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Abstract

Local explanation frameworks aim to rationalize particular decisions made by a
black-box prediction model. Existing techniques are often restricted to a specific
type of predictor or based on input saliency, which may be undesirably sensitive to
factors unrelated to the model’s decision making process. We instead propose suffi-
cient input subsets that identify minimal subsets of features whose observed values
alone suffice for the same decision to be reached, even if all other input feature val-
ues are missing. General principles that globally govern a model’s decision-making
can also be revealed by searching for clusters of such input patterns across many
data points. Our approach is conceptually straightforward, entirely model-agnostic,
simply implemented using instance-wise backward selection, and able to produce
more concise rationales than existing techniques. We demonstrate the utility of our
interpretation method on neural network models trained on text and image data.

1 Introduction

The rise of neural networks and nonparametric methods in machine learning (ML) has driven
significant improvements in prediction capabilities, while simultaneously earning the field a reputation
of producing complex black-box models. Vital applications, which could benefit most from improved
prediction, are often deemed too sensitive for opaque learning systems. Consider the widespread use
of ML for screening people, including models that deny defendants’ bail [1] or reject loan applicants
[2]. It is imperative that such decisions can be interpretably rationalized. Interpretability is also
crucial in scientific applications, where it is hoped that general principles may be extracted from
accurate predictive models [3, 4, 5].

One simple explanation for why a particular black-box decision is reached may be obtained via a
sparse subset of the input features whose values form the basis for the model’s decision – a rationale.
For text (or image) data, a rationale might consist of a subset of positions in the document (or image)
together with the words (or pixel-values) occurring at these positions (see Figures 1 and 7). To ensure
interpretations remain fully faithful to an arbitrary model, our rationales do not attempt to summarize
the (potentially complex) operations carried out within the model, and instead merely point to the
relevant information it uses to arrive at a decision [6]. For high-dimensional inputs, sparsity of the
rationale is imperative for greater interpretability.
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Here, we propose a local explanation framework to produce rationales for a learned model that has
been trained to map inputs x P X via some arbitrary learned function f : X Ñ R. Unlike many
other interpretability techniques, our approach is not restricted to vector-valued data and does not
require gradients of f . Rather, each input example is solely presumed to have a set of indexable
features x “ rx1, . . . , xps, where each xi P Rd for i P rps “ t1, . . . , pu. We allow for features that
are unordered (set-valued input) and whose number p may vary from input to input. A rationale
corresponds to a sparse subset of these indices S Ď rps together with the specific values of the
features in this subset.

To understand why a certain decision was made for a given input example x, we propose a particular
rationale called a sufficient input subset (SIS). Each SIS consists of a minimal input pattern present
in x that alone suffices for f to produce the same decision, even if provided no other information
about the rest of x. Presuming the decision is based on fpxq exceeding some pre-specified threshold
τ P R, we specifically seek a minimal-cardinality subset S of the input features such that fpxSq ě τ .
Throughout, we use xS P X to denote a modified input example in which all information about the
values of features outside subset S has been masked with features in S remaining at their original
values. Thus, each SIS characterizes a particular standalone input pattern that drives the model toward
this decision, providing sufficient justification for this choice from the model’s perspective, even
without any information on the values of the other features in x.

In classification settings, f might represent the predicted probability of class C where we decide to
assign the input to class C if fpxq ě τ , chosen based on precision/recall considerations. Each SIS in
such an application corresponds to a small input pattern that on its own is highly indicative of class C,
according to our model. Note that by suitably defining f and τ with respect to the predictor outputs,
any particular decision for input x can be precisely identified with the occurrence of fpxq ě τ , where
higher values of f are associated with greater confidence in this decision.

For a given input x where fpxq ě τ , this work presents a simple method to find a complete collection
of sufficient input subsets, each satisfying fpxSq ě τ , such that there exists no additional SIS outside
of this collection. Each SIS may be understood as a disjoint piece of evidence that would lead the
model to the same decision, and why this decision was reached for x can be unequivocally attributed
to the SIS-collection. Furthermore, global insight on the general principles underlying the model’s
decision-making process may be gleaned by clustering the types of SIS extracted across different
data points (see Figure 5 and Table 1). Such insights allow us to compare models based not only on
their accuracy, but also on human-determined relevance of the concepts they target. Our method’s
simplicity facilitates its utilization by non-experts who may know very little about the models they
wish to interrogate.

2 Related Work

Certain neural network variants such as attention mechanisms [7] and the generator-encoder of [6]
have been proposed as powerful yet human-interpretable learners. Other interpretability efforts
have tailored decompositions to certain convolutional/recurrent networks [8, 9, 10, 11] , but these
approaches are model-specific and only suited for ML experts. Many applications necessitate a model
outside of these families, either to ensure supreme accuracy, or if training is done separately with
access restricted to a black-box API [12, 13].

An alternative model-agnostic approach to interpretability produces local explanations of f for a
particular input x (e.g. an individual classification decision). Popular local explanation techniques
produce attribution scores that quantify the importance of each feature in determining the output of f
at x. Examples include LIME, which locally approximates f [14], saliency maps based on f -gradients
[15, 16], Layer-wise Relevance Propagation [17], as well as the discrete DeepLIFT approach [5]
and its continuous variant – Integrated Gradients (IG), developed to ensure attributions reflect the
cumulative difference in f at x vs. a reference input [18]. A separate class of input-signal-based
explanation techniques such as DeConvNet [19], Guided Backprop [20], and PatternNet [21] employ
gradients of f in order to identify input patterns that cause f to output large values. However, many
such gradient-based saliency methods have been found unreliable, depending not only on the learned
function f , but also on its specific architectural implementation and how inputs are scaled [22, 21].
More similar to our approach are recent techniques [23, 24, 25] which also aim to identify input
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patterns that best explain certain decisions, but additionally require either a predefined set of such
patterns or an auxiliary neural network trained to identify them.

In comparison with the aforementioned methods, our SIS approach presented here is conceptually
simple, completely faithful to any type of model, requires no access to gradients of f , requires no
additional training of the underlying model f , and does not require training any auxiliary explanation
model. Also related to our subset-selection methodology are the ideas of Li et al. [26] and Fong &
Veldadi [27], which for a particular input example aim to identify a minimal subset of features whose
deletion causes a substantial drop in f such that a different decision would be reached. However,
this objective can undesirably produce adversarial artifacts that are not easy to interpret [27]. In
contrast, we focus on identifying disjoint minimal subsets of input features whose values suffice to
ensure f outputs significantly positive predictions, even in the absence of any other information about
the rest of the input. While the techniques used in [26, 27] produce rationales that remain strongly
dependent on the rest of the input outside of the selected feature subset, each rationale revealed by our
SIS approach is independently considered by f as an entirely sufficient justification for a particular
decision in the absence of other information.

3 Methods

Our approach to rationalizing why a particular black-box decision is reached only applies to input
examples x P X that meet the decision criterion fpxq ě τ . For such an input x, we aim to identify a
SIS-collection of disjoint feature subsets S1, . . . , SK Ď rps that satisfy the following criteria:

(1) fpxSk
q ě τ for each k “ 1, . . . ,K

(2) There exists no feature subset S1 Ă Sk for some k “ 1, . . . ,K such that fpxS1q ě τ

(3) fpxRq ă τ for R “ rps z
ŤK

k“1 Sk (the remaining features outside of the SIS-collection)

Criterion (1) ensures that for any SIS Sk, the values of the features in this subset alone suffice to
justify the decision in the absence of any information regarding the values of the other features. To
ensure information that is not vital to reach the decision is not included within the SIS, criterion
(2) encourages each SIS to contain a minimal number of features, which facilitates interpretability.
Finally, we require that our SIS-collection satisfies a notion of completeness via criterion (3), which
states that the same decision is no longer reached for the input after the entire SIS-collection has been
masked. This implies the remaining feature values of the input no longer contain sufficient evidence
for the same decision. Figures 2 and 6 show SIS-collections found in text/image inputs.

Recall that xS P X denotes a modified input in which the information about the values of features
outside subset S is considered to be missing. We construct xS as new input whose values on features
in S are identical to those in the original x, and whose remaining features xi P rpszS are each
replaced by a special mask zi P Rdi used to represent a missing observation. While certain models
are specially adapted to handle inputs with missing observations [28], this is generally not the case. To
ensure our approach is applicable to all models, we draw inspiration from data imputation techniques
which are a common way to represent missing data [29].

Two popular strategies include hot-deck imputation, in which unobserved values are sampled from
their marginal feature distribution, and mean imputation, in which each zi simply fixed to the average
value of feature i in the data. Note that for a linear model, these two strategies are expected to produce
an identical change in prediction fpxq ´ fpxSq. We find in practice that the change in predictions
resulting from either masking strategy is roughly equivalent even for nonlinear models such as
neural networks (Figure S1). In this work, we favor the mean-imputation approach over sampling-
based imputation, which would be computationally-expensive and nondeterministic (undesirable
for facilitating interpretability). One may also view z as the baseline input value used by feature
attribution methods [18, 5], a value which should not lead to particularly noteworthy decisions. Since
our interests primarily lie in rationalizing atypical decisions, the average input arising from mean
imputation serves as a suitable baseline. Zeros have also been used to mask image/categorical data
[26], but empirically, this mask appears undesirably more informative than the mean (predictions
more affected by zero-masking).

For an arbitrarily complex function f over inputs with many features p, the combinatorial search to
identify sets which satisfy objectives (1)-(3) is computationally infeasible. To find a SIS-collection in
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SIScollection(f , x, τ )
1 S “ rps
2 for k “ 1, 2, . . . do
3 R “ BackSelectpf,x, Sq
4 Sk “ FindSISpf,x, τ, Rq
5 S Ð SzSk

6 if fpxSq ă τ :
7 return S1,...,Sk´1

BackSelect(f , x, S)
1 R “ empty stack
2 while S ‰ ∅ do
3 i˚ “ argmax

iPS
fpxSztiuq

4 Update S Ð Szti˚u
5 Push i˚ onto top of R
6 return R

FindSIS(f , x, τ , R)
1 S “ ∅
2 while fpxSq ă τ do
3 Pop i from top of R
4 Update SÐ S Y tiu

5 if fpxSq ě τ : return S
6 else: return None

practice, we employ a straightforward backward selection strategy, which is here applied separately
on an example-by-example basis (unlike standard statistical tools which perform backward selection
globally to find a fixed set of features for all inputs). The SIScollection algorithm details our
straightforward procedure to identify disjoint SIS subsets that satisfy (1)-(3) approximately (as
detailed in §3.1) for an input x P X where fpxq ě τ .

Our overall strategy is to find a SIS subset Sk (via BackSelect and FindSIS), mask it out, and then
repeat these two steps restricting each search for the next SIS solely to features disjoint from the
currently found SIS-collection S1, . . . , Sk, until the decision of interest is no longer supported by
the remaining feature values. In the BackSelect procedure, S Ă rps denotes the set of remaining
unmasked features that are to be considered during backward selection. For the current subset S,
step 3 in BackSelect identifies which remaining feature i P S produces the minimal reduction in
fpxSq ´ fpxSztiuq (meaning it least reduces the output of f if additionally masked), a question
trivially answered by running each of the remaining possibilities through the model. This strategy
aims to gradually mask out the least important features in order to reveal the core input pattern that is
perceived by the model as sufficient evidence for its decision. Finally, we build our SIS up from the
last ` features omitted during the backward selection, selecting a ` value just large enough to meet
our sufficiency criterion (1). Because this approach always queries a prediction over the joint set of
remaining features S, it is better suited to account for interactions between these features and ensure
their sufficiency (i.e. that fpxSq ě τ ) compared to a forward selection in the opposite direction which
builds the SIS upwards one feature at a time by greedily maximizing marginal gains. Throughout its
execution, BackSelect attempts to maintain the sufficiency of xS as the set S shrinks.

3.1 Properties of the SIS-collection

Given p input features, our algorithm requires Opp2kq evaluations of f to identify k SIS, but we can
achieve Oppkq by parallelizing each argmax in BackSelect (e.g. batching on GPU). Throughout, let
S1, . . ., SK denote the output of SIScollection when applied to a given input x for which fpxq ě τ .
Disjointness of these sets is crucial to ensure computational tractability and that the number of SIS per
example does not grow huge and hard to interpret. Proposition 1 below proves that each SIS produced
by our procedure will satisfy an approximate notion of minimality. Because we desire minimality of
the SIS as specified by (2), it is not appropriate to terminate the backward elimination in BackSelect
as soon as the sufficiency condition fpxSq ě τ is violated, due to the possible presence of local
minima in f along the path of subsets encountered during backward selection (as shown in Figure
S24).

Proposition 2 additionally guarantees that masking out the entirety of the feature values in the SIS-
collection will ensure the model makes a different decision. Given fpxq ě τ , it is thus necessarily the
case that the observed values responsible for this decision lie within the SIS-collection S1, . . . , SK .
We point out that for an easily reached decision, where fpzq ě τ (i.e. this decision is reached even
for the average input), our approach will not output any SIS. Because this same decision would likely
be anyway reached for a vast number of inputs in the training data (as a sort of default decision), it is
conceptually difficult to grasp what particular aspect of the given x is responsible.

Proposition 1. There exists no feature i in any set S1, . . . , SK that can be additionally masked while
retaining sufficiency of the resulting subset (i.e. fpxSkztiuq ă τ for any k “ 1, . . .,K, i P Sk). Also,
among all subsets S considered during the backward selection phase used to produce Sk, this set has
the smallest cardinality of those which satisfy fpxSq ě τ .
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Figure 1: Beer review with one sufficient input subset identified for the prediction of each aspect.

Figure 2: Beer review with three disjoint SIS S1, S2, S3 identified for a positive aroma prediction.
Underlined are sentences that human labelers manually annotated as capturing the aroma sentiment.

Proposition 2. For xrpszS˚ , modified by masking all features in the entire SIS-collection
S˚ “

ŤK
k“1 Sk, we must have: fpxrpszS˚q ă τ when S˚ ‰ rps.

Unfortunately, nice assumptions like convexity/submodularity are inappropriate for estimated func-
tions in ML. We present various simple forms of practical decision functions for which our algorithms
are guaranteed to produce desirable explanations. Example 1 considers interpreting functions of a
generalized linear form, Examples 2 & 3 describe functions whose operations resemble generalized
logical OR & AND gates, and Example 4 considers functions that seek out a particular input pattern.
Note that features ignored by f are always masked in our backward selection and thus never appear
in the resulting SIS-collection.

Example 1. Suppose the input data are vectors and fpxq “ gpβTx` β0q, where g is monotonically
increasing. We also presume τ ą gpβ0q and the data were centered such that each feature has mean
zero (for ease of notation). In this case, S1, . . ., SK must satisfy criteria (1)-(3). S1 will consist of the
features whose indices correspond to the largest ` entries of tβ1x1, . . ., βpxpu for some suitable `
that depends on the value of τ . It is also guaranteed that fpxS1q ě fpxSq for any subset S Ď rps of
the same cardinality |S| “ `. For each individual feature i where gpβixi ` β0q ě τ , there will be
exist a corresponding SIS Sk consisting only of tiu. No SIS will include features whose coefficient
βi “ 0, or those whose difference between the observed and average value zi (“ 0 here) is of an
opposite sign than the corresponding model coefficient (i.e. βipxi ´ ziq ď 0).

Example 2. Let fpxq “ maxtg1pxS11
q, . . . , gLpxS1L

qu for some disjoint S11, . . ., S1L Ă rps and
functions g1, . . ., gL, such that for the given x and threshold τ : g1pxS11

q ą ¨ ¨ ¨ ą gLpxS1L
q ě τ

and gkpxS1kztiu
q ă τ for each 1 ď k ď L, i P S1k. Such f might be functions that model strong

interactions between the features in each Sk or look for highly specific value patterns to occur these
subsets. In this case, SIScollection will return L sets such that S1 “ S11, S2 “ S12, . . . , SL “ S1L.

Example 3. If fpxq “ mintg1pxS11
q, . . . , gLpxS1L

qu and the same conditions from Example 2 are

met, then SIScollection will return a single set S1 “
ŤL

k“1 S
1
k.

Example 4. Suppose x P Rp with fpxq “ hp||xS ´ cS ||q where h is monotonically decreasing and
cS specifies a fixed pattern of input values for features in a certain subset S. For input x and threshold
choice τ “ fpxq, SIScollection will return a single set S1 “ ti P S : |xi ´ ci| ă |zi ´ ci|u.

4 Results

We apply our methods to analyze neural networks for text and image data. SIScollection is com-
pared with alternative subset-selection methods for producing rationales (see descriptions in Supple-
ment §S1). Note that our BackSelect procedure determines an ordering of elements, R, subsequently
used to construct the SIS. Depictions of each SIS are shaded based on the feature order in R (darker
= later), which can indicate relative feature importance within the SIS.
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Figure 3: Prediction on rationales only vs. ratio-
nale length for various methods in reviews with
positive aroma prediction (τ “ 0.85).

Figure 4: QHS vs. similarity between SIS & an-
notation in the reviews with positive aroma senti-
ment (Pearson ρ “ 0.491, p-value “ 1.5e´25).

In the “Suff. IG,” “Suff. LIME,” and “Suff. Perturb.” (sufficiency constrained) methods, we instead
compute the ordering of elements R according to the feature attribution values output by integrated
gradients [18], LIME [14], or a perturbative approach that measures the change in prediction when
individually masking each feature (see §S1). The rationale subset S produced under each method is
subsequently assembled using FindSIS exactly as in our approach and thus is guaranteed to satisfy
fpxSq ě τ . In the “IG,” “LIME,” and “Perturb.” (length constrained) methods, we use the same
previously described ordering R, but always select the same number of features in the rationale as in
the SIS produced by our method (per example).

4.1 Sentiment Analysis of Reviews
We first consider a dataset of beer reviews from BeerAdvocate [30]. Taking the text of a review as
input, different LSTM networks [31] are trained to predict user-provided numerical ratings of aspects
like aroma, appearance, and palate (details in §S2). Figure 1 shows a sample beer review where we
highlight the SIS identified for the LSTM that predicts each aspect. Each SIS only captures sentiment
toward the relevant aspect. Figure 2 depicts the SIS-collection identified from a review the LSTM
decided to flag for positive aroma.

Figure 3 shows that when the alternative methods described in §4 are length constrained, the rationales
they produce often badly fail to meet our sufficiency criterion. Thus, even though the same number
of feature values are preserved in the rationale and these alternative methods select the features to
which they have assigned the largest attribution values, their rationales lead to significantly reduced
f outputs compared to our SIS subsets. If the sufficiency constraint is instead enforced for these
alternative methods, the rationales they identify become significantly larger than those produced by
SIScollection, and also contain many more unimportant features (Table S2, Figure S2).

Benchmarking interpretability methods is difficult because a learned f may behave counterintuitively
such that seemingly unreasonable model explanations are in fact faithful descriptions of a model’s
decision-making process. For some reviews, a human annotator has manually selected which
sentences carry the relevant sentiment for the aspect of interest, so we treat these annotations as an
alternative rationale for the LSTM prediction. For a review x whose true and predicted aroma exceed
our decision threshold, we define the quality of human-selected sentences for model explanation
QHS “ fpxSq ´ fpxq where S is the human-selected-subset of words in the review (see examples
in Figure S7). High variability of QHS in the annotated reviews (Figure 4) indicates the human
rationales often do not contain sufficient information to preserve the LSTM’s decision. Figure 4
shows the LSTM makes many decisions based on different subsets of the text than the parts that
humans find appropriate for this task. Reassuringly, our SIS more often lie within the selected
annotation for reviews with high QHS scores.

4.2 MNIST Digit Classification
We also study a 10-way CNN classifier trained on the MNIST handwritten digits data [32]. Here, we
only consider predicted probabilities for one class of interest at a time and always set τ “ 0.7 as the
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probability threshold for deciding that an image belongs to the class. We extract the SIS-collection
from all corresponding test set examples (details in §S3). Example images and corresponding SIS-
collections are shown in Figures 6, 7, and S27. Figure 6a illustrates how the SIS-collection drastically
changes for an example of a correctly-classified 9 that has been adversarially manipulated [33] to
become confidently classified as the digit 4. Furthermore, these SIS-collections immediately enable
us to understand why certain misclassifications occur (Figure 6b).

4.3 Clustering SIS for General Insights
Identifying the different input patterns that justify a decision can help us better grasp the general
operating principles of a model. To this end, we cluster all of the SIS produced by SIScollection
applied across a large number of data examples that received the same decision. Clustering is done via
DBSCAN, a widely applicable algorithm that merely requires specifying pairwise distances between
points [34].

We first apply this procedure to the SIS found across all held-out beer reviews (Test-Fold in Table S1)
that received positive aroma predictions from our LSTM network. The distance between two SIS is
taken as the Jaccard distance between their bag of words representations. Three clusters depicted in
Table 1 (rest in Tables S3, S4) reveal isolated phrases that the LSTM associates with positive aromas
in the absence of other context.

We also apply DBSCAN clustering to the SIS found across all MNIST test-examples confidently
identified by the CNN as a particular class. Pairwise distances are here defined as the energy distance
[35] over pixel locations between two SIS subsets (see §S3.3). Figure 5 depicts the SIS clusters
identified for digit 4 (others in Figure S28). These reveal distinct feature patterns learned by the CNN
to distinguish 4 from other digits, which are clearly present in the vast majority of test set images
confidently classified as a 4. For example, cluster C8 depicts parallel slanted lines, a pattern that
never occurs in other digits.

The general insights revealed by our SIS-clustering can also be used to compare the operating-
behavior of different models. For the beer reviews, we also train a CNN to compare with our existing
LSTM (see §S2.6). For MNIST, we train a multilayer perceptron (MLP) and compare to our existing
CNN (see §S3.5). Both networks exhibit similar performance in each task, so it is not immediately
clear which model would be preferable in practice. Figure 9 shows the SIS extracted under one model
are typically insufficient to receive the same decision from the other model, indicating these models
base their positive predictions on different evidence.

Table 2 contains results of jointly clustering the SIS extracted from beer reviews with positive aroma
predictions under our LSTM or text-CNN. This CNN tends to learn localized (unigram/bigram) word
patterns, while the LSTM identifies more complex multi-word interactions that truly seem more
relevant to the target aroma value. Many CNN-SIS are simply phrases with universally-positive
sentiment, indicating this model is less capable at distinguishing between positive sentiment toward

Figure 5: Eight clusters of SIS identified from examples of digit 4.
Each row contains fifteen random SIS from a single cluster.

(a) (b)

(a)
Figure 6: (a) SIS for correctly
classified 9 (1st column) and
when adversarially perturbed
toward class 4 (2nd column).
(b) SIS for digits 5 that are
misclassified as 6 (1st column)
and as 0 (2nd column).
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Figure 7: Visualization of SIS-collections
for randomly chosen MNIST digits classi-
fied as 4 with high confidence by the CNN.

Figure 8: Jointly clustering the MNIST digit 4 SIS
from CNN and MLP. We list the percentage of SIS in
each cluster stemming from the CNN (rest from MLP).

(a) (b)
Figure 9: Predictions by one model on the SIS extracted from the other model in: (a) beer reviews
with positive LSTM/CNN aroma predictions, and (b) MNIST digits confidently classified as 4 by
CNN/MLP.

aroma vs. other aspects such as taste/look. Figure 8 depicts results from a joint clustering of all
SIS extracted from held-out MNIST images confidently classified as a 4 by either the MLP or
CNN. Evidently, our MNIST-CNN bases its confidence primarily on spatially-contiguous strokes
comprising only a small portion of each digit. MLP-decisions are in contrast based on pixels located
throughout the digit, demonstrating this model relies more on the global shape of the handwriting.

Table 1: 3 clusters of SIS extracted from beer
reviews with positive CNN aroma predictions.
Each row shows 4 most frequent unique SIS in a
cluster (each SIS shown as ordered word list with
text-positions omitted). Each unique SIS can be
present many times in one cluster.

Clu. SIS #1 SIS #2 SIS #3 SIS #4

C1

smell
amazing

wonderful

nice
wonderful

nose

wonderful
amazing

amazing
amazing

C2

grapefruit
mango

pineapple

pineapple
grapefruit
pineapple
grapefruit

hops
grapefruit
pineapple

floyds

mango
pineapple
incredible

C3

creme
brulee
brulee

creme
brulee

decadent

incredible
creme
brulee

creme
brulee ex-
ceptional

Table 2: Joint clustering of the SIS from beer re-
views predicted to have positive aroma by LSTM
or CNN. Dashes are used in clusters with under 4
unique SIS. Percentages quantify SIS per cluster
from the LSTM.

Clu. LSTM SIS #1 SIS #2 SIS #3 SIS #4
C1 0% delicious - - -
C2 0% very nice - - -

C3 20% rich
chocolate very rich chocolate

complex smells rich

C4 33% oak
chocolate

chocolate
raisins

raisins oak
bourbon

chocolate
oak

raisins
chocolate

C5 70% complex
aroma

aroma
complex
peaches
complex

aroma
complex

interesting
cherries

aroma
complex
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5 Discussion

This work introduced the idea of interpreting black-box decisions on the basis of sufficient input
subsets – minimal input patterns that alone provide sufficient evidence to justify a particular decision.
Our methodology is easy to understand for non-experts, applicable to all ML models without
any additional training steps, and remains fully faithful to the underlying model without making
approximations. While we focus on local explanations of a single decision, clustering the SIS-
patterns extracted from many data points reveals insights about a model’s general decision-making
process. Given multiple models of comparable accuracy, SIS-clustering can uncover critical operating
differences, such as which model is more susceptible to spurious training data correlations or will
generalize worse to counterfactual inputs that lie outside the data distribution.
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S1 Detailed Description of Alternative Methods

In Section 3, we describe a number of alternative methods for identifying rationales for comparison
with our method. We use methods based on integrated gradients [36], LIME [37], and feature
perturbation. Note that integrated gradients is an attribution method which assigns a numerical score
to each input feature. LIME likewise assigns a weight to each feature using a local linear regression
model for f around x. In the perturbative approach, we compute the change in prediction when each
feature is individually masked, as in Equation 1 (of Section S2.4). Each of these feature orderings R
is used to construct a rationale using the FindSIS procedure (Section 3) for the “Suff. IG,” “Suff.
LIME,” and “Suff. Perturb.” (sufficiency constrained) methods.

Note that our text classification architecture (described in Section S2.2) encodes discrete words as
100-dimensional continuous word embeddings. The integrated gradients method returns attribution
scores for each coordinate of each word embedding. For each word embedding xi P x (where each
xi P R100), we summarize the attributions along the corresponding embedding into a single score yi
using the L1 norm: yi “

ř

d |xid| and compute the ordering R by sorting the yi values.

We use an implementation of integrated gradients for Keras-based models from https://github.
com/hiranumn/IntegratedGradients. In the case of the beer review dataset (Section 4.1), we
use the mean embedding vector as a baseline for computing integrated gradients. As suggested in
[36], we verified that the prediction at the baseline and the integrated gradients sum to approximately
the prediction of the input.

For LIME and our beer reviews dataset, we use the approach described in [37] for textual data,
where individual words are removed entirely from the input sequence. We use the implementation
of LIME at: https://github.com/marcotcr/lime. The LimeTextExplainer module is used
with default parameters, except we set the maximal number of features used in the regression to be
the full input length so we can order all input features.

Additionally, we explore methods in which we use the same ordering R by these alternative methods
but select the same number of input features in the rationale to be the median SIS length in the
SIS-collection computed by our method on each example: the “IG,” “LIME,” and “Perturb.” (length
constrained) methods. We compute the feature ordering based on the absolute value of the non-zero
integrated gradient attributions. Note that for the length constrained methods, there is no guarantee of
sufficiency fpxSq ě τ for any input subset S.

S2 Details of the Beer Reviews Sentiment Analysis

S2.1 Beer Reviews Data Description

As done in [38], we use a preprocessed version of the BeerAdvocate2 dataset3 which contains
decorrelated numerical ratings toward three aspects: aroma, appearance, and palate (each normalized
to r0, 1s). Dataset statistics can be found in Table S1. Reviews were tokenized by converting
to lowercase and filtering punctuation, and we used a vocabulary containing the top 10,000 most
common words. The data also contain subset of human-annotated reviews, in which humans manually
selected full sentences in each review that describe the relevant aspects [39]. This annotated set was
never seen during training and used solely as part of our evaluation.

S2.2 Model Architecture and Training

Long short-term memory (LSTM) networks are commonly employed for natural language tasks
such as sentiment analysis [40, 41]. We use a recurrent neural network (RNN) architecture with two
stacked LSTMs as follows:

2https://www.beeradvocate.com/
3http://snap.stanford.edu/data/web-BeerAdvocate.html

3
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1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each timestep is
represented by a (learned) 100-dimensional embedding

2. LSTM Layer 1: 200-unit recurrent layer with LSTM (forward direction only)
3. LSTM Layer 2: 200-unit recurrent layer with LSTM (forward direction only)
4. Dense: 1 neuron (sentiment output), sigmoid activation

With this architecture, we use the Adam optimizer [42] to minimize mean squared error (MSE) on
the training set. We use a held-out set of 3,000 examples for validation (sampled at random from the
pre-defined test set used in [38]). Our test set consists of the remaining 7,000 test examples. Training
results are shown in Table S1.

Table S1: Summary and performance statistics (mean squared error (MSE) and Pearson correlation
coefficient ρ) for beer reviews data and LSTM models.

Aspect Fold Size MSE Pearson ρ

Appearance

Train 80,000 0.016 0.864
Validation 3,000 0.024 0.783
Test 7,000 0.023 0.801
Annotation 994 0.020 0.563

Aroma

Train 70,000 0.014 0.873
Validation 3,000 0.024 0.767
Test 7,000 0.025 0.756
Annotation 994 0.021 0.598

Palate

Train 70,000 0.016 0.835
Validation 3,000 0.029 0.680
Test 7,000 0.028 0.694
Annotation 994 0.016 0.592

S2.3 Imputation Strategies: Mean vs. Hot-deck

In Section 3, we discuss the problem of masking input features. Here, we show that the mean-
imputation approach (in which missing inputs are masked with a mean embedding, taken over the
entire vocabulary) produces a nearly identical change in prediction to a nondeterministic hot-deck
approach (in which missing inputs are replaced by randomly sampling feature-values from the data).
Figure S1 shows the change in prediction fpxztiuq ´ fpxq by both imputation techniques after
drawing a training example x and word xi P x (both uniformly at random) and replacing xi with
either the mean embedding or a randomly selected word (drawn from the vocabulary, based on
counts in the training corpus). This procedure is repeated 10,000 times. Both resulting distributions
have mean near zero (µmean-embedding “ ´7.0e´4, µhot-deck “ ´7.4e´4), and the distribution for
mean embedding is slightly narrower (σmean-embedding “ 0.013, σhot-deck “ 0.018). We conclude that
mean-imputation is a suitable method for masking information about particular feature values in our
SIS analysis.

We also explored other options for masking word information, e.g. replacement with a zero embed-
ding, replacement with the learned <PAD> embedding, and simply removing the word entirely from
the input sequence, but each of these alternative options led to undesirably larger changes in predicted
values as a result of masking, indicating they appear more informative to f than replacement via the
feature-mean.

S2.4 Feature Importance Scores

For each feature i in the input sequence, we quantify its marginal importance by individually
perturbing only this feature:

Feature Importancepiq “ prediction on original input´ prediction with feature i masked (1)
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Figure S1: Change in prediction (fpxztiuq ´ fpxq) after masking a randomly chosen word with
mean imputation or hot-deck imputation. 10,000 replacements were sampled from the aroma beer
reviews training set.

Table S2: Statistics for rationale length and feature importance in aroma prediction. For rationale
length, median and max indicate percentage of input text in the rationale. For marginal perturbed
feature importance, we indicate the median importance of features in rationales and features from the
other (non-rationale) text. p-values are computed using a Wilcoxon rank-sum test.

Method Rationale Length (% of text) Marginal Perturbed Feature Importance
Med. Max p (vs. SIS) Med. (Rationale) Med. (Other) p (vs. SIS)

SIS 3.9% 17.3% – 0.0112 1.50e-05 –
Suff. IG 7.7% 89.7% 5e-26 0.0068 1.85e-05 3e-42
Suff. LIME 7.2% 84.0% 4e-23 0.0075 1.87e-05 1e-35
Suff. Perturb. 5.1% 18.3% 1e-06 0.0209 1.90e-05 1e-72

Note that these marginal Feature Importance scores are identical to those of the Perturb. method
described in Section S1. The marginal Feature Importance scores are summarized in Table S2 and
Figure S2. Compared to the Suff. IG and Suff. LIME methods, our SIScollection technique produces
rationales that are much shorter and contain fewer irrelevant (i.e. not marginally important) features
(Table S2, Figures S2 and S3). Note that by construction, the rationales of the Suff. Perturb. method
contain features with the greatest Feature Importance, since this precisely how the ranking in Suff.
Perturb. is defined.

S2.5 Additional Results for Aroma aspect

We apply our method to the set of reviews containing sentence-level annotations. Note that these
reviews (and the human annotations) were not seen during training. We choose thresholds τ` “ 0.85,

Figure S2: Importance of individual features in
the rationales for aroma prediction in beer re-
views

Figure S3: Length of rationales for aroma pre-
diction
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Figure S4: Predictive distribution on the anno-
tation set (held-out) using the LSTM model for
aroma. Vertical lines indicate decision thresholds
(τ` “ 0.85, τ´ “ 0.45) selected for SIScollec-
tion.

Figure S5: Number of sufficient input subsets for
aroma identified by SIScollection per example.

Figure S6: Prediction history on remaining (unmasked) text at each step of the BackSelect procedure,
for examples where aroma sentiment is predicted.

τ´ “ 0.45 for strong positive and strong negative sentiment, respectively, and extract the complete
set of sufficient input subsets using our method. Note that in our formulation above, we apply our
method to inputs x where fpxq ě τ . For the sentiment analysis task, we analogously apply our
method for both fpxq ě τ` and ´fpxq ě ´τ´, where the model predicts either strong positive
or strong negative sentiment, respectively. These thresholds were set empirically such that they
were sufficiently apart, based on the distribution of predictions (Figure S4). For most reviews,
SIScollection outputs just one or two SIS sets (Figure S5).

We analyzed the predictor output following the elimination of each feature in the BackSelect pro-
cedure (Section 3). Figure S6 shows the LSTM output on the remaining unmasked text fpxSzti˚uq

at each iteration of BackSelect, for all examples. This figure reveals that only a small number of
features are needed by the model in order to make a strong prediction (most features can be removed
without changing the prediction). We see that as those final, critical features are removed, there is a
rapid, monotonic decrease in output values. Finally, we see that the first features to be removed by
BackSelect are those which generally provide negative evidence against the decision.

S2.6 Understanding Differences Between Sentiment Predictors

We demonstrate how our SIS-clustering procedure can be used to understand differences in the types
of concepts considered important by different neural network architectures. In addition to the LSTM
(see Section S2.2), we trained a convolutional neural network (CNN) on the same sentiment analysis
task (on the aroma aspect). The CNN architecture is as follows:
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7

Figure S7: Beer reviews (aroma) in which human-selected sentences (underlined) are aligned well
(top) and poorly (bottom) with predictive model. Fraction of SIS in the human sentences corresponds
accordingly. In the bottom example (poor alignment between human-selection and predictive model),
our procedure has surfaced a case where the LSTM has learned features that diverge from what a
human would expect (and may suggest overfitting).

Table S3: All clusters of sufficient input subsets extracted from reviews from the test set predicted to
have positive aroma by the LSTM. Frequency indicates the number of occurrences of the SIS in the
cluster.
Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1
smell amazing

wonderful 2 nice wonderful
nose 2 wonderful amazing 2 amazing amazing 2

C2
grapefruit mango

pineapple 2

pineapple
grapefruit
pineapple
grapefruit

1 hops grapefruit
pineapple floyds 1 mango pineapple

incredible
1

C3

nice smell citrus
nice grapefruit

taste
1 smell great

complex ripe taste 1 nice smell nice hop
smell pine taste 1 love nice nice

smell bliss taste
1

C4
fresh great

fantastic taste 1 rich great fantastic
hoped 1 fantastic cherries

fantastic 1 everyone great
snifters fantastic

1

C5 awesome bounds 1
awesome
grapefruit
awesome

1 awesome awesome
pleasing 1 awesome nailed

nailed
1

C6
creme brulee

brulee 3 creme brulee
decadent 1 incredible creme

brulee 1 creme brulee
exceptional

1

C7

oak vanilla
chocolate

cinnamon vanilla
oak love

1 dose oak chocolate
vanilla acidic 1 vanilla figs oak

thinner great 1 chocolate aroma
oak vanilla dessert 1

Table S4: All clusters of sufficient input subsets extracted from reviews from the test set predicted to
have negative aroma by the LSTM. Frequency indicates the number of occurrences of the SIS in the
cluster. Dashes are used in clusters with under 4 unique SIS.
Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 awful 15 skunky skunky 9 skunky t 7 skunky taste 6

C2 garbage 3 taste garbage 1 garbage avoid 1 garbage rice 1

C3 vomit 16 - - - - - -

C4 gross rotten 1 rotten forte 1 awkward rotten 1 rotten offputting 1

C5 rancid horrid 1 rancid t 1 rancid 1 rancid avoid 1

C6 rice t rice 2 rice rice 1 rice tasteless 1 budweiser rice 1



1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each timestep is
represented by a (learned) 100-dimensional embedding

2. Convolutional Layer 1: Applies 128 filters of window size 3 over the sequence, with ReLU
activation

3. Max Pooling Layer 1: Max-over-time pooling, followed by flattening, to produce a p128, q
representation

4. Dense: 1 neuron (sentiment output), sigmoid activation

Note that a new set of embeddings was learned with the CNN. As with the LSTM model, we use
Adam [42] to minimize MSE on the training set. For the aroma aspect, this CNN achieves 0.016
(0.850), 0.025 (0.748), 0.026 (0.741), 0.014 (0.662) MSE (and Pearson ρ) on the Train, Validation,
Test, and Annotation sets, respectively. We note that this performance is very similar to that from the
LSTM (see Table S1).

We apply our procedure to extract the SIS-collection from all applicable test examples using the
CNN, as in Section 4.1. Figure 9a shows the predictions from one model (LSTM or CNN) when
fed input examples that are SIS extracted with respect to the other model (for reviews predicted to
have positive sentiment toward the aroma aspect). For example, in Figure 9a, “CNN SIS Preds by
LSTM” refers to predictions made by the LSTM on the set of sufficient input subsets produced by
applying our SIScollection procedure on all examples x P Xtest for which fCNNpxq ě τ`.4 Since the
word embeddings are model-specific, we embed each SIS using the embeddings of the model making
the prediction (note that while the embeddings are different, the vocabulary is the same across the
models).

In Table 2, we show five example clusters (and cluster composition) resulting from clustering the
combined set of all sufficient input subsets extracted by the LSTM and CNN on reviews in the test
set for which a model predicts positive sentiment toward the aroma aspect. The complete clustering
on reviews receiving positive sentiment predictions is shown in Table S5 and in Table S6 for reviews
receiving negative sentiment predictions.

4For experiments involving clustering and/or comparing different models, we use examples drawn from the
Test fold (instead of Annotation fold, see Table S1) to consider a larger number of examples.

8



9

Table S5: Joint clustering of the SIS extracted from beer reviews predicted to have positive aroma
by LSTM or CNN model. Frequency indicates the number of occurrences of the SIS in the cluster.
Percentages quantify SIS per cluster from the LSTM. Dashes are used in clusters with under 4 unique
SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 (LSTM: 20%) rich chocolate 13 very rich 9 chocolate
complex 5 smells rich 4

C2 (LSTM: 21%) great 248 amazing 119 wonderful 112 fantastic 75

C3 (LSTM: 47%) best smelling 23 pineapple mango 6 mango pineapple 6 pineapple
grapefruit

5

C4 (LSTM: 5%) excellent 42 excellent flemish
flemish 1

excellent
excellent

phenomenal
1 - -

C5 (LSTM: 33%) oak chocolate 2
chocolate raisins

raisins oak
bourbon

1 chocolate oak 1 raisins chocolate 1

C6 (LSTM: 5%) goodness 19 watering
goodness 1 - - - -

C7 (LSTM: 24%) pumpkin pie 25
huge pumpkin

aroma pumpkin
pie

1 aroma perfect
pumpkin pie taste1

smell pumpkin
nutmeg cinnamon

pie
1

C8 (LSTM: 5%) jd 13 tremendous 8 tremendous jd 1 - -

C9 (LSTM: 40%) brulee 14 creme brulee
brulee 3 creme creme 1 creme brulee

amazing
1

C10 (LSTM: 0%) s wow 20 - - - - - -

C11 (LSTM: 0%) delicious 56 - - - - - -

C12 (LSTM: 0%) very nice 23 - - - - - -

C13 (LSTM:
70%) complex aroma 5 aroma complex

peaches complex 1
aroma complex

interesting
cherries

1 aroma complex 1

Table S6: Joint clustering of the SIS extracted from beer reviews predicted to have negative aroma
by LSTM or CNN model. Frequency indicates the number of occurrences of the SIS in the cluster.
Percentages quantify SIS per cluster from the LSTM. Dashes are used in clusters with under 4 unique
SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 (LSTM: 29%) not 247 no 105 bad 104 macro 94

C2 (LSTM:
100%) gross rotten 1 - - - - - -

C3 (LSTM:
100%) rotten garbage 1 - - - - - -

C4 (LSTM: 62%) vomit 26 - - - - - -

C5 (LSTM: 21%) budweiser 22 sewage
budweiser 1 metal budweiser 1

budweiser
budweiser
budweiser

1

C6 (LSTM:
100%) garbage rice 1 - - - - - -

C7 (LSTM: 3%) n’t 19 adjuncts 14 n’t adjuncts 1 - -

C8 (LSTM: 0%) faint 82 - - - - - -

C9 (LSTM: 0%) adjunct 42 - - - - - -



S2.7 Results for Appearance and Palate aspects

For posterity, we include results here from repeating the analysis in our paper for the two other
non-aroma aspects measured in the beer reviews data: appearance and palate.

Figure S8: Change in appearance prediction (fpxztiuq ´ fpxq) after masking a randomly chosen
word with mean imputation or hot-deck imputation. 10,000 replacements were sampled from the
appearance beer reviews training set.

Figure S9: Predictive distribution on the annota-
tion set (held-out) using the LSTM model for ap-
pearance. Vertical lines indicate decision thresh-
olds (τ` “ 0.85, τ´ “ 0.45) selected for SIS-
collection.

Figure S10: Number of sufficient input subsets
for appearance identified by SIScollection per
example.

Figure S11: Length of rationales for appearance
prediction Figure S12: Importance of individual features

for appearance prediction in beer review

10
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Table S7: Statistics for rationale length and feature importance in appearance prediction. For rationale
length, median and max indicate percentage of input text in the rationale. For marginal perturbed
feature importance, we indicate the median importance of features in rationales and features from the
other (non-rationale) text. p-values are computed using a Wilcoxon rank-sum test.

Method Rationale Length (% of text) Marginal Perturbed Feature Importance
Med. Max p (vs. SIS) Med. (Rationale) Med. (Other) p (vs. SIS)

SIS 2.6% 10.6% – 0.0183 1.72e-05 –
Suff. IG 3.7% 89.3% 2e-09 0.0184 2.41e-05 1e-02
Suff. LIME 3.7% 98.2% 8e-09 0.0167 2.38e-05 6e-09
Suff. Perturb. 3.0% 14.9% 9e-03 0.0339 2.51e-05 5e-44

Figure S13: QHS vs. fraction of SIS in human
rationale for appearance prediction

Figure S14: Prediction on rationales only vs. ra-
tionale length for various methods in positive
sentiment examples for appearance. The thresh-
old for sufficiency was τ` “ 0.85.

Figure S15: Prediction history on remaining (unmasked) text at each step of the BackSelect procedure,
for examples where appearance sentiment is predicted.

Table S8: All clusters of sufficient input subsets extracted from reviews from the test set predicted to
have positive appearance by the LSTM. Frequency indicates the number of occurrences of the SIS in
the cluster. Dashes are used in clusters with under 4 unique SIS.
Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 beautiful 376 nitro 51 looks great 38 great looking 32

C2 gorgeous 83 - - - - - -

C3 beautifully 7 absolutely
beautifully 2 beautifully pillowy 1 beautifully bands 1

C4 brilliant 5 brilliant slowly 1 wonderfully
brilliant 1 appearance

brilliant
1

C5 lovely looking 3 black lovely 3 impressive lovely 1 lovely crystal 1



12

Table S9: All clusters of sufficient input subsets extracted from reviews from the test set predicted to
have negative appearance by the LSTM. Frequency indicates the number of occurrences of the SIS in
the cluster. Dashes are used in clusters with under 4 unique SIS.
Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 piss 46 zero 38 water water 37 water 27

C2 unappealing 12 floaties 12 floaties
unappealing 1 - -

C3 ugly 12 - - - - - -

Figure S16: Change in palate prediction (fpxztiuq ´ fpxq) after masking a randomly chosen word
with mean imputation or hot-deck imputation. 10,000 replacements were sampled from the palate
beer reviews training set.

Figure S17: Predictive distribution on the anno-
tation set (held-out) using the LSTM model for
palate. Vertical lines indicate decision thresholds
(τ` “ 0.85, τ´ “ 0.45) selected for SIScollec-
tion.

Figure S18: Number of sufficient input subsets
for palate identified by SIScollection per exam-
ple.

Figure S19: Length of rationales for palate pre-
diction Figure S20: Importance of individual features in

beer review palate rationales
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Table S10: Statistics for rationale length and feature importance in palate prediction. For rationale
length, median and max indicate percentage of input text in the rationale. For marginal perturbed
feature importance, we indicate the median importance of features in rationales and features from the
other (non-rationale) text. p-values are computed using a Wilcoxon rank-sum test.

Method Rationale Length (% of text) Marginal Perturbed Feature Importance
Med. Max p (vs. SIS) Med. (Rationale) Med. (Other) p (vs. SIS)

SIS 2.4% 13.7% – 0.0210 -8.94e-07 –
Suff. IG 3.2% 56.1% 2e-06 0.0163 -9.54e-07 6e-10
Suff. LIME 3.0% 57.0% 7e-06 0.0173 -1.19e-06 2e-07
Suff. Perturb. 2.8% 11.8% 3e-03 0.0319 -1.25e-06 5e-26

Figure S21: QHS vs. fraction of SIS in human
rationale for palate prediction

Figure S22: Prediction on rationales only vs.
rationale length for various methods in positive
sentiment examples for palate. The threshold for
sufficiency was τ` “ 0.85.

Figure S23: Prediction history on remaining (unmasked) text at each step of the BackSelect procedure,
for examples where palate sentiment is predicted.
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Table S11: All clusters of sufficient input subsets extracted from reviews from the test set predicted
to have positive palate by the LSTM. Frequency indicates the number of occurrences of the SIS in
the cluster. Dashes are used in clusters with under 4 unique SIS.
Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 smooth creamy 27 silky smooth 20 mouthfeel perfect 16 creamy perfect 12

C2
mouthfeel

exceptional 6 exceptional
mouthfeel 4 - - - -

C3 perfect 50 perfect perfect 6 - - - -

C4 smooth velvety 6 velvety smooth 6 - - - -

C5 silk 11 - - - - - -

C6 smooth perfect 8 mouth smooth
perfect 1 perfect smooth 1 - -

C7 perfect great 5 great perfect 2 feels perfect 2 perfect feels great 1

Table S12: All clusters of sufficient input subsets extracted from reviews from the test set predicted
to have negative palate by the LSTM. Frequency indicates the number of occurrences of the SIS in
the cluster.
Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 overcarbonated 12 mouthfeel
overcarbonated 3 way

overcarbonated 1 overcarbonated
mouthfeel

1

C2 watery 302 thin 238 flat 118 mouthfeel thin 33

C3
too carbonation

masks 1 too carbonation d 1 mouthfeel odd too
too 1 too carbonated

admire
1

C4 lack carbonation 4 carbonation lack 4 carbonation hurts 2 issue lack hurts 1



S3 Details of the MNIST Analysis

S3.1 Dataset and Model

The MNIST database of handwritten digits contains 60k training images and 10k test images [43].
All images are 28x28 grayscale, and we normalize them such that all pixel values are between 0
and 1. We use the convolutional architecture provided in the Keras MNIST CNN example.5 The
architecture is as follows:

1. Input: (28 x 28 x 1) image, all values P r0, 1s
2. Convolutional Layer 1: Applies 32 3x3 filters with ReLU activation
3. Convolutional Layer 2: Applies 64 3x3 filters, with ReLU activation
4. Pooling Layer 1: Performs max pooling with a 2x2 filter and dropout probability 0.25
5. Dense Layer 1: 128 neurons, with ReLU activation and dropout probability 0.5
6. Dense Layer 2: 10 neurons (one per digit class), with softmax activation

The Adadelta optimizer [44] is used to minimize cross-entropy loss on the training set. The final
model achieves 99.7% accuracy on the train set and 99.1% accuracy on the held-out test set.

S3.2 Local Minima in Backward Selection

(a) (b) (c) (d)

Figure S24: (a) Prediction on remaining image as pixels are masked during backward selection, when
our CNN classifier is fed the MNIST digit in (b). The dashed line depicts the threshold τ “ 0.7. (b)
Original image (class 9). (c) SIS if backward selection were to terminate the first time prediction
on remaining image drops below 0.7, corresponding to point C in (a) (CNN predicts class 9 with
probability 0.700 on this SIS). (d) Actual SIS produced by our FindSIS algorithm, corresponding to
point D in (a) (CNN predicts class 9 with probability 0.704 on this SIS).

Figure S24 demonstrates an example MNIST digit for which there exists a local minimum in the
backward selection phase of our algorithm to identify the initial SIS. Note that if we were to terminate
the backward selection as soon as predictions drop below the decision threshold, the resulting SIS
would be overly large, violating our minimality criterion. It is also evident from Figure S24 that the
smaller-cardinality SIS in (d), found after the initial local optimum in (c), presents a more interpretable
input pattern that enables better understanding of the core motifs influencing our classifier’s decisions.
To avoid suboptimal results, it is important to run a complete backward selection sweep until the
entire input is masked before building the SIS upward, as done in our SIScollection procedure.

S3.3 Energy Distance Between Image SIS

To cluster SIS from the image data, we compute the pairwise distance between two SIS subsets S1

and S2 as the energy distance [45] between two distributions over the image pixel coordinates that
5http://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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Figure S25: Number of examples per digit in
the test set for which fpxq ě τ for the top class.
The complete set of sufficient input subsets is
computed for all of these examples.

Figure S26: Distributions of number of sufficient
input subsets identified per image, by digit.

comprise the SIS, X1 and X2 P R2:

DpX1, X2q “ 2 ¨ E ||X1 ´X2|| ´ E ||X1 ´X
1
1|| ´ E ||X2 ´X

1
2|| ě 0

Here, Xi is uniformly distributed over the pixels that are selected as part of the SIS subset Si,
X 1i is an i.i.d. copy of Xi, and || ¨ || represents the Euclidean norm. Unlike a Euclidean distance
between images, our usage of the energy distance takes into account distances between the similar
pixel coordinates that comprise each SIS. The energy distance offers a more efficiently computable
integral probability metric than the optimal transport distance, which has been widely adopted as an
appropriate measure of distance between images.

S3.4 SIS Clustering and Adversarial Analysis

We set the threshold τ “ 0.7 for SIS to ensure that the model is confident in its class prediction
(probability of the predicted class is ě 0.7). Almost all test examples initially have fpxq ě τ for the
top class (Figure S25). We identify all test examples that satisfy this condition and use SIS to identify
all sufficient input subsets. The number of sufficient input subsets per digit is shown in Figure S26.

We apply our SIScollection algorithm to identify sufficient input subsets on MNIST test digits
(Section 4.2). Examples of the complete SIS-collection corresponding to randomly chosen digits
are shown in Figure S27. We also cluster all the sufficient input subsets identified for each class
(Section 4.3), depicting the results in Figure S28.

In Figure 6, we show an MNIST image of the digit 9, adversarially perturbed to 4, and the sufficient
subsets corresponding to the adversarial prediction. Although a visual inspection of the perturbed
image does not really reveal exactly how it has been manipulated, it becomes immediately clear
from the SIS-collection for the adversarial image. These sets shows that the perturbation modifies
pixels in such a way that input patterns similar to the typical SIS-collection for a 4 (Figure 5) become
embedded in the image. The adversarial manipulation was done using the Carlini-Wagner L2 (CW2)
attack6 [47] with a confidence parameter of 10. The CW2 attack tries to find the minimal change
to the image, with respect to the L2 norm, that will lead the image to be misclassified. It has been
demonstrated to be one of the strongest extant adversarial attacks [48].

6Implemented in the cleverhans library [46]
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(a) Digit 0 (b) Digit 1

(c) Digit 2 (d) Digit 3

(e) Digit 4 (f) Digit 5

(g) Digit 6 (h) Digit 7

(i) Digit 8 (j) Digit 9

Figure S27: Visualization of SIS-collections identified from MNIST digits that are confidently
classified by the CNN. For each class, six examples were chosen randomly. For each example, we
show the original image (left) and the complete set of sufficient input subsets identified for that
example (remaining images in each row). Each individual SIS satisfies fpxSq ě τ for that class.
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(a) Digit 0 (b) Digit 1

(c) Digit 2 (d) Digit 3

(e) Digit 4 (f) Digit 5

(g) Digit 6 (h) Digit 7

(i) Digit 8 (j) Digit 9

Figure S28: Clustering all the SIS found for each digit under the CNN model (see Section 4.3).
Each row contains images drawn from one cluster. The bottom row (“Misc”) contains a sample of
miscellaneous SIS not assigned to any cluster by DBSCAN.



S3.5 Understanding Differences Between MNIST Classifiers

We use SIS and our clustering procedure to understand and visualize differences in features learned
by two different models trained on the same MNIST digit classification task. In addition to the
previously-described CNN model (see Section S3.1), we also trained a simple multilayer perceptron
(MLP) on the same task. The MLP architecture is as follows:

1. Input: 784-dimensional (flattened) image, all values P r0, 1s
2. Dense Layer 1: 250 neurons, ReLU activation, and dropout probability 0.2
3. Dense Layer 2: 250 neurons, ReLU activation, and dropout probability 0.2
4. Dense Layer 3: 10 neurons (one per digit class), with softmax activation

As with the CNN, Adadelta [44] is used to minimize cross-entropy loss on the training set. The final
MLP model achieves 99.7% accuracy on the train set and 98.3% accuracy on the test set, which is
close to the performance of the CNN (see Section S3.1).

We apply the same procedure as in Section 4.2 to extract the SIS-collection from all applicable test
images using the MLP. To understand differences between the feature patterns that each model has
learned to associate with predicting each digit, we combine all SIS (from both models for a particular
class) and run our clustering procedure (see Section 4.3 and Figure 8). In the resulting clustering, we
list what percentage of the SIS in each cluster stem from the CNN vs. the MLP. Most clusters contain
examples purely from a single model, indicating the two models have learned to associate different
feature patterns with the target class (Figure 8), which was chosen to be the digit 4 in this case.

For further comparison, we include clustering results for the SIS extracted from the MLP as evidence
for digits 4 and 7 (Figure S29). Additionally, Figure S30 shows all of the SIS extracted from example
digits from these classes applying our procedure on the MLP.

(a) Digit 4 (b) Digit 7

Figure S29: Clustering all the SIS identified by our method on digits 4 and 7 under the MLP model
(see Section 4.3). Each row contains images drawn from one cluster. The bottom row (“Misc”)
contains a sample of miscellaneous SIS not assigned to any cluster by DBSCAN. Compare to the
SIS-clustering from our CNN model (Figure S28).
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(a) Digit 4 (b) Digit 7

Figure S30: Visualization of SIS-collections identified for MNIST digits 4 and 7 under the MLP
model. For each class, six examples were chosen randomly. For each example, we show the original
image (left) and the complete set of sufficient input subsets identified for that example (remaining
images in each row). Note that each individual SIS satisfies fpxSq ě τ for that class. Compare to
the SIS extracted from our CNN (Figure S27).
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