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ABSTRACT

This paper proposes the use of spectral element methods (Canuto et al., 1988) for
fast and accurate training of Neural Ordinary Differential Equations (ODE-Nets;
Chen et al., 2018) for system identification. This is achieved by expressing their
dynamics as a truncated series of Legendre polynomials. The series coefficients, as
well as the network weights, are computed by minimizing the weighted sum of the
loss function and the violation of the ODE-Net dynamics. The problem is solved
by coordinate descent that alternately minimizes, with respect to the coefficients
and the weights, two unconstrained sub-problems using standard backpropagation
and gradient methods. The resulting optimization scheme is fully time-parallel
and results in a low memory footprint. Experimental comparison to standard
methods, such as backpropagation through explicit solvers and the adjoint technique
(Chen et al., 2018), on training surrogate models of small and medium-scale
dynamical systems shows that it is at least one order of magnitude faster at reaching
a comparable value of the loss function. The corresponding testing MSE is one
order of magnitude smaller as well, suggesting generalization capabilities increase.

1 INTRODUCTION

Neural Ordinary Differential Equations (ODE-Nets; Chen et al., 2018) can learn latent models from
observations that are sparse in time. This property has the potential to enhance the performance
of neural network predictive models in applications where information is sparse in time and it is
important to account for exact arrival times and delays. In complex control systems and model-based
reinforcement learning, planning over a long horizon is often needed, while high frequency feedback
is necessary for maintaining stability (Franklin et al., 2014). Discrete-time models, including RNNs
(Jain & Medsker, 1999), often struggle to fully meet the needs of such applications due to the fixed
time resolution. ODE-Nets have been shown to provide superior performance with respect to classic
RNNs on time series forecasting with sparse training data. However, learning their parameters can be
computationally intensive. In particular, ODE-Nets are memory efficient but time inefficient. In this
paper, we address this bottleneck and propose a novel alternative strategy for system identification.

Summary of contributions. We propose SNODE, a compact representation of ODE-Nets for
system identification with full state information that makes use of a higher-order approximation of its
states by means of Legendre polynomials. This is outlined in Section 4. In order to find the optimal
polynomial coefficients and network parameters, we develop a novel optimization scheme, which
does not require to solve an ODE at each iteration. The resulting algorithm is detailed in Section 3
and is based on backpropagation (Linnainmaa, 1970; Werbos, 1981; Lecun, 1988) and automatic
differentiation (Paszke et al., 2017). The proposed method is fully parallel with respect to time and its
approximation error reduces exponentially with the Legendre polynomial order (Canuto et al., 1988).

Summary of numerical experiments. In Section 5, our method is tested on a 6-state vehicle
problem, where it is at least one order or magnitude faster in each optimizer iteration than explicit and
adjoint methods, while convergence is achieved in a third of the iterations. At test time, the MSE is
reduced by one order of magnitude. In Section 6, the method is used for a 30-state system consisting

∗Corresponding author.

1



Published as a conference paper at ICLR 2020

of identical vehicles, coupled via a known collision avoidance policy. Again, our method converges
in a third of the iterations required by backpropagation thourgh a solver and each iteration is 50x
faster than the fastest explicit scheme.

2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

The minimization of a scalar-valued loss function that depends on the output of an ODE-Net can be
formulated as a general constrained optimization problem:

min
θ∈Rm

∫ t1

t0

L(t, x(t)) dt, (1)

s.t. ẋ(t) = f(t, x(t), u(t); θ),

x(t0) = x0,

where x(t) ∈ X is the state, u(t) ∈ U is the input, the loss and ODE functions L and f are given, and
the parameters θ have to be learned. The spaces X and U are typically Sobolev (e.g. Hilbert) spaces
expressing the smoothness of x(t) and u(t) (see Section 8). Equation (1) can be used to represent
several inverse problems, for instance in machine learning, estimation, and optimal control (Stengel,
1994; Law et al., 2015; Ross, 2009). Problem (1) can be solved using gradient-based optimization
through several time-stepping schemes for solving the ODE. (Chen et al., 2018; Gholami et al.,
2019) have proposed to use the adjoint method when f is a neural network. These methods are
typically relying on explicit time-stepping schemes (Butcher & Wanner, 1996). Limitations of these
approaches are briefly summarized:

Limitations of backpropagation through an ODE solver. The standard approach for solving this
problem is to compute the gradients ∂L/∂θ using backpropagation through a discrete approximation
of the constraints, such as Runge-Kutta methods (Runge, 1895; Butcher & Wanner, 1996) or multi-
step solvers (Raissi et al., 2018). This ensures that the solution remains feasible (within a numerical
tolerance) at each iteration of a gradient descent method. However, it has several drawbacks: 1)
the memory cost of storing intermediate quantities during backpropagation can be significant, 2)
the application of implicit methods would require solving a nonlinear equation at each step, 3) the
numerical error can significantly affect the solution, and 4) the problem topology can be unsuitable
for optimization (Petersen et al., 2018).

Limitations of adjoint methods. ODE-Nets (Chen et al., 2018) solve (1) using the adjoint method,
which consists of simulating a dynamical system defined by an appropriate augmented Hamiltonian
(Ross, 2009), with an additional state referred to as the adjoint. In the backward pass the adjoint
ODE is solved numerically to provide the gradients of the loss function. This means that intermediate
states of the forward pass do not need to be stored. An additional step of the ODE solver is needed for
the backward pass. This suffers from a few drawbacks: 1) the dynamics of either the hidden state or
the adjoint might be unstable, due to the symplectic structure of the underlying Hamiltonian system,
referred to as the curse of sensitivity in (Ross, 2009); 2) the procedure requires solving a differential
algebraic equation and a boundary value problem which is complex, time consuming, and might not
have a solution (Ross & Karpenko, 2012).

Limitations of hybrid methods. ANODE (Gholami et al., 2019) splits the problem into time
batches, where the adjoint is used, storing in memory only few intermediate states from the forward
pass. This allows to improve the robustness and generalization of the adjoint method. A similar
improvement could be obtained using reversible integrators. However, its computational cost is of the
same order of the adjoint method and it does not offer further opportunities for parallelization.

3 RELAXATION OF THE SUPERVISED LEARNING PROBLEM

Our algorithm is based on two ingredients: i) the discretization of the problem using spectral elements
leading to SNODE, detailed in Section 4, and ii) the relaxation of the ODE constraint from (1), enabling
efficient training through backpropagation. The latter can be applied directly at the continuous level
and significantly reduces the difficulty of the optimization, as shown in our examples.
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The problem in (1) is split into two smaller subproblems: one finds the trajectory x(t) that minimizes
an unconstrained relaxation of (1). The other trains the network weights θ such that the trajectory
becomes a solution of the ODE. Both are addressed using standard gradient descent and backpropa-
gation. In particular, a fixed number of ADAM or SGD steps is performed for each problem in an
alternate fashion, until convergence. In the following, the details of each subproblem are discussed.

Step 0: Initial trajectory. The initial trajectory x(t) is chosen by solving the problem

min
x(t)∈X

∫ t1

t0

L(t, x(t)) dt, (2)

s.t. x(t0) = x0,

If this problem does not have a unique solution, a regularization term is added. For a quadratic loss, a
closed-form solution is readily available. Otherwise, a prescribed number of SGD iterations is used.

Step 1: Coordinate descent on residual. Once the initial trajectory x?(t) is found, θ is computed
by solving the unconstrained problem:

min
θ∈Rm

∫ t1

t0

R(t, x?(t), θ) dt, R(t, x(t), θ) := ‖ẋ(t)− f(t, x(t), u(t); θ)‖2 (3)

If the value of the residual at the optimum θ∗ is smaller than a prescribed tolerance, then the algorithms
stops. Otherwise, steps 1 and 2 are iterated until convergence.

Step 2: Coordinate descent on relaxation. Once the candidate parameters θ? are found, the
trajectory is updated by minimizing the relaxed objective:

min
x(t)∈X

∫ t1

t0

γL(t, x(t)) +R(t, x(t), θ?) dt, (4)

s.t. x(t0) = x0.

Discussion. The proposed algorithm can be seen as an alternating coordinate gradient descent on
the relaxed functional used in problem (4), i.e., by alternating a minimization with respect to x(t) and
θ. If γ = 0, multiple minima can exist, since each choice of the parameters θ would induce a different
dynamics x(t), solution of the original constraint. For γ 6= 0, the loss function in (4) trades-off the
ODE solution residual for the data fitting, providing a unique solution. The choice of γ implicitly
introduces a satisfaction tolerance ε(γ), i.e., similar to regularized regression (Hastie et al., 2001),
implying that ‖ẋ(t)− f(t, x(t); θ)‖ ≤ ε(γ). Concurrently, problem (3) reduces the residual.

4 SNODE – HIGH-ORDER DISCRETIZATION OF THE RELAXED PROBLEM

In order to numerically solve the problems presented in the previous section, a discretization of x(t)
is needed. Rather than updating the values at time points ti from the past to the future, we introduce a
compact representation of the complete discrete trajectory by means of the spectral element method.

Spectral approximation. We start by representing the scalar unknown trajectory, x(t), and the
known input, u(t), as truncated series:

x(t) =

p∑
i=0

xiψi(t), u(t) =

z∑
i=0

uiζi(t), (5)

where xi, ui ∈ R and ψi(t), ζi(t) are sets of given basis functions that span the spaces Xh ⊂ X and
Uh ⊂ U. In this work, we use orthogonal Legendre polynomials of order p (Canuto et al., 1988) for
ψi(t), where p is a hyperparameter, and the cosine Fourier basis for ζi(t), where z is fixed.
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Collocation and quadrature. In order to compute the coefficients xi of (5), we enforce the
equation at a discrete set Q of collocation points tq. Here, we choose p+ 1 Gauss-Lobatto nodes,
which include t = t0. This directly enforces the initial condition. Other choices are also possible
(Canuto et al., 1988). Introducing the vectors of series coefficients xI = {xi}pi=0 and of evaluations
at quadrature points x(tQ) = {x(tq)}q∈Q, the collocation problem can be solved in matrix form as

xI = M−1x(tQ), Mqi := ψi(tq). (6)

We approximate the integral (3) as a sum of residual evaluations over Q. Assuming that x(0) = x0,
the integrand at all quadrature points tQ can be computed as a component-wise norm

R(tQ, x(tQ), θ) = ‖DM−1x(tQ)− f (tQ, x(tQ), u(tQ); θ) ‖2, Dqi := ψ̇i(tq). (7)

Fitting the input data. For the case when problem (2) admits a unique a solution, we propose a new
direct training scheme, δ-SNODE, which is summarized in Algorithm 1. In general, a least-squares
approach must be used instead. This entails computing the integral in (2), which can be done by
evaluating the loss function L at quadrature points tq. If the input data is not available at tq, we
approximate the integral by evaluating L at the available time points. The corresponding alternating
coordinate descent scheme α-SNODE is presented in Algorithm 2. In the next sections, we study the
consequences of a low-data scenario on this approach.

We use fixed numbers Nt and Nx of updates for, respectively, θ and x(t). Both are performed with
standard routines, such as SGD. In our experiments, we use ADAM to optimize the parameters and
an interpolation order p = 14, but any other orders and solvers are possible.

Algorithm 1 δ-SNODE training
Input: M,D from (6)-(7).
x∗I ← argminx L(Mx)
while R(Mx∗I , θ

∗) > δ do
θ∗ ← ADAMθ [R(Mx∗I , θ)]

end while
Output: θ∗

Algorithm 2 α-SNODE training
Input: M,D, θ∗ ∈ Rm, x∗I ∈ Rp, γ > 0.
while γL(Mx?I) +R(Mx∗I , θ

∗) > δ do
for i = 0 . . . Nx do
x∗I ← SGDx [γL(Mx) +R(Mx, θ∗)]

end for
for i = 0 . . . Nt do
θ∗ ← ADAMθ [R(Mx∗I , θ)]

end for
end while
Output: θ∗

Ease of time parallelization. If R(tq) = 0 is enforced explicitly at q ∈ Q, then the resulting
discrete system can be seen as an implicit time-stepping method of order p. However, while ODE
integrators can only be made parallel across the different components of x(t), the assembly of
the residual can be done in parallel also across time. This massively increases the parallelization
capabilities of the proposed schemes compared to standard training routines.

Memory cost. If an ODE admits a regular solution, with regularity r > p, in the sense of Hilbert
spaces, i.e., of the number of square-integrable derivatives, then the approximation error of the
SNODE converges exponentially with p (Canuto et al., 1988). Hence, it produces a very compact
representation of an ODE-Net. Thanks to this property, p is typically much lower than the equivalent
number of time steps of explicit or implicit schemes with a fixed order. This greatly reduces the
complexity and the memory requirements of the proposed method, which can be evaluated at any t
via (5) by only storing few xi coefficients.

Stability and vanishing gradients. The forward Euler method is known to have a small region of
convergence. In other words, integrating very fast dynamics requires a very small time step, dt, in
order to provide accurate results. In particular, for the solver error to be bounded, the eigenvalues of
the state Jacobian of the ODE need to lie into the circle of the complex plane centered at (−1, 0)
with radius 1/dt (Ciccone et al., 2018; Isermann, 1989). Higher-order explicit methods, such as
Runge-Kutta (Runge, 1895), have larger but still limited convergence regions. Our algorithms on the
other hand are implicit methods, which have a larger region of convergence than recursive (explicit)
methods (Hairer et al., 1993). We claim that this results in a more stable and robust training. This
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claim is supported by our experiments. Reducing the time step can improve the Euler accuracy but
it can still lead to vanishing or exploding gradients (Zilly et al., 2016; Goodfellow et al., 2016). In
Appendix C, we show that our methods do not suffer from this problem.

Experiments setup and hyperparameters. For all experiments, a common setup was employed
and no optimization of hyperparameters was performed. Time horizon T = 10s and batch size
of 100 were used. Learning rates were set to 10−2 for ADAM (for all methods) and 10−3 for SGD
(for α-SNODE). For the α-SNODE method, γ = 3 and 10 iterations were used for the SGD and
ADAM algorithms at each epoch, as outlined in Algorithm 2. The initial trajectory was perturbed as
x0 = x0 + ξ, ξ ∼ U(−0.1, 0.1). This perturbation prevents the exact convergence of Algorithm 1
during initialization, allowing to perform the alternating coordinate descent algorithm.

5 MODELING OF A PLANAR VEHICLE DYNAMICS

Let us consider the system

η̇ = J(η)v, Mv̇ + d(v) + C(v)v = u, (8)

where η, v ∈ R3 are the states, u = (Fx, 0, τxy) is the control, C(v) is the Coriolis matrix, d(v) is
the (linear) damping force, and J(η) encodes the coordinate transformation from the body to the
world frame (Fossen, 2011). A gray-box model is built using a neural network for each matrix

Ĵ(η) = fJ(η; θJ), Ĉ(v) = fC(v; θC), d̂(v) = fd(v; , θd).

Each network consists of two layers, the first with a tanh activation. Bias is excluded for fC and
fd. For fJ , sin(φ) and cos(φ) are used as input features, where φ is the vehicle orientation. When
inserted in (8), these discrete networks produce an ODE-Net that is a surrogate model of the physical
system. The trajectories of the system and the learning curves are shown in Appendix A.

(a) δ-SNODE ,
MSE = 0.109

(b) α-SNODE,
MSE = 0.019

(c) DoPr5,
MSE = 0.307

(d) Euler,
MSE = 0.476

Figure 1: Vehicle dynamics testing in the high-data regime. Each plot compares the true trajectory
(dotted red) with the prediction from the surrogate (solid blue). The time horizon is 5x than in
training. The shown methods are: (a)-(b) the proposed δ-SNODE and α-SNODE schemes, (c) fifth-
order Dormand-Prince, and (d) Explicit Euler. Models trained with our methods have better test MSE
and forecast more precisely.

Comparison of methods in the high-data regime. In the case of δ-SNODE and α-SNODE, only
p + 1 points are needed for the accurate integration of the loss function, if such points coincide
with the Gauss-Lobatto quadrature points. We found that 100 equally-spaced points produce a
comparable result. Therefore, the training performance of the novel and traditional training methods
were compared by sampling the trajectories at 100 equally-spaced time points. Table 1a shows that
δ-SNODE outperforms BKPR-DoPr5 by a factor of 50, while producing a significantly improved
generalization. The speedup reduces to 20 for α-SNODE, which however yields a further reduction of
the testing MSE by a factor of 10, as can be seen in Figure 1.

Comparison in the low-data regime. The performance of the methods was compared using fewer
time points, randomly sampled from a uniform distribution. For the baselines, evenly-spaced points
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Table 1: Simulation results for the vehicle dynamics example. The standard backpropagation
schemes are denoted by BKPR, while the adjoint is denoted by ADJ. The Dormand-Prince method of
order 5 with adaptive time step is denoted by DoPr5, while Euler denotes explicit Euler with time
step equal to the data sampling time. For BKPR-DoPr5 we set rtol=10−7, atol=10−9. Experiments
were performed on a i9 Apple laptop with 32GB of RAM. Reported times are per iteration and were
averaged over the total number of iterations performed.

(a) High-data regime

Training Test

Time [ms] # Iter Final loss MSE
δ-SNODE 8.3 480 0.011 0.109
α-SNODE 134 100 0.011 0.019
BKPR-Euler 97 1200 0.047 0.476
BKPR-DoPr5 185 1140 0.011 0.307
ADJ-Euler 208 1200 0.047 0.492
ADJ-DoPr5 3516 1140 0.011 0.35

(b) Low-data regime

Training Test

% data # Iter Final loss MSE
α-SNODE 50 140 0.010 0.029
α-SNODE 25 190 0.009 0.052
BKPR-Euler 50 1200 0.163 1.056
BKPR-Euler 25 1200 0.643 3.771
BKPR-DoPr5 50 1160 0.011 0.35
BKPR-DoPr5 25 1180 0.011 0.291

were used. Table 1b shows that α-SNODE preserves a good testing MSE, at the price of an increased
number of iterations. With only 25% of data, α-SNODE is 10x faster than BKPR-DoPr5. Moreover,
its test MSE is 1/7 than BKPR-DoPr5 and up to 1/70 than BKPR-Euler, showing that the adaptive
time step of DoPr5 improves significantly the baseline but it is unable to match the accuracty of the
proposed methods. The adjoint method produced the same results as the backprop (±2%).

6 LEARNING A MULTI-AGENT SIMULATION

Consider the multi-agent system consisting of Na kinematic vehicles:

η̇i = J(ηi) tanh

w +Kc(ηi) +
1

Na

Na∑
j 6=i

Ko(ηi, ηj)

 , (9)

where η ∈ R3Na are the states (planar position and orientation), J(ηi) is the coordinate transform
from the body to world frame, common to all agents. The agents velocities are determined by known
arbitrary control and collision avoidance policies, respectively, Kc and Ko plus some additional high
frequency measurable signal w = w(t), shared by all vehicles. The control laws are non-linear and
are described in detail in Appendix B. We wish to learn their kinematics matrix by means of a neural
network as in Section 5. The task is simpler here, but the resulting ODE has 3Na states, coupled by
K0. We simulate Na = 10 agents in series.

(a) δ-SNODE
MSE = 1.7 e-4

(b) α-SNODE
MSE = 9.1 e-5

(c) BKPR-Euler
MSE = 1.3 e-3

(d) ADJ-Euler
MSE = 5.4 e-4

Figure 2: Multi-agent testing in high-data regime. Each plot compares the true trajectory (dotted
red) with the prediction from the surrogate (solid blue). The time horizon is 4x longer than in training.
The shown methods are: (a)-(b) the proposed δ-SNODE and α-SNODE schemes, and (c)-(d) Explicit
Euler. Models trained with our methods have better test MSE and forecast more precisely.

Comparison of methods with full and sparse data. The learning curves for high-data regime are
in Figure 3. For method α-SNODE, training was terminated when the loss in (4) is less than γL̄+ R̄,
with L̄ = 0.11 and R̄ = 0.01. For the case of 20% data, we set L̄ = 0.01. Table 2 summarizes results.
δ-SNODE is the fastest method, followed by α-SNODE which is the best performing. Iteration time of
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BKPR-Euler is 50x slower, with 14x worse test MSE. ADJ-Euler is the slowest but its test MSE
is in between BKPR-Euler and our methods. Random down-sampling of the data by 50% and 20%
(evenly-spaced for the baselines) makes ADJ-Euler fall back the most. BKPR-DoPr5 failed to
find a time step meeting the tolerances, therefore they were increased to rtol= 10−5, atol= 10−7.
Since the loss continued to increase, training was terminated at 200 epochs. ADJ-DoPr5 failed to
compute gradients. Test trajectories are in Figure 2. Additional details are in Appendix B.

Table 2: Simulation results for the multi-agent example. Experiments were performed on a 2.9
GHz Intel Core i7 Apple laptop with 16GB of RAM. For the α-SNODE method, each iteration
consists of 10 steps of SGD and 10 of ADAM. In high-data regime, α-SNODE converges in 5x less,
2.6x faster, iterations than Euler with 14x smaller test MSE. Method δ-SNODE is even 12x faster,
with similar performance. Gains are comparable in low-data regime. Method BKPR-DoPr5 failed.

(a) High-data regime

Training Test

Time [ms] # Iter Loss MSE
δ-SNODE 106 500 0.12 1.7 e-4
α-SNODE 1999 180 0.12 9.1 e-5
BKPR-Euler 5330 1200 0.177 1.3 e-3
BKPR-DoPr5 9580 Fail 200 21707 -
ADJ-Euler 8610 990 0.104 5.4 e-4
ADJ-DoPr5 - Fail 0 - -

(b) Low-data regime

Training Test

% data # Iter Loss MSE
α-SNODE 50 160 0.22 1.5 e-4
α-SNODE 20 175 0.23 9.1 e-4
BKPR-Euler 50 990 0.43 2.8 e-3
BKPR-Euler 20 990 0.645 1.6 e-3
ADJ-Euler 50 2990 0.53 9.4 e-3
ADJ-Euler 20 1590 0.63 3.0 e-3

Robustness of the methods. The use of a high order variable-step method (DoPr5), providing an
accurate ODE solution, does not however lead to good training results. In particular, the loss function
continued to increase over the iterations. On the other hand, despite being nearly 50 times slower than
our methods, the fixed-step forward Euler solver was successfully used for learning the dynamics
of a 30-state system in the training configuration described in Appendix B. One should however
note that, in this configuration, the gains for the collision avoidance policy Ko (which couples the
ODE) were set to small values. This makes the system simpler and more stable than having a larger
gain. As a result, if one attempts to train with the test configuration from Appendix B, where the
gains are increased and the system is more unstable, then backpropagating trough Euler simply fails.
Comparing Figures 3 and 4, it can be seen that the learning curves of our methods are unaffected by
the change in the gains, while BKPR-Euler and ADJ-Euler fail to decrease the loss.

7 RELATED WORK

RNN training pathologies. One of the first RNNs to be trained successfully were LSTMs (Greff
et al., 2017), due to their particular architecture. Training an arbitrary RNN effectively is generally
difficult as standard RNN dynamics can become unstable or chaotic during training and this can cause
the gradients to explode and SGD to fail (Pascanu et al., 2012). When RNNs consist of discretised
ODEs, then stability of SGD is intrinsically related to the size of the convergence region of the solver
(Ciccone et al., 2018). Since higher-order and implicit solvers have larger convergence region (Hairer
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Figure 3: Multi-agent learning using different methods. Training loss vs. iterations (left) and
execution time (right). Our methods converge one order of magnitude faster and to a lower loss. Note
that changing the simulation parameters can make Euler unstable (see Figure 4).
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Figure 4: Multi-agent learning with increased controller gains using different methods. Training
loss vs. iterations (left) and execution time (right). Our methods remain stable and their learning
curves are the same as in Figure 3. BKPR-Euler and ADJ-Euler are not able to train in this
configuration. The proposed algorithms are inherently more stable and robust than the baselines.

et al., 1993), following (Pascanu et al., 2012) it can be argued that our method has the potential to
mitigate instabilities and hence to make the learning more efficient. This is supported by our results.

Unrolled architectures. In (Graves, 2016), an RNN has been used with a stopping criterion, for
iterative estimation with adaptive computation time. Highway (Srivastava et al., 2015) and residual
networks (He et al., 2015) have been studied in (Greff et al., 2016) as unrolled estimators. In this
context, (Haber & Ruthotto, 2017) treated residual networks as autonomous discrete-ODEs and
investigated their stability. Finally, in (Ciccone et al., 2018) a discrete-time non-autonomous ODE
based on residual networks has been made explicitly stable and convergent to an input-dependant
equilibrium, then used for adaptive computation.

Training stable ODEs. In (Haber & Ruthotto, 2017; Ciccone et al., 2018), ODE stability conditions
where used to train unrolled recurrent residual networks. Similarly, when using our method on
(Ciccone et al., 2018) ODE stability can be enforced by projecting the state weight matrices, A, into
the Hurwitz stable space: i.e. A ≺ 0. At test time, overall stability will also depend on the solver
(Durran, 2010; Isermann, 1989). Therefore, a high order variable step method (e.g. DoPr5) should
be used at test time in order to minimize the approximation error.

Dynamics and machine learning. A physics prior on a neural network was used by (Jia et al.,
2018) in the form of a consistency loss with data from a simulation. In (De Avila Belbute-Peres et al.,
2018), a differentiable physics framework was introduced for point mass planar models with contact
dynamics. (Ruthotto & Haber, 2018) looked at Partial Differential Equations (PDEs) to analyze
neural networks, while (Raissi & Karniadakis, 2018; Raissi et al., 2017) used Gaussian Processes
(GP) to model PDEs. The solution of a linear ODE was used in (Soleimani et al., 2017) in conjunction
with a structured multi-output GP to model patients outcome of continuous treatment observed at
random times. (Pathak et al., 2017) predicted the divergence rate of a chaotic system with RNNs.

8 SCOPE AND LIMITATIONS

Test time and cross-validation At test time, since the future outputs are unknown, an explicit
integrator is needed. For cross-validation, the loss needs instead to be evaluated on a different dataset.
In order to do so, one needs to solve the ODE forward in time. However, since the output data is
available during cross-validation, a corresponding polynomial representation of the form (5) can be
found and the relaxed loss (4) can be evaluated efficiently.

Nonsmooth dynamics. We have assumed that the ODE-Net dynamics has a regularity r > p
in order to take advantage of the exponential convergence of spectral methods, i.e., that their
approximation error reduces as O(hp), where is h is the size of the window used to discretize the
interval. However, this might not be true in general. In these cases, the optimal choice would be to use
a hp-spectral approach (Canuto et al., 1988), where h is reduced locally only near the discontinuities.
This is very closely related to adaptive time-stepping for ODE solvers.
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Topological properties, convergence, and better generalization. There are few theoretical open
questions stemming from this work. We argue that one reason for the performance improvement
shown by our algorithms is the fact that the set of functions generated by a fixed neural network
topology does not posses favorable topological properties for optimization, as discussed in (Petersen
et al., 2018). Therefore, the constraint relaxation proposed in this work may improve the properties
of the optimization space. This is similar to interior point methods and can help with accelerating
the convergence but also with preventing local minima. One further explanation is the fact that the
proposed method does not suffer from vanishing nor exploding gradients, as shown in Appendinx C.
Moreover, our approach very closely resembles the MAC scheme, for which theoretical convergence
results are available (Carreira-Perpinan & Wang, 2014).

Multiple ODEs: Synchronous vs Asynchronous. The proposed method can be used for an arbi-
trary cascade of dynamical systems as they can be expressed as a single ODE. When only the final
state of one ODE (or its trajectory) is fed into the next block, e.g. as in (Ciccone et al., 2018), the
method could be extended by means of 2M smaller optimizations, where M is the number of ODEs.

Hidden states. Latent states do not appear in the loss, so training and particularly initializing the
polynomial coefficients is more difficult. A hybrid approach is to warm-start the optimizer using few
iterations of backpropagation. We plan to investigate a full spectral approach in the future.
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APPENDIX

A ADDITIONAL MATERIAL FOR THE VEHICLE DYNAMICS EXAMPLE

The model is formulated in a concentrated parameter form (Siciliano et al., 2008). We follow the
notation of (Fossen, 2011). Recall the system definition:

η̇ = J(η)v, Mv̇ + d(v) + C(v)v = u,

where η, v ∈ R3 are the states, namely, the x, and y coordinates in a fixed (world) frame, the vehicle
orientation with respect this this frame, φ, and the body-frame velocities, vx, vy , and angular rate, ω.
The input is a set of torques in the body-frame, u = (Fx, 0, τxy). The Kinematic matrix is

J(η) =

[
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

]
,

the mass matrix is

M =

[
m 0 0
0 m 0
0 0 I

]
,

where m is the vehicle mass and I represents the rotational intertia. The Coriolis matrix is

C(v) =

[
0 −mω 0
mω 0 0
0 0 0

]
,

and the damping force is d(v) = kdv. We set m = 1 and Kd = 1. The input, u, comes from a
Fourier series with fundamental amplitude 1.

(a) i = 20 (b) i = 100 (c) i = 300 (d) Loss function

(e) i = 20 (f) i = 100 (g) i = 300 (h) Loss function

Figure 5: Vehicle dynamics learning in high-data regime. Top row: δ-SNODE method. Bottom
row: fifth-order Dormand-Prince method (Butcher & Wanner, 1996) with backpropagation. First
three columns: comparison of true trajectories (red) with the prediction from the surrogate (black) at
different iterations of the optimization. Last column: loss function at each iteration. δ-SNODE has
faster convergence than Euler.
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(a) i = 20 (b) i = 60 (c) i = 100 (d) i = 100

(e) i = 20 (f) i = 100 (g) i = 300 (h) Loss function

Figure 6: Vehicle dynamics learning in high-data regime. Top row: α-SNODE method. Bottom
row: Explicit Euler method with back-propagation. First three columns: comparison of true trajecto-
ries (red) with the prediction from the surrogate (black) at different iterations of the optimization.
Last column: value of the loss function at each iteration.

Figure 7: Vehicle dynamics learning with perturbed input data for the α-SNODE method. Left:
comparison of true trajectories (red) with the input data (black). Right: comparison in the time
domain for the states of the first sample of the batch.

B ADDITIONAL MATERIAL FOR THE MULTI-AGENT EXAMPLE

The multi-agent simulation consists of Na kinematic vehicles:

η̇i = J(ηi)vi, vi = tanh

w +Kc(ηi) +
1

Na

Na∑
j 6=i

Ko(ηi, ηj)

 ,

where η ∈ R3Na are the states for each vehicle, namely, the xi, yi positions and the orientation φi
of vehicle i in the world frame, while vi ∈ R2Na are the controls signals, in the form of linear and
angular velocities, νi, ωi. The kinematics matrix is

J(ηi) =

[
cos(φi) 0
sin(φi) 0

0 1

]
.
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The agents velocities are determined by known arbitrary control and collision avoidance policies,
respectively, Kc and Ko. In particular:

Kc(ηi) =

[
kv

kφδφi

]
, Ko(ηi, ηj) =

[
−kvoe−

d
ls e−|δφij+π/2|

kφoδφij

]
,

where δφi = atan2 ((−yi), (−xi))− φi, and δφij = atan2 ((yi − yj), (xi − xj))− φi.

Training configuration. We set
kv = 0.05 kφ = 0.1, kvo = 0.001, kφo = 0.01, ls = 0.01.

The signal w = w(t) is generated by a Fourier series with fundamental amplitude 0.1.

Test configuration. We change Ko(ηi, ηj) to:

Ktest(ηi, ηj) =

[
−kvoe−

d
ls

kφoδφij

]
,

with kvo = 0.05 and kφo = 0.1. We also set w = 0.

(a) α-SNODE
50% data

(b) Euler
50% data

(c) α-SNODE
20% data

(d) Euler
20% data

Figure 8: Multi-agent testing in low-data regime.

C GRADIENT ANALYSIS

Consider the classic discrete-time RNN:
x(t+ 1) = f(x(t), u(t); θ). (10)

Then, given a loss L =
∑tf
t=t0

L(x(t)), the following gradients are used during training1:

∂L
∂θ

=

tf∑
t=t0

∂L(x(t))

∂x(t)

∂x(t)

∂θ
, (11)

where, for any t, the chain rule gives:
∂x(t+ 1)

∂θ
=
∂f(x(t), u(t); θ)

∂θ
+ J(x(t))

∂x(t)

∂θ
, (12)

J(x(t)) =
f(x(t), u(t); θ)

∂x(t)

Iteration of (12) is the main principle of backpropagation through time (Goodfellow et al., 2016). A
known fact is that iterating (12) is similar to a geometric series. Therefore, depending on the spectral
radius of the Jacobian, ρ(J(x(t))), it can result in vanishing (ρ < 1) or exploding (ρ > 1) gradients
(Zilly et al., 2016).

We can now demonstrate that, by avoiding function compositions, our approach is immune to the
exploding gradient problem. In particular, our gradients are fully time-independent and their accuracy
is not affected by the sequence length. Recall the ODE:

ẋ(t) = f(x(t), u(t); θ). (13)
The following result is obtained:

1We consider a single batch element: f and x are in Rnx×1, where nx is the state dimensionality.
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Theorem 1. Assume the full Jacobian of f(x(t), u(t); θ) has a finite spectral radius for all t. Then,
the norms of the gradients used in Algorithm 1 and Algorithm 2 are also finite for all t.

We will prove the theorem for Algorithm 2 since it includes the relevant parts of Algorithm 1.

Proof. Given the Legendre basis functions, ψi(t), i = 1, . . . , p, define the ODE residual as:

r(x(t), θ) =

p∑
i=0

xiψ̇i(t)− f

(
p∑
i=0

xiψi(t), u(t); θ

)
,

for which the residual loss is R(x(t), θ) = ‖r(x(t), θ)‖2. Then, Algorithm 2 consists of the
concurrent minimization of the relaxed loss function:∫ t1

t0

γL(x(t))) +R(x(t), θ?)dt,

with respect to the coefficients xi of the Legendre polynomial given θ?, and of the residual loss:∫ t1

t0

R(x(t), θ)dt,

with respect to θ given the set of coefficients x?i , i = 1, . . . , p. For the residual loss gradients are:

∂R(x?(t), θ)

∂θ
= −2 r(x?(t), θ)T

∂f (
∑p
i=0 x

?
iψi(t), u(t); θ)

∂θ
, (14)

where there is no recursion over the previous values x(t − τ), since the basis functions ψi(t) are
given and the points x?i are treated as data. By assumption, the Jacobian of f(x(t), u; θ) has finite
singular values. Hence, by standard matrix norm identities (see Chapter 5 of Horn & Johnson (2012))
the gradient of R(x(t), θ) with respect to θ has a finite norm for all t.

Similarly, the absence of time recursions in the gradient for the xi update using the relaxed loss also
follows trivially from the fact that the coefficients xi are independent variables, that we assume a
given θ?, that the basis functions ψi(t) are fixed. Then, the claim follows again from the assumption
on the Jacobian of f(x, u; θ).

Note that the result of Theorem 1 cannot easily be achieved when training ODEs using backpropaga-
tion through the solver or the adjoint method unless some gradient conditioning, such as clipping
or batch normalization (Ioffe & Szegedy, 2015), is performed after applying f . On the other hand,
our result relies only on the gradient of f being finite. This is trivial for a shallow f and, for a very
deep f , the methods in (Ioffe & Szegedy, 2015; Srivastava et al., 2015; Ciccone et al., 2018; He et al.,
2015) can be applied just inside the architecture of f , if necessary. This fundamental difference with
standard RNN training allows for f to have unrestricted Jacobian magnitudes which are needed to
effectively model instabilities and long-short term dynamics, similar to LSTMs (Greff et al., 2017).
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