates user
activities and responses to the tasks predicted by the proactive agent across various scenarios. Once
a prediction is accepted, we simulate the agent performing the task by interactively generating new
events within the simulated environment. Subsequently, new user activities are created based on
historical events, allowing the proactive agent to generate further predictions. Through this pipeline,
models can learn when to generate predictions and which predictions are likely to be accepted by
users. Specifically, our pipeline consists of three components:

(1) Environment Gym: This component simulates events within a specified background setting and
example events, providing a sandbox for proactive agents to interact. It has two key functionalities:
(i) Event Generation: creating potential sequences of environmental events tailored to specific sce-
narios; (ii) State Maintenance: updating and maintaining the environment’s state when new user
activities are generated or when the agent performs actions during task execution.

(2) Proactive Agent: This component is responsible for predicting tasks that the user might assign
to the agent based on the user’s needs as inferred from the event history. It also interacts with tools
to complete specific tasks assigned by the user.

(3) User Agent: This component simulates the user’s activities and responses based on predefined
user characteristics. It decides whether to accept and execute the tasks proposed by the agent.

In the following sections, we introduce the details of each component.

3.3 ENVIRONMENT GYM

Event Collection To improve the quality of events generated by the environment gym, we first col-
lect real-world events as reference. We developed a monitor software based on Activity Watcher1,
which allows us to capture the details of user interactions with computer systems, including key-
board and mouse operations, visited web pages, and used development tools. To enhance the se-
mantic richness of the collected data and facilitate parsing by large language models, we further
merge the raw data into logically coherent segments. Additionally, we utilize a language model to
translate the structured data into more natural textual descriptions. This process not only improves
the interpretability of the data but also makes it more suitable for subsequent usage. Here is a sample
event (more samples can be found in Appendix E.1):

1https://github.com/ActivityWatch/activitywatch
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Time: 1717378968.208
Event: The user opens a new browser tab and navigates to the Google.

Scenario Generation After collecting reference events, rather than directly generating specific
events, we generate a realistic interactive scenario to provide sufficient background information first
for further generation. To build such scenarios, we first prompt GPT-4o (OpenAI, 2024) with the
seed jobs collected from human annotators to create various jobs the user might perform under a
specific category, like coding, writing, or daily life. Then, we generate all possible entities that the
tasks might involve, e.g. browser, software, and tools for the agent to perform tasks. Next, we refine
the scenario by adding more details like entity status or date time to improve the details. Finally,
the collected events are also provided to generate example events under each particular context for
future events generation. This allows us to control the granularity of events that will be generated
and maintain the diversity of the scenarios. See Appendix C for the specific prompt used.

Event Generation When it comes to specific event generation, we start with user activity gener-
ation. For each scenario, the user agent is first requested to describe its activities and actions At

at time t to complete the job in the simulated environment. Then, the gym accepts the user’s ac-
tivities and actions to generate detailed events one by one. As depicted in Figure 2, the gym is
tasked to generate logically correct and fluent events according to historical events and the current
environmental state. The key to improving the realities of the events generated and adapting to dif-
ferent environments is utilizing the example events we generated based on collected events during
scenario generation. Before generating events, we randomly sample the generated example events
for the specific scenario and request the gym to produce new events according to them. Once a new
event Et+1 is generated, the gym updates the entities’ status in the environments and repeats the
process until there are no events that can be generated with the provided user activities. This com-
prehensive approach ensures that each subsequent event is not only appropriate but also contributes
to a coherent and logical progression within the scenario.

State Maintenance Another important functionality of the gym is maintaining the state of the en-
vironment St. During the scenario generation, the gym creates entities like browsers or development
kits in the simulated environment, where each entity has its state and properties like the application
version or the specific browser name. When a new event is generated, the gym should update the
states and properties of them to provide feedback for further event generation. Specifically, we first
gather historical state changes of related entities and prompt the GPT-4o to generate new states of
the entities St+1 with the new event. During the process, the simulated time will also be updated
according to the granularity of the event. After that, the next event will be generated based on the
latest environment state St+1.

3.4 PROACTIVE AGENT

Execute 

within

Proactive

Agent

User 

Agent

Historical 

Conversations

Historical

Events

Memory

Environment 

Gym

New Event

Predict 

Task

Detect

Needs

Draft

Prediction

Feedback 

Figure 3: Overview of the proactive agent frame-
work. The agent monitors new events and updates
its memory to predict potential tasks.

The second component in our data generation
pipeline is the proactive agent that predicts
tasks the user might assign. As detailed in
Figure 3, upon the agent receiving new event
Et at time t, it first updates its memory with
the event. To improve the quality of the pre-
diction, it also accepts feedback from the user
agent on its draft prediction. Combining new
events with historical ones and conversations
with the user, the agent incorporates user char-
acteristics to raise potential tasks. If the agent
detects potential tasks, it will raise the task as
a new event and wait for the judgment of the
user agent. Otherwise, the proactive agent pre-
dicts no potential tasks and stays silent. Once
the predicted task is accepted, the agent will ex-
ecute the task within the gym, which generates
multiple events about the interaction between
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the agent and the environment. During the data generation, the agent would constantly receive
events from the Gym and predict potential tasks.

Task Execution As mentioned before, the proactive agent executes the predicted task once the
user accepts. This process is mainly done through multi-turn interaction between the proactive
agent and the gym. Specifically, the proactive agent will be provided with the tools generated during
the scenario generation, like file system tools in the computer or access to the smart light switch,
to interact with the simulated environment. Each time the proactive agent takes an action, the gym
will generate a new event, which is further processed by the gym and the user agent to update
the environment state. After that, the proactive agent detects the new environment state St+1 and
takes new actions according to the events generated by the gym. This process ends when the user
interrupts or the proactive agent finishes its tasks.

3.5 USER AGENT

The user agent is designed to emulate users’ activities At and responses about the agent’s prediction
Pt, as illustrated in Figure 2. We prompt GPT-4o to generate activities and actions for the provided
task in the specific environment. The gym further processes the activities and actions to generate a
new event. Then the proactive agent predicts potential tasks according to the events. Upon receiving
the predicted task, the user agent determines whether to accept or reject it. If the user agent accepts
the task, the proactive agent will set up and execute the accepted task within the environment gym.
Otherwise, if the user agent declines the suggested assistance, the environment gym generates new
events autonomously without any interventions. In our settings, we collect judgment from human
annotators and train a reward model to simulate the judgment.

Specifically, to ensure the reward model aligns closely with human judgment, we generate and an-
notate a dedicated dataset to indicate whether humans would accept the predicted task or not. We
utilize 9 different language models to generate diverse predictions for each event. Between these
predictions, We select 5 predictions with the minimum total cosine distance after embedding the
predictions using Text-Ada-Embedding to determine our label target. Each prediction is annotated
with one of three options by three separate annotators: accept, reject, or reject all. The reject all
option is chosen when the annotator believes that the given events did not imply any possible tasks
that the user might assign, aka Nt = 0 in Section 3.1. Otherwise, if one prediction is labeled as
accepted, we label the event Et with Nt = 1. We use majority voting to make the final decision
on each prediction. After all, the annotation results in a dataset of 1, 760 entries, each containing
event traces, task predictions, and decisions on accepting the predicted task from three distinct an-
notators. Notably, our annotators achieve an impressive agreement ratio of over 91.67% on the test
set, underscoring the annotations’ reliability and the dataset’s robustness for further analysis. To
further facilitate automatic data generation, we also prompt the GPT-4o to produce a more detailed
explanation of the user judgment. Further details regarding the assessment of the reward model are
available in Section 4.1.

4 EXPERIMENTS

4.1 REWARD MODEL ASSESSMENT

To automatically evaluate whether the predicted tasks and their timing are appropriate, we seek to
train a reward model capable of accurately imitating user judgments. To this end, we apply the user-
annotated data to train LLaMA-3.1-8B-Instruct (Touvron et al., 2023) and compare it with several
baselines to show its superiority.

Setting. We use the 1, 760 entries with human annotations and randomly split them into a training
set (1, 640 entries) and a test set (120 entries). We then train LLaMA-3.1-8B-Instruct on the training
set to obtain our reward model. We employ a total batch size of 32, a learning rate of 1e − 5, and
an Adam Optimizer with a 0.1 warm-up ratio. We train the reward model for 5 epochs to prevent
it from over-fitting. We use 8 A100 GPUs on one node to train for approximately 1.5 hours. The
detailed prompt template is listed in Appendix A. We use the test split to evaluate our adapted model
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GPT-4o GPT-4o-mini LLaMA-3.1-8B LLaMA-3.1-70B Ours

Agree. MN↑ 3.33% 56.67% 80.00% 33.33% 80.00%
Agree. NR↑ 100.00% 56.67% 30.00% 83.33% 86.67%
Agree. CD↑ 100.00% 86.67% 96.67% 100.00% 100.00%
Agree. FD↑ 0.00% 33.33% 13.33% 6.67% 100.00%

Recall↑ 100.00% 71.67% 63.33% 91.67% 93.33%
Precision↑ 50.42% 56.58% 54.29% 53.40% 90.32%
Accuracy↑ 50.83% 58.33% 55.00% 55.83% 91.67%

F1-Score↑ 67.04% 63.24% 58.46% 67.48% 91.80%

Table 2: Evaluation results of different models on our test set as the reward model. For the Missed-
Need (MN), Non-Response (NR), Correct-Detection (CD), and False-Detection (FD) scenarios, we
present the agreement ratio between models and the major voting of our human annotators. Our
model which is fine-tuned based on LLaMA-3.1-Instruct-8B achieves the best F1-Score of 91.80%.

and all the baselines. To be noticed, our human annotators achieve up to 91.67% agreement ratio on
the test set, demonstrating the effectiveness of our evaluation.

Metrics. We use the reward model to perform binary classification on whether to accept predicted
tasks and compare its results with human-annotated results. This assesses how well the reward
model aligns with human judgment regarding the suitability of the predicted tasks. We compare the
judgments made by the reward models and humans to calculate the Recall, Precision, Accuracy, and
F1-Score. Additionally, we calculate the agreement ratio for the following cases:

• Missed-Needed: Nt = 1, Pt = ∅, the user needs help, but the agent does not provide it.
• Non-Response: Nt = 0, Pt = ∅, the user does not need help, the agent does not prompt.
• Correct-Detection: Nt = 1, Pt ̸= ∅, and the user accepts the task predicted by the agent.
• False-Detection: Nt = 0, Pt ̸= ∅, the user does not need help but agent prompts.

Results. As Table 2 shows, all existing models perform well on correct detection, but perform
badly in other scenarios, especially in the false alarm scenario. After a deeper analysis, we find that
existing models just can not infer what the user might need and tend to accept arbitrary help, even
if it is very abstract or meaningless to current observation. In contrast, our reward model achieves a
100% agreement ratio on false alarm scenario and a solid 91.80% F1-Score across all scenarios. We
select our reward model for further analysis across the ProactiveBench.

4.2 PROACTIVE AGENT EVALUATION

Setting. We use the training set of ProactiveBench to obtain the Proactive Agent based on the two
open-source models: LLaMA-3.1-8B-Instruct and Qwen2-7B-Instruct. During training, we employ
a total batch size of 32, a learning rate of 1e−5, and an Adam Optimizer with a 0.01 warm-up ratio.
We train the model for 3 epochs. We use 8 A100 GPUs on one node to train for approximately 2
hours. The detailed prompt can be found in Appendix B. The automatic evaluation of these metrics
relies on the simulated judgment given by the reward model. All models are evaluated in our test
split of the ProactiveBench, which contains 233 events collected in the real world. We employ the
same prompt template and apply greedy decoding across all models.

Metrics. We evaluate the performance of the Proactive Agent based on whether the user accepts
its prediction. As described in Section 3.1, the user’s acceptance Rt contains four conditions. In our
specific settings, Recall measures the proportion of actual needs for assistance that were correctly
predicted by the agent, including cases where the agent predicts a task and the user accepts it, as well
as cases where no task is predicted and the user does not need assistance. Precision measures the
proportion of predicted tasks that were actually accepted by the user. Accuracy measures the overall
correctness of the agent’s predictions. The False-Alarm measures the proportion of incorrect task
predictions, specifically when a task is predicted but not needed. The F1-Score provides a balanced
measure of the goodness of the agent’s proactive behavior. We use the reward model during the

7
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evaluation to automatically generate the user’s judgment. Based on the confusion matrix, we report
Recall, Precision, Accuracy, False Alarm, and F1-Score across all settings. The detailed calculation
method can be found in Appendix B.

Model Recall↑ Precision↑ Accuracy↑ False-Alarm↓ F1-Score↑

Proprietary models
Claude-3-Sonnet 27.47% 37.31% 52.42% 62.69% 31.65%
Claude-3.5-Sonnet 97.89% 45.37% 49.78% 54.63% 62.00%
GPT-4o-mini 100.00% 35.28% 36.12% 64.73% 52.15%
GPT-4o 98.11% 48.15% 49.78% 51.85% 64.60%

Open-source models
LLaMA-3.1-8B 98.86% 38.16% 39.06% 61.84% 55.06%
LLaMA-3.1-8B-Proactive 99.06% 49.76% 52.86% 50.24% 66.25%
Qwen2-7B 98.02% 44.00% 43.61% 56.00% 60.74%
Qwen2-7B-Proactive 100.00% 49.78% 50.66% 50.22% 66.47%

Table 3: Evaluation results of different models’ performance on the ProactiveBench. The GPT-4o
stands out for close-sourced models, achieving over 64.60% F1-Score. For open-sourced models,
our fine-tuned Qwen2-7B model achieves best result, with a 66.47% F1-Score.

Result. Table 3 compares various models on the test set of the ProactiveBench, which contains
233 events collected from the real world user. Close-sourced models like GPT-4o (OpenAI, 2024) or
GPT-4o-mini all tend to predict proactive tasks actively. Most of them succeed in assisting when the
user needs but fail to stay silent when the user does not require any assistance, resulting in a relatively
high false alarm ratio. For example, the GPT-4o-mini provides unnecessary assistance even when
the events provided do not contain meaningful operations, like switching between software but doing
nothing else. Another big issue is early assistance when no precise users’ intents can be found in
the given observation. This makes the proactive tasks proposed by the model seem too abstract
or useless, resulting in a relatively high false alarm ratio. The Claude-3-Sonnet (Anthropic, 2024)
shows a different example of failing to detect the user’s need and provide assistance that does not
satisfy the user’s expectation.

For open-sourced models, we evaluate the performance of the LLaMA-3.1-Instruct-8B and Qwen2-
Instruct-7B before and after fine-tuning based on our synthesized data. As shown in table 3, both
models obtain an impressive improvement. For example, the LLaMA-3.1-8B improves its F1-Score
from 55.06% to 66.25%. The results demonstrate the effectiveness of our data synthesis pipelines.
As for the concern of being overly interrupted by the proactive agent, our fine-tuned models achieve
solid progress in reducing the false alarm ratio, which is comparable to the performance of the
GPT-4o. Besides, the finetuned Qwen2-7B is also outperform the GPT-4o in terms of the F1-Score,
resulting in the highest F1-Score of 66.47% However, we also observed the same pattern of models
tends to provide as much assistance as possible, instead of providing necessary assistance when the
user needs it.

In short, while most models can assist when needed, they still frequently offer unnecessary help,
even when instructed to provide only essential assistance.

4.3 PERFORMANCE ANALYSIS

In this section, we analyse two possible type of settings that could impact the performance of the
proactive agent.

Predict Multiple Tasks. When it comes to real-world applications, the proactive agent can provide
multiple candidate tasks to improve overall performance. To evaluate how models perform under
this condition, we allow them to generate multiple candidate tasks at once, but no more than three
to avoid a high cognition burden for the user. In this setting, we let the reward model check the
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Model Settings Recall↑ Precision↑ Accuracy↑ False-Alarm↓ F1-Score↑

GPT-4o-mini pred@1 100.00% 35.28% 36.12% 64.73% 52.15%
pred@3 99.32% 65.32% 66.52% 34.68% 78.80%
w/ RM 55.45% 63.54% 63.95% 36.46% 59.22%

pred@3, w/ RM 100.00% 65.35% 66.09% 34.65% 79.05%

GPT-4o pred@1 98.11% 48.15% 49.78% 51.85% 64.60%
pred@3 100.00% 63.56% 64.81% 36.44% 77.72%
w/ RM 56.76% 55.26% 57.61% 44.74% 56.00%

pred@3, w/ RM 100.00% 63.30% 65.67% 36.70% 77.53%

LLaMA-3.1-8B pred@1 98.86% 38.16% 39.06% 61.84% 55.06%
pred@3 100.00% 52.79% 52.79% 47.21% 69.10%
w/ RM 77.08% 42.52% 47.64% 57.41% 54.81%

pred@3, w/ RM 95.12% 61.58% 66.09% 38.42% 74.76%

Table 4: Comparison between different settings for each model. The setting “pred@1” means pre-
dicting one task at a time. The setting “pred@3” means predicting 3 tasks at a time. The setting “w/
RM” means we will provide feedback from the reward model to help better prediction.

candidate tasks one by one. We label the result as accepted if one of the candidate tasks is accepted,
and rejected if only all the candidate tasks are rejected.

As shown in Table 4, all models obtain solid improvement across all metrics when comparing
“pred@1” with “pred@3”. Take the GPT-4o as an example, it obtains higher accuracy and pre-
cision while reducing its false alarm by providing diverse candidate tasks. The huge drops in the
false alarm ratio, from 51.85% to 36.44% are mainly due to its improvement in providing proactive
tasks. However, when comparing GPT-4o-mini with LLaMA-3.1-8B, we observed different degrees
of improvement. These two models perform similarly when predicting only one proactive task at
once, but show a nearly 9% difference in terms of F1-Score when predicting multiple candidates at
once. We analyzed the result and found that the LLaMA-3.1-8B tends to provide unexpected assis-
tance when the user’s need is unclear, which can not be improved by providing multiple candidates.

Feedback From the Reward Model. We also investigate whether the feedback from our reward
model could help models improve their performance on the ProactiveBench. This is done with the
same logic as described in Figure 3. For each model, we first ask them to generate a draft prediction
and obtain feedback from the user agent (which is built on the reward model in this case). Then we
let the model refine its prediction to obtain the final prediction.

As shown in Table 4, by adding the feedback from the reward model (settings with “w/ RM”),
models generally reduce their false alarm ratio and improve the accuracy, but drop dramatically in
terms of the recall. We observe that models stay silent once they receive feedback from the reward
model. However, doing nothing is not always the optimal solution. The GPT-4o seems to fail to
capture the possible user needs, leading to a performance drop in terms of F1-Score. For other
models like GPT-4o-mini and LLaMA-3.1-8B, they deed obtain a marked improvement in terms
of the F1-Score. Another setting combining the multiple-task prediction with the reward model
(“pred@3, w/ RM”) shows a more general improvement across the board. By integrating the reward
model into the Proactive Agent, we can make the Proactive Agent more smartly detect user needs
and reduce the false alarm ratio even when we can not access the weight directly, which is good
news for developing the Proactive Agent.

4.4 CASE STUDY

In this section, we explore two prevalent types of failures encountered in predicting possible tasks:
the inability to detect user needs and making predictions at inappropriate times. More detailed
failure modes can be found in Appendix D.

As illustrated in Figure 4 (left), a notable failure occurs when the GPT-4o model does not assist at
crucial moments. For instance, when a user is engaged in integrating a payment API and requires a
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Inappropriate Proposing TimeFailing to Detect User Needs

𝐸t−1: The user opens a browser tab and 

navigates to the payment API documentation site.

𝐸𝑡: The user types 'OAuth authentication 

tutorial' into the search bar and presses 'Enter’.

𝐸𝑡−1: The user stay no action.

𝐸𝑡: The user double-clicks the 'Visual 

Code' icon and do nothing else.

GPT-4o

LLaMA-3-Proactive

No help need, the user is making 

progress methodically.

Help to summarize the search result 

and recommend OAuth tutorials.

Provide a quick start 

guide for Visual Code

No Action.

Events Events

GPT-4o-mini

LLaMA-3-Proactive

Figure 4: Two types of failure: failing to detect user needs (left) and inappropriate proposing time
(right). We compare the response between our fine-tuned LLaMA-3.1-Instruct-8B with other models
to show the refined proactive behavior of the model.

tutorial for guidance, the model remains silent. Instead, our model successfully detects human needs
and offers assistance. The underlying intention to minimize disruptions ironically leads to missed
opportunities to offer timely help.

Conversely, the right side of Figure 4 showcases an instance of ill-timed prediction. Here, the
GPT-4o-mini suggests an action when there are no user needs showing in events. This scenario
underscores the possible unintended events existing in human activities. The model should judge
whether there are possible tasks smartly to avoid unnecessary actions. These instances highlight the
intricate nature of human activities and the sophisticated reasoning required for models to accurately
predict human needs. To navigate the delicate balance between being helpful and intrusive, models
must develop a deeper understanding of user contexts and activities, ensuring their interventions are
both timely and pertinent.

5 CONCLUSION

We present an innovative approach to human-agent interaction by leveraging proactive task predic-
tions that anticipate human needs. We introduce ProactiveBench, a comprehensive dataset compris-
ing 6, 790 events, designed to refine the proactive behavior of LLM-based agents and establish an
automatic benchmark for assessing model proactiveness. By iteratively generating events in synthe-
sized scenarios, we create training data that enhances the proactive capabilities of our models. Our
experiments demonstrate significant improvements in the agent’s performance on ProactiveBench,
validating the effectiveness of our methods. Despite these advancements, our findings underscore
ongoing challenges, particularly in minimizing inappropriate task proposals and ensuring task pre-
dictions are contextually accurate. Future research should focus on enhancing the precision and
timeliness of task predictions to improve the efficacy of the proactive human-agent interaction.

ETHICS STATEMENT

In the construction of our dataset, we have adhered to strict ethical standards. The human annotators
are students from the computer sciences area and obtain rewards for their annotations. We use
ChatGPT in this research. All the original data utilized for the compilation of our dataset are either
sourced from open-access platforms or have been used with the appropriate permissions granted.
We have conducted a thorough review to ensure that our dataset is devoid of any harmful content or
private information. Our commitment to ethical research practices extends to the respect for privacy,
intellectual property rights, and the integrity of the data sources.
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APPENDIX

LIMITATIONS

While our method demonstrates that it can effectively and proactively predict possible tasks, the
current research is constrained by several limitations. Firstly, the environment settings we have ex-
plored are still limited. The contexts in this paper provide a foundational understanding, but broader
application areas need to be investigated to fully establish the versatility and robustness of the proac-
tive agent. Moreover, models still exhibit a relatively high ratio of false alarms, indicating that they
cannot yet perfectly predict possible tasks. This limitation highlights the need for further refinement
of the model’s proactive behavior to avoid bothering the user. The high rate of false positives can
lead to unnecessary or incorrect actions, which may reduce user trust and the overall efficiency of
the system. Future research should focus on several key areas to address these limitations:

• Expansion of Environment Settings: Research should explore a wider variety of scenarios and
contexts to validate the model’s generalizability. This includes domains where proactive predic-
tion of tasks can significantly enhance user experience and operational efficiency.

• Improvement in Prediction Accuracy: Efforts should be directed towards reducing the false
alarm rate by enhancing the model’s understanding of context and user behavior.

• User-Centric Evaluation: Future studies should involve extensive user-centric evaluations to
better understand how users interact with the proactive agent and to identify areas for improve-
ment. User feedback and behavioral data can provide valuable insights into refining the prediction
algorithms and making the system more intuitive and reliable.

• Ethical and Privacy Considerations: As the proactive agent needs the environment information
for prediction tasks, it is crucial to address ethical and privacy concerns. Ensuring that user data
is handled responsibly and that the agent operates transparently and within ethical guidelines will
be critical for gaining user trust and acceptance.

A REWARD MODEL TRAINING SETTING

We use Llama-3.1-Instruct-8B as the base model for our training. The total dataset size is approx-
imately 1, 640. Specifically, we employ a total batch size of 32, a learning rate of 1e − 5, and
an Adam Optimizer with a 0.1 warm-up ratio. We train the reward model for 5 epochs to pre-
vent it from over-fitting. We use 8 A100 GPUs on one node to train for approximately 1.5 hours.

Prompt Template

<Task>
Evaluate the task proposed by the proactive assistant as the user.
</Task>

<Rule>
0. Analyze the current observation to understand your current

situation and requirements.
1. If the proposed task is ‘null‘ (indicating no task is proposed

under the current observation), follow these steps:
- Accept the ‘null‘ task if you believe there is no need for a

task.
- Reject the ‘null‘ task if you believe a task is needed.

2. Minimize interruptions from the assistant by only accepting
tasks that are valuable.

3. Evaluate the current observation and make a judgment on the
proposed task accordingly.

</Rule>

<Format>
You should answer with the following JSON format:
{
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"thought": "Give your thoughts first, then provide the
judgment of the task.",

"judgment": "accepted or rejected"
}
</Format>

B AGENT MODEL TRAINING SETTING

Similarly, we use Llama-3-Instruct 8B and Qwen2-Instruct-7B as the base model for agent model
training. The total dataset size is approximately 6, 790. Specifically, we employ a total batch size
of 32, a learning rate of 1e − 5, and an Adam Optimizer with a 0.1 warm-up ratio. We train the
model for 3 epochs to prevent it from over-fitting. We use 8 A100 GPUs on one node to train for
approximately 2 hours.

Template. We apply the following prompt template to train the agent model:

Prompt Template

<Role> You are a helpful assistant that provides proactive
suggestions to the user. </Role>

<Task> Understand what the user is doing and anticipate their
needs based on events. Only propose assistance when you fully
understand the user’s actions. Use available operations to
ensure the task is feasible. Execute the task if the user
accepts your proposal. </Task>

<Format> Respond in the following JSON format:
{

"Purpose": "The purpose of the user’s last action.",
"Thoughts": "Your thoughts on the user’s actions.",
"Proactive Task": "Describe your proposed task, or set to ‘

null‘ if no assistance is needed.",
"Response": "Inform the user about your assistance if

proposing a task."
}
</Format>

<Rules>
- Ensure the proposed task is relevant to the events. - Focus on

the user’s current needs and predict helpful tasks.
- Consider the timing of events.
- Only offer proactive assistance when necessary.
- Deduce the user’s purpose and whether they need help based on

event history.
- Set ‘Proactive Task‘ to ‘null‘ if the user doesn’t need help.
</Rules>

C PROMPT TEMPLATE FOR ENVIRONMENT GYM

C.1 PROMPT FOR SCENE GENERATION

Prompt Template

<Role>
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You are tasked with simulating an environment within a system. The
content labeled ‘Source: environment‘ reflects your past

actions and decisions.
</Role>

<Task>
Generate and refine detailed environment settings. Based on the

latest activities, create multiple events to describe changes
in the environment.

</Task>

<Rules>
- Ensure the subject of the generated content aligns with the

latest activities’s source.
- Avoid subjective opinions or emotions; focus on objective

changes.
- Ensure events are consistent with historical events labeled ‘[

events]‘ and include all - changes from the activities.
- Introduce occasional failures or unexpected events for realism.
- Ensure each event is logically connected to the previous one and

does not include nonexistent elements.
- Pay close attention to entity operations; if an operation is not

allowed or impractical in the real or simulated environment,
raise an error and explain the issue.

</Rules>

C.2 SEED JOBS DATA

Prompt Template

<Task>
You are tasked to generate realistic scenarios where a user might

need assistance from an AI assistant. Always remember to keep
the scene realistic and believable by including as much
details as possible.

</Task>

<Rule>
- You will iteratively generate more information about the scene.

Make sure each time you add a new detail, it is consistent
with the previous details. Always generate new content based
on the previous generated content.

- You can add as many details as you want, but make sure they are
consistent with the previous details.

- Try to generate diverse details about the scene. You will be
tasked to simulate events in the scene later.

</Rule>

C.3 PROMPT FOR USER AGENT GENERATION

Prompt Template

<Role>
You are tasked with simulating a user within a system. The content

labeled ‘Source: user‘ reflects your past actions and
decisions.

</Role>
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<Task>
Generate human-like activities with distinct characteristics and

identities. You will receive events and observations from the
environment; analyze these closely to decide your actions.

</Task>

<Rules>
- Respond like a real user; don’t be overly predictable.
- Refer to # User Info to understand your identity.
- Critically evaluate the received information, as it may not

always be accurate.
- Stay aware of environmental changes, which can occur at any time

.
</Rules>

C.4 PROMPT FOR STATUS UPDATING

Prompt Template

<Task>
Evaluate the task proposed by the proactive assistant as the user.
</Task>

<Rule>
0. Analyze the current observation to understand your current

situation and requirements.
1. If the proposed task is ‘null‘ (indicating no task is proposed

under the current observation), follow these steps:
- Accept the ‘null‘ task if you believe there is no need for a

task.
- Reject the ‘null‘ task if you believe a task is needed.

2. Minimize interruptions from the assistant by only accepting
tasks that are valuable.

3. Evaluate the current observation and make a judgment on the
proposed task accordingly.

</Rule>

<Format>
You should answer with following JSON format:
{

"thought": "Give your thoughts first, then provide the
judgement of the task.",

"judgement": "accepted or rejected"
}
</Format>

C.5 METRICS CALCULATION

Definition Here is how we define the label of each prediction.

• True Positive (TP): Agent predicts task, the user accepts.
• False Positive (FP): Agent predicts task, the user rejects.
• True Negative (TN): Agent does not predict a task, and the user does not need assistance.
• False Negative (FN): Agent does not predict the task, but the user needs assistance (Nt = 1

in Section 3.1).
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Recall A high recall indicates that the agent frequently identifies situations where help is needed.
This metric is crucial for assessing the agent’s ability to recognize and respond to user needs on
time.

Recall =
TP

TP + FN
(4)

Precision A high precision indicates that the agent proposes good tasks while not bothering the
user too much. This metric is crucial when considering the annoying behavior of the proactive agent
could greatly reduce user satisfaction.

Precision =
TP

TP + FP
(5)

Accuracy High Accuracy demonstrates that the agent has a good understanding of user needs,
as most of its predictions are accepted. This metric is essential for measuring the relevance and
correctness of the agent’s proactive suggestions.

Accuracy =
TP + TN

P +N
(6)

F1-Score High F1-Score means the proactive agent strikes a good balance between being helpful
and proactive.

F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
(7)

D FAILURE MODES ANALYSIS

Not A Task: The model does not give a real task at all.

Observation: {
"time": "1717335907.603",
"event": "The user switches to Visual Studio Code."

}

GPT-4o-mini Response: It seems you may be switching to Visual
Studio Code for development. If you need any coding tips,
resources, or help with Swift UI in VS Code, feel free to ask!

Under this event, the agent did not take the event as an action, but rather a call for chat. This chat is
not a task we want.

Unspecific Task: The proposed task is non-executable due to a lack of a clear and detailed descrip-
tion.

Observation: {
"time": "1717329066.416",
"event": "The user performed a search for ’js fade in/out’ on

Bing."
}

GPT-4o-mini Response: Compile a list of JavaScript resources,
tutorials, and documentation that cover advanced topics
related to the user’s search.

Under this event, the model proposal is not clear (not pointing out the user’s research content) and
impractical (Compiling a list of resources, tutorials, and documentation, which is too much for the
user and also out of the capability of the model).

Irrelevant Task: The proposed task is not related to the current context or meets the user’s needs.
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Observation: {
"time": "1717336090.982",
"event": "The user clicks, types ’list.swift’ in Visual Studio

Code."
}

GPT-4o Response: I can help by providing tips on how to
efficiently navigate and manage files in Visual Studio Code or
offer assistance with the content of ’list.swift’.

Under this event, the user created a new file in vscode. However, the agent provided a task about file
management, which is irrelevant to the user’s intention.

Unwanted Proposal: The user does not want to be interrupted.

Observation: {
"time": "1717329211.15",
"event": "The user opened ’http://127.0.0.1:5500/main.html’ in

the web browser."
}

GPT-4o Response: Offer to help troubleshoot or verify the ’fade in
fade out’ effect if it doesn’t work as expected.

Under this context, since whether the edition is successful or not is not clear, the agent should remain
silent rather than propose troubleshooting currently.

E DATA EXAMPLES

E.1 EVENT SAMPLES

Collected Raw Data

[{
"timestamp": 1717335890.127,
"duration": 2.056,
"user_input": [],
"status": "not-afk",
"app": "web",
"events": []

},
{

"timestamp": 1717335893.215,
"duration": 10.267,
"user_input": [

{
"from": "mouse",
"data": {

"type": "click",
"button": "left"

}
},
{

"from": "keyboard",
"type": "input",
"data": "swift ui ctrl_l liebiao "

},
{
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"from": "keyboard",
"data": {

"type": "pressAndRelease",
"key": "enter"

}
}

],
"status": "not-afk",
"app": "web",
"events": []

},
{

"timestamp": 1717335904.513,
"duration": 0.0,
"user_input": [],
"status": "not-afk",
"app": "web",
"events": []

}]

Processed Event

[{
"time": "1717378968.208",
"event": "The user opens a new browser tab and navigates to

the Google homepage."
},
{

"time": "1717378971.255",
"event": "The user switches to the ’Code.exe’ application but

does not perform any specific actions."
},
{

"time": "1717378975.29",
"event": "The user continues to remain on the ’Code.exe’

application without performing any actions."
}]

Annotated Data for Reward Model

{
"obs": [

{
"time": "1717338232.283",
"event": "The user types ’badrandResearch.m’ in Visual

Studio Code."
},
{

"time": "1717338245.419",
"event": "The user types a Markdown entry about

research on sustainable branding in Visual Studio
Code."

},
{

"time": "1717338245.419",
"event": "The user works on the file ’brandResearch.md

’ in the project ’SustainableBrandResearch’ in
Visual Studio Code."
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},
//...
{

"time": "1717338752.214",
"event": "The user interacts with Katla’s website,

viewing eco-friendly loungewear products made by
the sea."

},
{

"time": "1717338804.867",
"event": "The user writes Markdown notes in Visual

Studio Code about Katla’s product pricing."
}

],
"pred_task": null,
"valid": false,
"help_needed": true,
"annotation": [

false,
false,
false

],
"category": "Missed-Need (MN)"

}

E.2 PROACTIVE AGENT’S PREDICTION

Testing Data Sample

{System Prompt For Proactive Agent}

User:
{

"Instructions": "Now analyze the history events and provide a
task if you think the user needs your help.",

"Observation": [
// ...
{

"time": "1717337616.208",
"event": "The user switched back to Visual Studio Code

and typed insights related to digital payment
systems improving public transportation and
reducing the need for private car usage."

},
{

"time": "1717337282.329",
"event": "The user moved the mouse and clicked the

left button within Visual Studio Code."
}

]
}

Possible Agent Response:
{

"Purpose": "The user is currently interacting with a web
application.",

"Thoughts": "Based on the absence of a specific action, the
user might be navigating or searching for content.",
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"Proactive Task": null,
"Response": "I see you’re actively using the web application.

If you need help finding something specific or have any
questions, feel free to ask!"

}

Example 1

{
"observation": {

"time": "1717378968.208",
"event": "The user opens a new browser tab and navigates

to the Google homepage."
},
"agent_response": [

"Suggest checking the user’s search history and providing
personalized search recommendations."

],
"task_status": false,
"other_infomation": {

"Purpose": "The user is opening a new browser tab and
navigating to the Google homepage.",

"Thoughts": "Based on the event, it seems the user is
starting a new search or browsing session. They might
need help with organizing their search or finding
relevant information.",

"Response": "Would you like me to review your search
history and provide some personalized recommendations
to help you find what you’re looking for?"

},
"judgment": [

false
]

}

Example 2

{
"observation": {

"time": "1717378971.255",
"event": "The user switches to the ’Code.exe’ application

but does not perform any specific actions."
},
"agent_response": [

"Suggest creating a new terminal or command prompt within
the ’Code.exe’ application to help the user with
coding tasks."

],
"task_status": false,
"other_infomation": {

"Purpose": "The user is switching to the ’Code.exe’
application but didn’t perform any specific actions.",

"Thoughts": "Given the user’s recent switch to the ’Code.
exe’ application, it’s likely they’re preparing to
start coding or editing. However, they might need help
with organizing their code, finding relevant

documentation, or setting up their environment.",
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"Response": "I can help you create a new terminal or
command prompt within the ’Code.exe’ application. This
will allow you to easily access coding tools and

commands. Would you like me to set that up for you?"
},
"judgment": [

false
]

}

Example 3

{
"observation": {

"time": "1717378975.29",
"event": "The user continues to remain on the ’Code.exe’

application without performing any actions."
},
"agent_response": [

"Offer to provide coding assistance, such as suggesting
online resources, tutorials, or even helping with
writing code."

],
"task_status": false,
"other_infomation": {

"Purpose": "The user is remaining on the ’Code.exe’
application without performing any actions.",

"Thoughts": "Given the user’s recent actions, it seems
they’re hesitant to start coding or editing. They
might be experiencing writer’s block, struggling with
a particular concept, or needing help with a specific
coding task.",

"Response": "If you’re struggling with a coding task or
need help with a specific concept, I’m here to assist.
Would you like me to suggest some online resources,

tutorials, or even help with writing code together?"
},
"judgment": [

false
]

}

E.3 REWARD MODEL JUDGMENT EXAMPLE

Input Prompt

{
"Observations (Time Ascending)": [

{
"time": "1717342908.098",
"event": "The user searched for ’remote working

software’ in the web browser and pressed ’Enter’."
},
{

"time": "1717342914.314",
"event": "A new tab titled ’new Tab’ was opened in the

web browser."
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},
{

"time": "1717342940.516",
"event": "The user opened a search result with the

title ’remote working software - search’ on Bing."
},
{

"time": "1717342956.012",
"event": "The user switched to another tab in the web

browser, interacting with multiple scroll actions
."

},
{

"time": "1717343061.447",
"event": "The user resumed browsing on Bing search."

},
{

"time": "1717343082.081",
"event": "The user continued exploring search result

pages in Bing with multiple scrolling actions and
clicking on specific results."

}
],
"Proposed Task": null,
"Instruction": "Now give your judgment. You should complete

the reasoning process in the first person."
}

Ouput Judgment

{
"thought": "I have been browsing the web and switching between

different applications, and I haven’t received any task
proposal from the proactive assistant. Upon analyzing my
current activities, I realize I’ve been searching for
remote working software and exploring different search
results on Bing. Given my current engagement and the fact
that I haven’t been interrupted or indicated a need for
assistance, I believe there is no need for a task at this
moment. The assistant’s decision to not propose a task
seems appropriate, as introducing a new task could
potentially disrupt my workflow and cause unnecessary
interruptions.",

"judgment": "accepted"
}

F ANNOTATION GUIDELINES

Annotation Guidelines

In this annotation task, you need to observe two elements:
The sequence of events is described in the Observations module,

where each event has an event field detailing what occurred.

Tasks generated by the model in the Tasks module are related to
the current event sequence.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

You need to carefully review the five tasks provided by the model.
Analyze which tasks align with your potential needs in the

context of the described event sequence, without excessively
disrupting your normal workflow. Then, select the
corresponding tasks in the checkboxes below. For example, if
you believe that in the above example, tasks 3 and 4 are what
you expect the agent to perform, and the others are not, then
check the boxes for tasks 3 and 4.

If you think none of the tasks are appropriate (or you do not want
to be disturbed by the agent in the current situation),

please select the reject all checkbox.

After making your selection, click the continue button to submit
the annotation results. At this point, new events will be
updated in the observations, and you will repeat the above
process until the entire event sequence is annotated.

### Special Events
In addition to regular task annotations, some scenarios offer two

choices, requiring you to determine whether help is needed
given the observation. In this case, you need to choose
between task1 and task2 (note: do not select reject all).
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