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ABSTRACT

Efficient exploration plays a key role in reinforcement learning tasks. Commonly
used dithering strategies, such as ε-greedy, try to explore the action-state space
randomly; this can lead to large demand for samples. In this paper, We propose
an exploration method based on the uncertainty in reward space. There are two
policies in this approach, the exploration policy is used for exploratory sampling in
the environment, then the benchmark policy try to update by the data proven by the
exploration policy. Benchmark policy is used to provide the uncertainty in reward
space, e.g. td-error, which guides the exploration policy updating. We apply our
method on two grid-world environments and four Atari games. Experiment results
show that our method improves learning speed and have a better performance than
baseline policies.

1 INTRODUCTION

Reinforcement learning (RL) methods aim at enabling agent to learn policies to maximize cumula-
tive rewards from an unknown environment. Unlike traditional planning problems, the agent does
not know perfect information of the environment, but needs to learn the information through ex-
perience. Therefore, how to get the necessary experience is a key issue in reinforcement learning
tasks. Generally, agents need to learn through trial and error in the environment. Unless the agent
fully explores the environment and identifies all opportunities for high rewards in all situations, it
is impossible for the agent to take near-optimal action in the environment. Besides, this demand in-
troduces a fundamental trade-off between exploration and exploitation as well. Generally, the agent
may improve its future rewards by exploring states and actions which are not well understood. How-
ever, this exploration process may sacrifice immediate rewards of RL agent. To learn efficiently, RL
agents should identify which states are worth exploring. Therefore, designing algorithms which can
well trade-off between exploration and exploitation is urgent and crucial.

Generally, there are two main methods of exploration: exploration in state-action space and explo-
ration in parameter space. State-action exploration Thrun & Möller (1991); Pathak et al. (2017) tries
to systematically explore the state-action space, such as selects different action when state S is vis-
ited. Parameter exploration Rückstieß et al. (2010) methods pick different parameters of policy π
and runs π for a period of time. The advantage of parameter exploration is that it can take consistent
exploration. However, the changes in parameter space can not can not directly reflect the change
of action state space. RL agent may prefer a method which can not only intuitively represent the
uncertainty of state action space, but also continuously explore.

A lot of policies fall into the category of exploration in state action space. For example, common
dithering strategies such as ε-greedy, approximate the value of an action with a number. With prob-
ability (1-ε), this method picks the action with the highest estimate value, expected to get the best
promising return. Otherwise, it picks one of the available actions at random. Recent work has con-
sidered scaling exploration strategies to large domains Bellemare et al. (2016). Several of these
papers have focused on employing optimism-under-uncertainty approaches, which essentially rely
on computing confidence bounds over different actions, and acting optimistically with respect to that
uncertainty.

Recently, There are many simple but efficient exploration strategies, such as uniform sampling Mnih
et al. (2015a) and correlated Gaussian noise strategies Schulman et al. (2015). These heuristics works
well in tasks with well-shaped rewards. When the rewards in RL tasks is sparse, the sample com-
plexity can grow exponentially with the state space size increasing Osband et al. (2016b). Recently
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Figure 1: The e-Policy means exploration policy, which is used for interacting with the environment
and get exploration experience into data pool. Then the framework samples data from experience
data pool to update the benchmark policy (b-policy). According to the sample data, we can get
the real reward which is given by the environment. On the other hand, the benchmark policy can
also provide a predict reward. The difference between real reward and predict reward means the
uncertainty of benchmark policy in reward space. Reward uncertainty is used to guide exploration
strategy updating.

developed deep RL exploration strategies have significantly improved performance in sparse rewards
environments. Bootstrapped DQN Osband et al. (2016a) trains an ensemble of Q-functions and thus
gets faster learning in a range of Atari games than dithering strategies. Intrinsic motivation strategies
using pseudo-counts and achieve state-of-the-art performance on Montezuma’s Revenge Bellemare
et al. (2016), which is an extremely challenging Atari game. In addition, Tang et al. (2017) proposes
a generalization of classic count-based exploration on high dimensional spaces through hashing and
have good effectiveness on challenging deep RL benchmark problems. Previous RL literature Os-
band et al. (2016a) provides a variety of provably and efficient approaches for exploration. However,
most of them are limited to Markov decision processes (MDPs) with small and finite state spaces,
which may not be suitable for complex environments in practice. Therefore, the statistical nature of
most exploration strategies is not efficient in large-scale applications Mnih et al. (2015a).

In this paper, we propose a method to explore in reward space. This approach prefer to choose a state
with large uncertainty in reward space, that is, if the reward estimate for a state is less accurate, we
are more likely to explore that state. As shown in Figure 1, there are two policies in this approach,
e-Policy means exploration policy, which is used for interacting with the environment and then get
exploration experience into data pool. Then the framework samples data from experience data pool
to update the benchmark policy (b-policy). According to the sample data, we can get the real reward
(or n-step returns) which is given by the environment. On the other hand, the benchmark policy
can also provide a predict reward (or n-step returns). The difference between real reward (or n-step
returns) and predict reward (or n-step returns) means the uncertainty of benchmark policy in reward
space. Reward uncertainty is used to guide exploration strategy updating.

The consequent sections respectively present the related works, describe the proposed approach,
analyze the empirical results, and finally conclude the paper.

2 RELATED WORK

The trade-off between exploration and exploitation has been widely studied in previous reinforce-
ment learning literature Kearns & Singh (2002); Strehl et al. (2009); Abeille & Lazaric (2017). Auer
(2002) addresses this question for multi-armed bandit problems and provided regret guarantees.
Jaksch et al. (2010) investigates the regret of the optimistic model in undiscounted reinforcement
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learning processes. Bartók et al. (2014) studies a general case of partial monitoring games with
finitely actions and outcomes, and provides minimax regret analysis.

Many exploration methods have been well studied in previous works. Generally, there are two main
methods of exploration: exploration in state-action space Thrun & Möller (1991); Pathak et al.
(2017) and exploration in parameter space Fortunato et al. (2017).

State-action exploration methods have been widely used in reinforcement learning tasks. One of
the most familiar algorithm is ε-greedy, with probability (1-ε), this method pick the action with
the highest estimate value to get the best promising return, otherwise, it picks one of the available
actions at random. ε-greedy provides a simple way of exploration in state-action space.

Uncertainty-driven search in state-space has also been advanced over the years Sutton (1990); Kolter
& Ng (2009). In uncertainty-based exploration, if a state has not been studied sufficiently, then the
state will have high uncertainty and the reinforcement learning agent will attend to explore these
states with high probability. This ensures that an agent will thoroughly visit new areas of the state-
action space. Classic count-based method such as Whitehead (1991) provides one of the earliest
uncertainty-driven exploration policies. This work proposes a count-based rule that weighs each
action based on the number of steps that have been taken since the last use of the action. Then ac-
tions are selected at random according to its weights. Besides, Kearns & Singh (2002) maintains
a list of how many times each state has been visited, and try to explore the state with fewer vis-
its. Strehl & Littman (2005) presents a theoretical analysis of model-based interval estimation and
proves its efficiency even under worst-case conditions. Kolter & Ng (2009) presents a simple greedy
approximation algorithm which is able to perform nearly as well as the optimal Bayesian policy
after executing a several number of steps. In the methods mentioned above, agents can get rewards
immediately throughout the state-action space. Recently, value-based Mnih et al. (2015b) and policy
gradient-based Schulman et al. (2015); Liu et al. (2018) provide a crucial approach on the explo-
ration of state-action space. These methods obtain rewards signal based on rollouts collected from
interacting with environments and update the value function or policy parameters according to the
rollouts in environment.

Another related categories of exploration methods is based on the idea of optimism in the face of
uncertainty Brafman & Tennenholtz (2002); Osband & Roy (2014). These methods have rigorous
theoretical guarantee in tabular settings. Besides, Bayesian reinforcement learning approaches study
the distribution over MDPs Kolter & Ng (2009); Guez et al. (2014), and these methods are well
extended to continuous space Pazis & Parr (2013); Osband et al. (2016b).

To deal with high-dimensional state space, Osband et al. (2016a) consider an alternative approach,
named bootstrapped DQN, to exploration inspired by Thompson sampling. This method explores
in the environment by randomly select a policy according to the probability it is the optimal policy.
Houthooft et al. (2016) uses information gain about the agents internal belief of the dynamics model
to drive the agent explore in the environment. In the two methods mentioned above, uncertainty
of the model are considered when exploration. However, in this paper, we mainly focus on the
uncertainty in the reward space. In our approach, if the reward estimate of a state is less accurate,
we are more likely to explore that state.

Curiosity-based exploration methods provide a great idea of exploration Oudeyer & Kaplan (2009);
Schmidhuber (2010). These methods try to get the surprise of the agent when interacting with the
environment. The agents under curiosity-driven prefers to discover novel states in order to optimize
the surprise. Pathak et al. (2017) generates an intrinsic reward signal based on the hardness of the
agent to predict its own actions in the next. This work formulate curiosity as the error of an agents
ability to predict the consequence of its actions in a new feature space learned by a self-supervised
inverse dynamics model. Curiosity-driven approach tends to explore states that have not been seen
before. But the state that has not been seen is not directly related to reward. Therefore, it may occur
in a situation where a state has not been seen, but in the long run, it has little effect on reward. In this
paper, we use the uncertainty in reward space as an intrinsic reward for policy exploration, directly
associating reward with states, and exploring states that are more valuable and with higher reward
uncertainty.

3



Under review as a conference paper at ICLR 2019

3 PROPOSED METHOD

A Markov decision process(MDP) can be defined by (S,A, T, γ, r), where S is the state space,
A is the action space, T is a transition function, given state s and action a, T (s, a) defines the
distribution of the next state. r : S×A→ R defines the reward function and γ ∈ (0, 1] is a discount
factor. In addition, given state s, policy π(s) provides a distribution over actions. Reinforcement
learning tasks try to learn an optimal policy π∗ to maximize the total expected discounted reward
J(π?) = Eπ? [

∑inf
t=1 γ

t−1rt]

The main idea of the proposed method is that, when the reward of a state is not well learned and the
uncertainty in reward space is large, then we should explore the state. There are two policies in our
framework, exploration policy is used for interacting with the environment and then get exploration
experience. Then the framework samples data from experience data pool to update the benchmark
policy. According to the sample data, we can get the real reward which is given by the environment.
On the other hand, the benchmark policy can also provide a predict reward. In this paper, the dif-
ference between real reward and predict reward is treated as the uncertainty of benchmark policy in
reward space. Then exploration policy try to interact with the environment driven by reward uncer-
tainty of benchmark policy. Under this settings, exploration policy try to visit the state which are not
well studied in the reward space of benchmark policy.

As can be seen from Figure 1, the proposed method is an off-policy updating process. Benchmark
policy are used to guide exploration policy visit states with high reward uncertainty in the environ-
ment. The connection between them is that both of them use the same data to train policy model. In
this method, the exploration policy and the benchmark policy are separate. The benchmark policy
does not directly interact with the environment. It only uses the data obtained by the exploration
strategy in the environment to update itself. Then, the benchmark policy predicts the reward of a
state, and the difference between predict reward and the reward obtained in the environment is taken
as the uncertainty of the state in reward space. Then, in order to explore a more valuable state, the
uncertainty in reward space is used as an intrinsic reward for the exploration strategy, guiding the
exploration strategy to be further updated.

To illustrate this problem in more detail, in the next of this paper, we use the uncertainty in Q-value
space instead, which better reflect long-term returns of state-action pairs. First, like the sampling
process of DQN, eDQN samples from the environment, and selects the action with the largest Q
value of exploration policy to execute. Note that we do not used ε-greedy here. Given sample from
the data pool, benchmark policy try to update according to the td-error in Q-learning. Then the mean
square error of Q-value in benchmark policy is set as intrinsic reward of the exploration policy, and
motivate it to perform higher Q-value of state-action pairs. The total process of deep Q-learning with
exploration by reward uncertainty (eDQN) is shown in Algorithm 1.

In Algorithm 1, the data pool (replay memory) is set with capacity N , state-action function Q is
the Q-function of benchmark policy, Q̂ is the Q value function of exploration policy. Given state st,
eDQN select the action with maximum Q̂ values with no ε-greedy, where at = maxa Q̂(φ(st), a; θ),
φ(st) processes state data and generates new features. Then we can get the next state from environ-
ment st=1 = st, at and preprocess φt+1 = φ(st+1). In addition, the Immediate reward ri can also
be obtained from the environment. Then we can get a transition (φt, at, rt, φt+1) in the environment
and store it into replay memory D. In eDQN, we can sample a mini batch of transitions from D, and
compute the target Q value from Q-learning, which can be written as

yj =

{
rj for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; θ) else

According to mini bath sample from D and Q function of benchmark policy, the mean square error
of Q value is Lj = (yj−Q(φj+1, a

′; θ))2. Then Lj is regarded as the intrinsic reward of exploration
policy, which shows the uncertainty of the benchmark strategy on Q(s, a). Then the reward of r̂j
can be written as r̂j = rj + Lj . Then the target value of Q̂ can be written as

ŷj =

{
r̂j for terminal φj+1

r̂j+γmaxa′ Q̂(φj+1, a
′; θ) else
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Algorithm 1 Deep Q-learning with Exploration by Reward Uncertainty (eDQN)
Require:

Initialize replay memory D to capacity N
Initialize action-value function Q, Q̂ with random weights

Ensure:
1: for episode = 1,M do
2: Initialise sequence s1 and preprocessed sequence φ1 = φ(s1)
3: for t = 1,T do
4: Select at = maxa Q̂(φ(st), a; θ)
5: Execute action at and observe reward rt and state xt+1

6: Setst=1 = st, at and preprocess φt+1 = φ(st+1)
7: Store transition(φt, at, rt, φt+1) in D
8: Sample random mini batch of transitions(φj , aj , rj , φj+1) from D
9:

yj =

{
rj for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; θ) else

10: Lj = (yj −Q(φj+1, a
′; θ))2

11: r̂j = rj + Lj
12:

ŷj =

{
r̂j for terminal φj+1

r̂j+γmaxa′ Q̂(φj+1, a
′; θ) else

13: L̂j = (ŷj − Q̂(φj+1, a
′; θ))2

14: Perform a gradient descent step on Lj update Q
15: Perform a gradient descent step on L̂j update Q̂
16: end for
17: end for

and the error of ŷj is L̂j = (ŷj − Q̂(φj+1, a
′; θ))2. According to Lj and L̂j , state-action value

function Q and Q̂ can be updated. Q value function try to get a good policy from data pool while Q̂
value function try to explore the states whereQ function does not learn very well. The more incorrect
the Q value is, the more likely the state-action pair is to be explored. However, Q̂ does not always
perform state action pairs with higher uncertainty in Q-value, it is also affected by immediate reward
r of next state. That is, if the immediate reward of next state is relatively high, and its uncertainty of
Q-value in benchmark policy in this state action pair is relatively high as well, then the total reward,
where total reward = external reward + intrinsic reward, of exploration policy in this state will be
high. Therefore, the exploration policy is more inclined to explore this state.

One thing to note is that there are multiple sampling methods when sampling from the dataset. One
way to speed up the update is to use priority replay Schaul et al. (2016). More specifically, we
sample transitions from the replay buffer using (yj −Q(φj+1, a

′; θ))2 as the priority. This naturally
increases the proportion of valid samples to contribute to the gradient. Besides, in order to make the
DQN update strategy more stable, we also use the target network to assist the policy update.

It can be seen from the algorithm that as long as the benchmark estimates the Q value and the target
Q value is biased, eDQN can continue to explore. Moreover, since the previous benchmark policy
has not yet been learned well, the exploration may be more dependent on the intrinsic reward, that is,
the uncertainty of Q value. In the later stage, when the benchmark tactics are better, the benchmark
strategy estimates that the Q value is more accurate, the uncertainty is reduced, and the execution of
the eDQN is more dependent on the external reward.

5



Under review as a conference paper at ICLR 2019

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e5

0

2

4

6

8

10

Re
wa

rd

eDQN
DDQN

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r

1e 2

bDQN
eDQN
DDQN

(a) (b) (c) (d)

Figure 2: Grid world environment and experimental results. (a) shows the environment setting of
grid world, reinforcement learning agent start from the yellow point at the lower left corner. The red
and green grids represent the termination grid, where the red grid indicates that the reward is negative
and the green grid indicates that the reward is positive.(b) shows the three optimal paths from the
starting point to the ending states. (c) shows the rewards of eDQN and DQN in the environment as
the steps increases. (d) shows the change in the loss value of each policy as the number of steps
increases, where bDQN means the benchmark policy in the proposed frame work.
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Figure 3: State distribution of DDQN and eDQN at step of 3000-5000-7000-9000. The brighter the
color of the grid, the more times the grid is accessed. Red represents a large number of visits. Cyan
and green indicate moderate number of visits. Blue indicates a small number of visits.

4 EXPERIMENT

We validate our approach on two grid world environments and four reinforcement learning tasks.
The benchmark policy update method is DDQN van Hasselt et al. (2016) with ε-greedy.

4.1 EXPLORATION ON GRID WORLD ENVIRONMENT

We first test our exploration methods in simple grid world environments. The first grid world en-
vironment size is 10 × 10. As can be seen in Figure 2. The agent starts from the lower left corner
and has 8 directions that can move freely. In the grid world, it has three termination states can be
reached, where the green grid indicates that the reward is positive and the red grid indicates that the
reward is negative. In addition, The state in the upper right corner has the largest reward, set to 10,
and the reward in the upper left corner state is set to 2, the lower left state of the reward is set to -5.
Except for the three termination states, the immediate reward of other grid is set to 0. Detailed grid
world environment as shown in 2 (a),(b). In our experiments, the policy network was a two-layer
fully connected network of 128 × 128.The state space is the coordinates of the agent in the grid
world, where the coordinates of the starting point are (0, 0) and the coordinates of the three ending
states are (0, 9), (9, 0), (9, 9), respectively. The action of the agent is a value of 1-8, where each
value represents a direction, that is, the agent can move in 8 directions in the grid world.
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Figure 4: (a) shows the room environment of grid world, the black grid is an obstacle and cannot
pass, the dark green grid reward is 1, and the light green grid reward is 10. (b) shows the reward
curves of eDQN and DQN (c) shows the loss curve of DDQN, bDQN, eDQN

Figure 2 (c) shows the reward comparison of eDQN and DDQN, as can be seen from Figure (c),
both eDQN and DQN quickly converge to the optimal solution, and eDQN converges faster than
DDQN. Figure 2 (d) shows the change of loss in each method as the number of iterations increases,
where bDQN is the benchmark DQN. The loss of bDQN is the intrinsic reward of eDQN. It can be
seen from (d) that the bDQN loss is large in the early stage and the bDQN loss becomes smaller
in the later stage. In the current reward sparse grid world, eDQN is affected by the uncertainty of
Q-value in the early stage. When the iteration steps are greater than 7k, the loss of bDQN decreases
and tends to be stable. At this point, eDQN is less affected by uncertainty. In addition, figure (d)
shows that the loss convergence of eDQN and bDQN is faster than DDQN, which verifies the effect
of Figure c on the other hand.

Figure 3 (a),(b),(c),(d) show the state distribution of DDQN and eDQN at 3000, 5000, 7000, 9000
steps respectively. As can be seen from the figure, at 3000 and 5000 steps, eDQN explores more
states than DDQN, and at 7000 steps, eDQN finds the maximum target state of reward, and has
a large number of trajectory states near this state. At 9000 steps, eDQN learned the optimal path,
while the path of DDQN does not as well as eDQN.

To further investigate the differences between eDQN and DQN, we compared the two methods in
a more complex grid world environment. Figure 4 (a) shows the four-room environment with four
termination grids, a dark green grid indicating a reward of 1, and a light green grid representing
a reward of 10. The agent starts from the lower left corner and has 8 directions for each step. It
stops walking after reaching a termination state and gets a reward. It can be seen that this is an
environment with three local optimal solutions. Figure 4 (b) shows the effect of DDQN and eDQN
on the environment. It can be seen that eDQN converges faster and obtains a better solution than
DDQN. (c) shows the loss curve of DDQN, bDQN, and eDQN. It can be seen that the loss of
bDQN is gradually decreasing, that is to say, the influence of intrinsic reward on eDQN is gradually
diminishing in the later period, and the reward of eDQN is more concerned about the reward of
environment in the later period.

4.2 EXPLORATION ON ATARI GAMES

Atari video games provide an important benchmark for deep reinforcement learning due to its high-
dimensional state spaces and wide variety of games. To further validate the effects of eDQN, we
selected four Atari game environments, SpaceInvaders, BreakOut, Enduro and Pong, for our ex-
periments. In environments SpaceInvaders and Pong, an appropriate exploration will accelerate the
convergence of the policy and get a better solution, improper exploration will bring some losses, so
the two environments are more sensitive to the exploration strategy. In BreakOut and Pong environ-
ment, agent is free to explore for a period of time before it finally gets to the target, and the actions it
does during that time do not have much impact on the final result (the agent only needs to choose the
right action in the last few steps to get the final reward). Therefore, the agent may be less affected by
the exploration in the breakout environment. In addition, we used DDQN and noisy DQN Fortunato
et al. (2017) as comparison methods, where DDQN uses ε-greedy as a exploration strategy. Besides,
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Figure 5: Performance of the method with the number of samples; (a), (b), (c), (d) are performances
comparison of DDQN, noisy DQN, eDQN in terms of the average reward on the SpaceInvaders task,
BreakOut task, Enduro task and Pong task, respectively.

noisy DQN is a deep reinforcement learning method with parametric noise added to its weights,
which try to explore in the parameter space and can be used to get efficient exploration. Policies and
value functions are neural networks with the same architectures as Dhariwal et al. (2017). Besides,
all three methods use target network assisted training, and use the priority method for sampling,
speeding up policy updates.

The top four images in Figure 5 correspond to four environments mentioned above. The following
four figures are the reward curves of eDQN, DDQN and Noisy DQN in the four environments. In
each environment, we executed 10 million steps in the environment and plotted its reward curve as
the number of steps increased. As shown in Figure 5 (a) and (c), eDQN achieved the best perfor-
mance in the SpaceInvader and Enduro environments, and in these three environments, Noisy DQN
performed better than DDQN with ε-greedy. It shows that in the two environments that are sensitive
to exploration strategies, eDQN is better than Noisy DQN to some extent. Figure 5 (b) and (d) shows
that DDQN learned a relatively poor strategy in 10 million iterations on BreakOut and Pong. In the
two environments which are not sensitive to exploration strategies, eDQN and Noisy DQN perform
similarly. In BreakOut environment, eDQN gets better values in the early stage, and Noisy DQN is
very close to eDQN in the later stage. In Pong, eDQN perfroms better than Noisy DQN. However,
the gap between the two strategies is not obvious.

In general, eDQN is better than noisy DQN and DDQN with ε-greedy in environments that are sen-
sitive to exploration. For exploring insensitive environments, eDQN and noisy DQN perform better
than DDQN with ε-greedy. In addition, Compared with noisy DQN, eDQN performs somewhat well.
but the difference between eDQN and Noisy DQN is not obvious.

5 CONCLUSION

In this paper, We propose an exploration method based on the uncertainty in reward space. In this ap-
proach, there are two policies, named exploration policy (e-policy) and benchmark policy (b-policy).
The exploration policy is used for exploratory sampling in the environment and get data into data
pool, the benchmark policy uses samples from data pool to update itself, and predicts the rewards
(immediate reward or n-step return) of that these states. Then the uncertainty in reward space, e.g. er-
ror between predicted reward and real reward, of benchmark policy is used as an intrinsic reward for
the exploration policy. We apply our method on two grid-world environments and four Atari games.
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Experiment results show that our method improves learning speed and have a better performance
than baseline policies.
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Gábor Bartók, Dean P. Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial moni-
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