
Automated Knowledge Base Construction (2019) Conference paper

Combining Long Short Term Memory and Convolutional
Neural Network for Cross-Sentence n-ary Relation

Extraction

Angrosh Mandya angrosh@liverpool.ac.uk

Danushka Bollegala danushka@liverpool.ac.uk

Frans Coenen coenen@liverpool.ac.uk

Katie Atkinson katie@liverpool.ac.uk

Department of Computer Science, University of Liverpool

Liverpook, UK

Abstract

We propose in this paper a combined model of Long Short Term Memory and Convo-
lutional Neural Networks (lstm cnn) that exploits word embeddings and positional em-
beddings for cross-sentence n-ary relation extraction. The proposed model brings together
the properties of both lstms and cnns, to simultaneously exploit long-range sequential in-
formation and capture most informative features, essential for cross-sentence n-ary relation
extraction. The lstm cnn model is evaluated on standard dataset on cross-sentence n-ary
relation extraction, where it significantly outperforms baselines such as cnns, lstms and
also a combined cnn lstm model. The paper also shows that the lstm cnn model out-
performs the current state-of-the-art methods on cross-sentence n-ary relation extraction.

1. Introduction

Research in the field of relation extraction has largely focused on identifying binary rela-
tions that exist between two entities in a single sentence, known as intra-sentence relation
extraction [Bach and Badaskar, 2007]. However, relations can exist between more than two
entities that appear across consecutive sentences. For example, in the text span comprising
the two consecutive sentences given in Listing 1, there exists a ternary relation response
across three entities: EGFR, L858E, gefitnib. This relation extraction task, focusing on
identifying relations between more than two entities – either appearing in a single sentence
or across sentences, is known as cross-sentence n-ary relation extraction.

Listing 1: Text span of two consecutive sentences

“The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the
L858E point mutation on exon-21 was noted in 10. All patients were treated with gefitnib
and showed a partial response.”

This paper focuses on the cross-sentence n-ary relation extraction task. Formally, let
{e1, .., en} be the set of entities in a text span S containing t consecutive sentences. For
example, in the text span comprising 2 sentences (t = 2) given in Listing 1 above,
the relation that can be extracted is that cancer patients with mutation v (EGFR) in
gene g (L858E ) demonstrated response to drug d (gefitnib). Thus, a ternary relation re-
sponse(EGFR, L858E, gefitnib) exists among the three entities spanning across the two
sentences in Listing 1. The entities e1, .., en in a text span can either appear in a single
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sentence (t = 1) or multiple sentences (t > 1). Thus, given an instance defined as a com-
bined sequence of m tokens x = x1, x2, ..., xm in t consecutive sentences and a set of entities
{e1, .., en}, the cross-sentence n-ary relation extraction task is to identify the n-ary relation
(if it exists) among the entities in x.

Cross-sentence n-ary relation extraction is particularly challenging compared to intra-
sentence relation extraction for several reasons. While lexico-syntactic pattern-based rela-
tion extraction methods [Hearst, 1992, Brin, 1998, Agichtein and Gravano, 2000] are useful
for intra-sentence relation extraction, such pattern-based relation extraction methods can-
not be readily applied to cross-sentence n-ary relation extraction, because it fails to match
lexico-syntactic patterns across longer text spans covering multiple sentences. Although,
dependency-based features [Culotta and Sorensen, 2004, Bunescu and Mooney, 2005, Fun-
del et al., 2006, Xu et al., 2015, Miwa and Bansal, 2016] are useful for intra-sentence relation
extraction, it is not clear how best to merge dependency parse trees from different sentences
to extract path-based features for cross-sentence relation extraction. Difficulties in coref-
erence resolution and discourse analysis, further complicate n-ary cross-sentence relation
extraction [Peng et al., 2017].

The principal challenges for cross-sentence n-ary relation extraction arise from: (a)
difficulties in handling long-range sequences resulting from combining multiple sentences,
(b) modeling the contexts of words in relation to entities across sentences, and (c) the
problem of representing a variable-length text span containing an n-ary relation using a
fixed-length representation. To address these issues, a combined model consisting of a Long
Short-Term Memory unit and a Convolutional Neural Network (lstm cnn) that exploits
both word embedding and positional embedding features, is proposed for cross-sentence
n-ary relation extraction. The LSTM is used as the first layer to encode the combined
set of sentences representing an n-ary relation, thereby capturing the long-range sequential
information. The hidden state representation obtained from the lstm is then used with the
cnn to further identify the salient features for relation classification.

Further, although combined models of CNNs and RNNs are explored for text classifi-
cation [Lai et al., 2015, Lee and Dernoncourt, 2016, Hsu et al., 2017, Zhang et al., 2016]
and sentiment analysis [Wang et al., 2016], to the best of our knowledge, we are the first to
propose a combined lstm cnn model for cross-sentence n-ary relation extraction.

Zhang et al. 2016 proposed a dependency sensitive convolution neural network (DSCNN)
model as a general-purpose classification system, very similar to our proposed model. How-
ever, the DSCNN model does not employ position embeddings to differentiate the input
words w.r.t the entities, that are crucial for relation extraction. In contrast, our proposed
model employs position embeddings in the combined model to achieve higher performance
for n-ary relation extraction. Our main contributions are:

a. Propose lstm cnn+wf+pf model exploiting word embedding and position embed-
ding features for cross-sentence n-ary relation extraction. The lstm cnn+wf+pf
model is evaluated against baseline models such as cnn, lstm and cnn lstm and
show that lstm cnn+wf+pf significantly outperforms the baselines.

b. An evaluation of the proposed model against State-Of-The-Art (SOTA) for cross-
sentence n-ary relation extraction on two different benchmark datasets is presented.
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Results show that the proposed model significantly outperforms the current SOTA
methods for cross-sentence n-ary relation extraction.

2. Related Work

Most of the studies on cross-sentence relation extraction focus on extracting binary relations
present across sentences [Swampillai and Stevenson, 2010, Quirk and Poon, 2016, Moschitti
et al., 2013, Nagesh, 2016]. However, recently, Peng et al. 2017 proposed graph-LSTMs to
extract n-ary relations present in a single sentence and across sentences. Specifically, binary
relations (n=2) and ternary relations (n=3) were considered. The authors noted that they
could not find sufficient number of relation instances where n >3 [Peng et al., 2017] suitable
for experiments. The dataset developed by Peng et al. is the largest dataset currently
available for n-ary cross-sentence relation extraction. In addition, chemical-induced disease
relation extraction dataset [Li et al., 2016] provides instances with binary relations in single
sentences and across two sentences. We use these two datasets in this study.

Cross-sentence relation extraction has largely used dependency features, which are useful
in providing connections between sentences [Swampillai and Stevenson, 2010, Quirk and
Poon, 2016, Peng et al., 2017]. Tree kernel features [Moschitti et al., 2013, Nagesh, 2016]
are also used to provide more efficient and comprehensive feature sets. Recently Peng et al.
2017 proposed graph-LSTMs to capture intra-and inter-sentence dependencies for cross-
sentence n-ary relation extraction. Although graph-LSTMs are useful in exploiting graph
edges, Song et al. 2018 proposed graph-state LSTM model that uses parallel states to model
each word, recurrently enriching state values via message passing. While graph-LSTMs
and graph-state LSTMs are useful, creating DAGs covering words in multiple sentences
is complex and error-prone. It is not obvious how to connect two parse trees; also the
parse errors will compound during the graph creation step. Moreover, the co-reference
resolution and discourse features do not always improve performance [Peng et al., 2017]. In
contrast, we present a simple neural network-based approach that does not rely on heavy
syntactic features such as dependency trees, co-reference resolution or discourse features for
cross-sentence n-ary relation extraction.

3. Cross-Sentence n-ary Relation Extraction

The architecture of lstm cnn+wf+pf model for cross-sentence n-ary relation extraction
is shown in Figure 1. The different components of the model is explained below.

3.1 Input Representation

The input to the lstm cnn+wf+pf model is the combined sequence of tokens in a text
span S comprising t consecutive sentences where an n-ary relation exists between n entities.
The sequence of tokens is transformed into a combination of word embeddings and position
embeddings as described below.
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Figure 1: Architecture of the lstm cnn+wf+pf model for cross-sentence n-ary relation
extraction. The input to the network is the sequence of tokens from a text span.
The position features are derived for entities e1 and e3 (highlighted in the figure).

3.1.1 Word Embeddings

The transformation of words into lower dimensional vectors are observed to be useful in
capturing semantic and syntactic information about words [Mikolov et al., 2013, Pennington
et al., 2014]. Thus, each of the words in the combined sequence x = {x1, x2, ..., xn} is
mapped to a k−dimensional embedding vector using a look-up matrix W ∈ R|V |×k where
|V | is the number of unique words in the vocabulary.

3.1.2 Position Features

Following Zeng et al. 2014, Positional Features (PFs) are used to encode the position of
entities for n-ary cross-sentence relation extraction. Given entity mentions e1, .., en in the
sequence x = x1, x2, ..., xn, although n pfs can be defined based on n entities, the proposed
model, specifically considers only e1 and en to create position embeddings. The preliminary
experiments demonstrated a decrease in performance with having n pfs in the model. Thus,
the model defines two sets of pfs PF1 and PFn for the entities e1 and en, respectively, as
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a combination of the relative distances from the current word to the respective entity. The
position embedding matrices are randomly initialised and the relative distance of words
w.r.t entities are transformed into real valued vectors by looking up the position embedding
matrices.

Thus, the vector representation for models using position features, transforms an in-
stance into a matrix S ∈ Rs×d by combining the word embeddings and position embeddings,
where s is the sentence length and d = da + db × 2 (da and db are the dimensionalities of
word and position embeddings, respectively).

3.2 LSTM Layer

Although RNNs are useful in learning from sequential data, these networks are observed
to suffer from the problem of exploding or vanishing gradient, which makes it difficult
for RNNs to learn long distance correlations in a sequence [Hochreiter and Schmidhuber,
1997, Hochreiter et al., 2001]. To specifically address this issue of learning long-range
dependencies, LSTM [Hochreiter et al., 2001] was proposed, which maintains a separate
memory cell that updates and exposes the content only when deemed necessary. Given the
long-range sequential information resulting from the combined set of sentences expressing
an n-ary relation, LSTM is an excellent choice to learn long-range dependencies. Thus, as
shown in Figure 1, the transformed vector representation combining word embeddings and
position features is provided as input to the LSTM layer. The LSTM units at each time
step t is defined as a collection of vectors in Rl and comprises the following components: an
input gate it, a forget gate ft, an output gate ot, a memory cell ct and a hidden state ht. l
is the number of LSTM units and the entries of the gating vectors it, ft and ot are in [0, 1].
The three adaptive gates it, ft and ot depend on the previous state ht−1 and the current
input xt (Equations 1-3). The candidate update vector gt (Equation 4) is also computed for
the memory cell. The current memory cell ct is a combination of the previous cell content
ct−1 and the candidate content gt, weighted respectively by the input gate it and forget gate
ft (Equation 5). The hidden state ht, which is the output of the LSTM units is computed
using Equation 6. σ denotes a sigmoid function and � denotes element-wise multiplication.

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(Wfxt + Ufht−1 + bf ) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

gt = tanh(Wgxt + Ught−1 + bg) (4)

ct = it � gt + ft � ct−1 (5)

ht = ot � tanh(ct). (6)

3.3 CNN Layer

Let hi ∈ Rl be the l-dimensional hidden state vector corresponding to the i-th token in the
combined sequence x. The combined hidden state vectors in the sequence of length m is
represented as:

h1:m = h1 ⊕ h2 ⊕ ...⊕ hm, (7)
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where ⊕ denotes vector concatenation. In general, let hi:i+j refer to the concatenation of
hidden state vectors hi, hi+1, ..., hi+j . The convolution operation involves a filter w ∈ Rpl,
which is applied to a window of p hidden state vectors to generate a new feature. For
instance, a feature ci is generated from a window of hidden state vectors hi:i+p−1 calculated
as follows:

ci = f(w · hi:i+p−1 + b). (8)

Here b ∈ R is the bias term and f is a non-linear function such as the rectified linear
unit (ReLU). This filter is applied to each possible window of hidden state vectors in the
combined sequence h1:p, h2:p+1, . . . , hm−p+1:n to produce a feature map c ∈ Rm−p+1 given
by:

c = [c1, c2, ..., cm−p+1]. (9)

Max-pooling is applied over the feature map to take the maximum value ĉ = max{c} as the
feature corresponding to this particular filter. The use of multiple filters facilitates selection
of the most important feature (one with the highest value) for each feature map. Finally,
the use of multiple filters with varying window sizes result in a fixed length vector g ∈ Rfw,
where f is the number of filters and w is the number of different window sizes.

3.4 Predicting n-ary Relations

The task of predicting n-ary relations is modeled both as a binary and multi-class classifica-
tion problem. The output feature vector g obtained from the convolution and max-pooling
operation is passed to a softmax layer, to obtain the probability distribution over relation
labels. Dropout [Srivastava et al., 2014] is used on the output layer to prevent over-fitting.
Thus, given a set of instances, with each instance being a text span Si comprising t consecu-
tive sentences (combined sequence of tokens x = x1, x2, ...xm), entity mentions e1, ..., en and
having an n-ary relation r, the cross-entropy loss for this prediction is defined as follows:

J(θ) =
s∑
i=1

log p(ri|Si, θ) (10)

where s indicates the total number of text spans and θ indicates the parameters of the
model.

3.5 Implementation details

The proposed model was implemented using Tensorflow [Abadi et al., 2016] and will be
made publicly available upon paper acceptance. The hyper-parameters of the models were
set based on preliminary experiments using an independent development dataset. Training
was performed following mini-batch gradient descent (SGD) with a batch size of 10. The
models were trained for at most 30 epochs, which was sufficient to converge. The size of
the hidden vectors for the LSTM was set to 300. The window sizes for the CNN was set
to 3,4 and 5, and experiments were conducted with different number of filters set to 10
and 128. Word embeddings were initialised using publicly available 300-dimensional Glove
word vectors trained on a 6 billion token corpus from Wikipedia and web text [Pennington
et al., 2014]. The dimensions for position embeddings was set to 100 and were initialised
randomly between [-0.25, 0.25].
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4. Experiments

4.1 Datasets

The following datasets are used in this study.

4.1.1 Quirk and Poon (qp) Dataset

The dataset1 developed by Quirk and Poon 2016 and Peng et al. 2017 is used in this
study. Distant supervision was adopted to extract relations involving drug, gene and muta-
tion triples from the biomedical literature available in PubMed Central2. A minimal span
[Quirk and Poon, 2016] was used to avoid co-occurrence of the same entity triples and to
obtain spans with ≤ 3 consecutive sentences to avoid candidates where triples are far apart
in the span. A total of 59 drug-gene-mutation triples was used to obtain 3,462 ternary
relation instances and 3,192 binary relation instances (involving drug-mutation entities) as
positive examples. The dataset has instances with ternary and binary relations, either ap-
pearing in a single sentence or across sentences. Each instances is labeled using four labels:
‘resistance’, ‘resistance or non-response’, ‘response’, and ‘sensitivity’. The label ‘none’ is
used for negative instances. Negative samples were generated by randomly sampling co-
occurring entity triples without known interactions, following the same restrictions used for
obtaining positive samples. Negative examples were sampled to match the same number of
positive samples to develop a balanced dataset.

4.1.2 Chemical Induced Disease (cid) Dataset

We also use cid dataset3 comprising binary relation instances between chemicals and related
diseases. We followed the methodology of Gu et al. gu2016chemical to obtain relation
instances from the corpus. A total of 1206, 1999 and 1330 positive instances were obtained
for binary relations in single sentences and a total of 702, 788 and 786 positive instances were
binary relations across sentences, respectively. Negative instances were created following
the same restrictions, however without any known interactions between entities.

4.2 Evaluation Metrics

Following Peng et al. 2017, we conduct five-fold cross-validation and report average test
accuracy on held-out folds using the q&p dataset. To avoid training and test contamina-
tion, held-out evaluation was conducted in each fold, based on categorizing instances related
to specific entity pairs (binary relations) or entity triples (ternary relations). For example,
for binary relations, the instances relating to the first 70% of the entity pairs drawn from a
unique list of entity pairs was used as the training set. Instances relating to the next 10%
and last 20% were used as development set and test set, respectively. For cid dataset, the
Precision, Recall and F-score for test set is reported as the corpus is available as training,
development and test sets. Previous studies follow a similar metric [Gu et al., 2016, 2017,
Zhou et al., 2016].

1. http://hanover.azurewebsites.net
2. http://www.ncbi.nlm.nih.gov/pmc
3. https://github.com/JHnlp/BC5CIDTask

http://hanover.azurewebsites.net
http://www.ncbi.nlm.nih.gov/pmc
https://github.com/JHnlp/BC5CIDTask
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4.3 Baseline models

The proposed model is evaluated against the following baselines: a cnn model using word
features (cnn+wf) and both word features and positional features (cnn+wf+pf); an
lstm model using word features (lstm+wf) and using both word features and positional
features (lstm+wf+pf); a model that begins with a cnn layer followed by an lstm layer
and uses word features (cnn lstm+wf) and both word features and position features
(cnn lstm+wf+pf); and finally a model that begins with an lstm layer followed by a
cnn layer and employs word features (lstm cnn+wf).

4.4 Results and Discussion

The following are the results of this study.

4.4.1 Performance of the proposed model.

The proposed lstm cnn+wf+pf model as shown in Tables 1 and 2 achieves statistically
significant accuracy (p ≤ 0.05; Friedman Test) against all baseline models, for both cross-
sentence ternary and binary relation extraction on q&p dataset . The higher performance
of the combined lstm cnn model against cnn and lstm used in isolation, indicates the use-
fulness of combining lstm and cnn to exploit together the strength of lstms to learn from
long sequences (input sequences) and the ability of cnns to identify salient features from
the hidden-state output from lstm, particularly for cross-sentence n-ary relation extrac-
tion. The combined model benefits from using both both word features (wf) and positional
features (pf). Interestingly, the use of wf alone helps the combined model (lstm cnn) in
achieving higher performance, particularly for binary relations (single and across sentences)
and ternary relations (single sentences) (Tables 1 and 2 with nf = 128). However, it is the
addition of pf that drastically improves the performance, by providing useful encoding of
the position of words w.r.t entities in the text span.

4.4.2 Where does lstm cnn model score?

To analyse the contribution of lstm cnn+wf+pf on text spans with different lengths,
we divided each dataset into three groups based on the distance between entity e1 and en
in the text span. Specifically, we calculated the average number of tokens (µ) between e1
and en and the standard deviation (σ) over different lengths of tokens between e1 and en
in the dataset. Thus, if k is the total number of tokens between e1 and en, the dataset
was divided into the following three groups: (a) short-distance spans (k ≤ µ−σ); (b)
medium-distance spans (µ−σ < k < µ+σ); (c) long-distance spans (k ≥ µ+σ). The
performance of various models on the above three groups of sentences provided in Table
3, shows that lstm cnn+wf+pf model scores higher, particularly for medium-distance
spans (µ−σ<k<µ+σ) and long-distance spans (k≥µ+σ). For short-distance and long-
distance spans involving ternary relations across sentences, the lstm cnn+wf+pf model
predicts ternary relations correctly for 81.3% and 82.9% spans, respectively. Similarly, the
percentage of correct predictions for binary relation extraction in single sentences and across
sentences is significantly higher than the performance of other models. These results clearly
indicate that the combined lstm cnn+wf+pf model is more useful compared to cnn and
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single cross
sentence sentences

nf=10 nf=128 nf=10 nf=128

cnn+wf 72.5 75.5 75.2 76.3
cnn+wf+pf 73.3 73.9 78.5 78.7
lstm+wf† - 75.0 - 78.2
lstm+wf+pf† - 74.5 - 78.9
cnn lstm+wf 77.6 75.4 76.9 75.3
cnn lstm+wf+pf 72.0 53.0 76.8 62.6
lstm cnn+wf 78.3 78.4 77.5 78.8
lstm cnn+wf+pf 73.1 79.6* 80.5 82.9*

Table 1: Average test accuracy in five-fold cross-validation for drug-gene-mutation ternary
interactions in qp dataset. nf - number of filters. † lstm+wf and
lstm+wf+pf models does not use filters

single cross
sentence sentences

nf=10 nf=128 nf=10 nf=128

cnn+wf 68.9 72.4 73.2 76.6
cnn+wf+pf 74.0 74.2 81.3 81.3
lstm+wf† - 75.4 - 80.3
lstm+wf+pf† - 74.4 - 80.8
cnn lstm+wf 71.2 72.3 76.5 76.5
cnn lstm+wf+pf 74.7 56.2 81.2 74.4
lstm cnn+wf 74.9 76.7 79.7 82.0
lstm cnn+wf+pf 85.3 85.8* 85.1 88.6*

Table 2: Average test accuracy in five-fold cross-validation for drug-gene binary interactions
in qp dataset. nf - number of filters. † lstm+wf and lstm+wf+pf models
does not use filters

lstm models, particularly where the distance between e1 and e2 is large. In other words
the combined lstm cnn models are more useful in extracting relations from larger spans
of consecutive sentences.

Further, the highest margin between lstm cnn+wf+pf and the baselines is recorded
for binary interactions in single sentences and across sentences with an accuracy of 85.8 and
88.6, respectively (Table 2). This is followed by ternary interactions in single sentences and
across sentences with an accuracy of 79.6 and 82.9, respectively (Table 1). It is interesting
to note that the average length of tokens (µ) between entities in text spans in the datasets
relating to binary and ternary interactions in single sentences and across sentences is of the
order 19, 29, 34 and 44, respectively. Based on these results, it can be broadly concluded
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Model k≤µ−σ µ−σ<k<µ+σ k≥µ+σ
(%) (%) (%)

drug-gene-mutation - ternary relations - cross sentence (µ=44)
cnn+wf 82.9 74.9 79.8
cnn+wf+pf 84.7 76.5 80.3
lstm+wf 46.2 77.0 79.5
lstm+wf+pf 54.2 77.6 80.4
cnn lstm+wf 51.4 74.9 79.0
cnn lstm+wf+pf 86.2 74.8 78.8
lstm cnn+wf 52.0 76.0 79.1
lstm cnn+wf+pf 81.3 81.3 82.9
drug-gene-mutation - ternary relations - single sentence (µ=34)
cnn+wf 20.0 73.1 86.6
cnn+wf+pf 10.0 72.0 83.4
lstm+wf 20.0 73.5 85.8
lstm+wf+pf 20.0 73.0 85.6
cnn lstm+wf 20.0 76.2 87.3
cnn lstm+wf+pf 20.0 69.7 88.8
lstm cnn+wf 20.0 76.8 88.0
lstm cnn+wf+pf 20.0 79.5 86.6

drug-mutation - binary relations - cross sentence (µ=29)
cnn+wf 0.0 79.6 78.1
cnn+wf+pf 20.0 83.9 82.7
lstm+wf 20.0 80.7 79.9
lstm+wf+pf 20.0 81.2 80.5
cnn lstm+wf 20.0 78.0 81.3
cnn lstm+wf+pf 20.0 84.8 87.3
lstm cnn+wf 20.0 81.6 83.2
lstm cnn+wf+pf 20.0 90.9 90.2

drug-mutation - binary relations - single sentence (µ=19)
cnn+wf 16.1 73.5 66.6
cnn+wf+pf 18.4 74.8 67.3
lstm+wf 17.6 77.7 66.5
lstm+wf+pf 16.9 75.7 64.9
cnn lstm+wf 15.3 72.7 62.5
cnn lstm+wf+pf 19.2 76.8 65.8
lstm cnn+wf 16.1 76.4 67.6
lstm cnn+wf+pf 17.6 84.9 86.5

Table 3: Performance of models on different groups of sentences.k - length of tokens between
entities e1 and en, µ average number of tokens between e1 and en, σ standard
deviation over the length of tokens.

that the contribution of pf decreases with the increase in the distance between entities in
the text span.
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4.4.3 lstm cnn vs. cnn lstm.

The results indicate that it is more useful to start with an lstm layer followed by cnn layer
than having a cnn lstm model for cross-sentence n-ary relation extraction. As seen from
Tables 1 and 2, the lstm cnn models perform significantly higher than cnn lstm models
both for ternary and binary relations in single sentences and across sentences. A lstm cnn
model is more useful in that, it initially learns from the sequential information available in
the input, which is further exploited by the cnn max-pooling layer to identify salient fea-
tures. However, in the cnn lstm model, although the use of a cnn layer with max-pooling
as the fist component helps in identifying salient features from the input, the absence of se-
quential data from the cnn layer results in poor performance. Further, as the results show,
the addition of position embeddings in the cnn lstm model (cnn lstm+wf+pf) results
in poor performance in comparison to the use of word embeddings alone (cnn lstm+wf).
This is particularly true for ternary relation extraction (Table 1). Further as seen in Table 1,
the use of a higher number of filters combining word embeddings and position embeddings,
dramatically lowers the performance. This indicates that position embeddings along with
a higher number of filters are not useful for cnn lstm models. However, it is worth not-
ing (from Table 3) that the cnn lstm+wf+pf model extracts ternary relations in single
sentences for the higher number of long-distance spans (88.8%), indicating that cnn lstm
models are useful in certain cases.

4.4.4 cnn and lstm models.

The results show that, when used in isolation, lstm-based models are more useful for cross-
sentence n-ary relation extraction than cnn-based models. Interestingly, using pf helps
only longer sequences (accuracy of 78.9 (lstm+wf+pf) vs. 78.2 (lstm+wf) and 80.8
lstm+wf+pf) vs. 80.3 (lstm+wf+pf) scored for ternary relations in drug-mutation-gene
(Table 1) and drug-mutation (Table 2), respectively). However, for shorter sequences, using
pf results in a decrease in accuracy (accuracy of 74.5 (lstm+wf+pf) vs. 75.0 (lstm+wf)
and 74.4 lstm+wf+pf) vs. 75.4 (lstm+wf+pf) scored for binary relations in drug-
mutation-gene (Table 1) and drug-mutation (Table 2), respectively). The contribution of
wf in the cnn model significantly improves with the use of higher number of filters, so
much so that the model performs better than combining wf and pf. This is particularly
true for extracting ternary relations in single sentences (Table 1).

4.4.5 n-positional embeddings.

Given entities e1, ..en, the lstm cnn+wf+pf model employs e1 and en to create positional
embeddings. However, n-positional embeddings can be created for each of the n entities
and thus, a model using n-positional embeddings was evaluated. The use of n-positional
embeddiung resulted in a lower accuracy of 80.5 and 77.9 (as against 82.5 and 79.6 for e1 and
en) for ternary relation extraction across sentence and single sentences, respectively. This
indicates that using positional embeddings for e1 and en is more useful for cross-sentence
relation extraction.
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4.4.6 Comparison against state-of-the-art.

q&p dataset. The performance of lstm cnnw-wf+pf against different methods using
q&p dataset is provided in Table 4. As seen in the Table, the lstm cnnw-wf+pf clearly
achieves a significantly higher performance against all compared SOTA methods particularly
for binary (involving drug-mutation relations) cross-sentence relation extraction. Similarly
for ternary (involving drug-gene-mutation relations) cross-sentence relation extraction, the
lstm cnnw-wf+pf achieves a comparable performance against SOTA methods. More
specifically, the lstm cnnw-wf+pf clearly outperform feature-based models [Quirk and
Poon, 2016], bilstm [Miwa and Bansal, 2016] and tree-lstm for both binary and ternary
relations, indicating the superiority of the lstm cnnw-wf+pf model. The superior perfor-
mance of the combined cnn-lstm against models used in isolation (bilstm, tree-lstm),
clearly indicates that the combination of cnn and lstm is useful for better accuracy. Fur-
ther, the improved performance of lstm cnnw-wf+pf model against graph-LSTM [Peng
et al., 2017] indicates that the proposed model is useful to avoid complexities arising from
graph-based models such as difficulties in connecting multiple sentences and parsing errors.
This is also true for graph-state LSTMs [Song et al., 2018] for binary cross-sentence relation
extraction. For cross-sentence ternary relation extraction, the proposed model achieves a
comparable performance against graph-state LSTM model [Song et al., 2018], which achieves
a slightly higher performance. Given the above comparison, the strength of the proposed
model comes from the fact that previous SOTA methods heavily rely on syntactic features
such as dependency tress, co-reference and discourse features, which are time-consuming
and less accurate particularly in the biomedical domain. However, in contrast, the proposed
lstm cnn+wf+pf model does not use any such sophisticated features, but uses simpler
features such as wf and pf. The ability to provide significantly higher performance with
much simpler features make the proposed lstm cnn+wf+pf model an attractive choice
for cross-sentence n-ary relation extraction.

cid dataset. The performance of the lstm cnn+wf+pf model on cid dataset in
Table 5 shows that the lstm cnn+wf+pf model achieves a statistically significant and
comparable performance for extracting binary relations from multiple sentences (t = 2) and
single sentences (t = 1), respectively against supervised learning methods. The combined
lstm cnn+wf+pf model scores a higher F-score (0.63) when both single and mutliple
sentences are considered.4, providing a slight increase over using cnn and lstm separately.
The cnn model Nguyen and Verspoor 2018, although achieves a high recall, suffer from
lower precision. The same is true of cnn+me+pp [Gu et al., 2017] and cnn [Zhou et al.,
2016]. On the other hand, lstms achieve higher precision, but perform poor on recall (lstm,
lstm+svmp [Zhou et al., 2016]). The combined lstm cnn achieves a higher precision and
also does not lose on recall, resulting in a higher F-score.

5. Conclusion

We presented a combined lstm cnn+wf+pf model that exploits word embeddings and po-
sition embeddings for cross-sentence n-ary relation extraction. The evaluation of lstm cnn+wf+pf

4. The SOTA methods in Table 5 does not use any knowledge base or development set for learning the
model.
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Model Single Cross
Sent. Sents.

drug-gene-mutation - ternary relations

feature-based 74.7 77.7

bilstm 75.3 80.1
graph lstm-embed 76.5 80.6
graph lstm-full 77.9 80.7

bilstm+multi-task - 82.4
graph lstm+multi-task - 82.0
bidir dag lstm 75.6 77.3
graph-state lstm 80.3 83.2

lstm cnn+wf+pf (proposed model) 79.6 82.9

drug-mutation - binary relations

feature-based 73.9 75.2

bilstm 73.9 76.0
bilstm-shortest-path 70.2 71.7
tree-lstm 75.9 75.9
graph lstm-embed 74.3 76.5
graph lstm-full 75.6 76.7

bilstm+multi-task - 78.1
graph lstm+multi-task - 78.5
bidir dag lstm 76.9 76.4
graph-state lstm 83.5 83.6

lstm cnn+wf+pf (proposed model) 85.8* 88.6*

Table 4: Average test accuracy in five-fold cross validation of the proposed model and SOTA
methods on n-ary cross-sentence relation extraction (q&p dataset)

against baseline models clearly establish that combining lstm and cnn helps in bringing
together the strength of lstms and cnns for cross-sentence n-ary relation extraction. The
evaluation of lstm cnn+wf+pf against SOTA methods for cross-sentence n-ary relation
extraction, clearly demonstrate the superiority of the proposed model making it an attrac-
tive solution for cross-sentence n-ary relation extraction.
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