
2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1–15

Sparse Orthogonal Variational Inference for
Gaussian Processes

Jiaxin Shi shijx15@mails.tsinghua.edu.cn
Tsinghua University

Michalis Titsias mtitsias@google.com

Andriy Mnih amnih@google.com

DeepMind

Abstract

We introduce a new interpretation of sparse variational approximations for Gaussian pro-
cesses using inducing points, which can lead to more scalable algorithms than previous
methods. It is based on decomposing a GP as a sum of two independent processes: one in
the subspace spanned by the inducing basis and the other in the orthogonal complement.
We show that this formulation recovers existing methods and at the same time allows to
obtain tighter lower bounds on the marginal likelihood and new stochastic variational infer-
ence algorithms. We demonstrate the efficiency of these algorithms in several GP models
ranging from standard regression to multi-class classification using (deep) convolutional
GPs and report state-of-the-art results on CIFAR-10 for purely GP-based models.

1. Introduction
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Figure 1: SOLVE-GP.

Sparse variational GP (SVGP) methods (Titsias,
2009; Hensman et al., 2013, 2015a) based on vari-
ational learning of inducing points are widely
used in scalable GP inference. Such methods re-
quire O(M2N + M3) computation with M in-
ducing points and allow us to perform mini-batch
training by sub-sampling data points. However,
the computational cost of SVGP methods is still
cubic with respect to M , making it difficult to im-
prove the flexibility of posterior approximations.

In this paper, we introduce a new framework
called Sparse OrthogonaL Variational infErence
for Gaussian Processes (SOLVE-GP), which al-
lows increasing the number of inducing points we can use given a fixed computational
budget. Our framework is based on a reinterpretation of SVGP methods as orthogonal
decompositions of the GP prior. By introducing another set of inducing variables for the
GP in the orthogonal complement, we can increase M at a much lower additional computa-
tional cost. For instance, doubling M leads to a 2-fold increase in computational cost with
our method, compared to the 8-fold increase for the original SVGP method.
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We conducted experiments on convolutional GPs and their deep variants. To the best of
our knowledge, we are the first to train a purely GP-based model without any neural network
components that achieves over 80% test accuracy on CIFAR-10. No data augmentation was
used to obtain these results. We also evaluated our method on a range of regression datasets
with tens of thousands to millions of datapoints. Our results show that SOLVE-GP is often
competitive with the 4x more expensive SVGP counterpart that uses the same number of
inducing points, and outperforms SVGP when given the same computational budget.

2. SOLVE-GP

2.1. Reinterpreting SVGP with Orthogonal Decomposition

We start by briefly reviewing the notations and SVGP methods in App. A, where we observe
that samples from the conditional distribution p(f |u) = N (KfuK

−1
uuu,Kff −KfuK

−1
uuKuf )

can be reparameterized as

f⊥ ∼ p⊥(f⊥) := N (0,Kff −KfuK
−1
uuKuf ), f = f⊥ + KfuK

−1
uuu. (1)

Here we denote the zero-mean component that is independent of u as f⊥.1 Now we can
reparameterize p(f ,u) as u ∼ p(u), f⊥ ∼ p⊥(f⊥), f = KfuK

−1
uuu + f⊥, and the joint

distribution becomes p(y,u, f⊥) = p(y|f⊥+KfuK
−1
uuu)p(u)p⊥(f⊥). Posterior inference for f

in the original model then turns into inference for u and f⊥. If we approximate the above
model by considering a factorised approximation q(u)p⊥(f⊥), we arrive at the standard
SVGP method. To see this, note that minimizing KL [q(u)p⊥(f⊥)‖p(u, f⊥|y)] is equivalent to
maximizing the variational lower bound Eq(u)p⊥(f⊥) log p(y|f⊥+KfuK

−1
uuu)−KL [q(u)‖p(u)],

which is the SVGP objective (Eq. (6)) using the reparameterization in Eq. (1).
We consider improving the variational distribution for f⊥, noting that the complexity

of inferring f⊥ is the same as for f and thus cubic. To resolve the problem, we observe that
Eq. (1) corresponds to an orthogonal decomposition in the function space (see App. C for
the derivation): f = f‖ + f⊥, where

f‖ ∼ p‖ ≡ GP(0,ku(x)>K−1uuku(x′)), (2)

f⊥ ∼ p⊥ ≡ GP(0, k(x,x′)− ku(x)>K−1uuku(x)). (3)

ku(x) = [k(z1,x), . . . , k(zM ,x)]>. Marginalizing out the GPs at the training points X, it
is easy to show that f‖ = f‖(X) = KfuK

−1
uuu ∼ N (0,KfuK

−1
uuKuf ), and f⊥ = f⊥(X) ∼

N (0,Kff −KfuK
−1
uuKuf ). This is exactly the decomposition we used, and the fact that f⊥

denotes the function values of the orthogonal process becomes clear.

2.2. SOLVE-GP Lower Bound

The orthogonal decomposition described in the previous section gives new insights for im-
proving the variational distribution for f⊥. Specifically, we can introduce a second set of
inducing variables v⊥ := f⊥(O) to approximate the orthogonal process p⊥, as illustrated in
Fig. 1. We call this second set O = [o1, . . . ,oM2 ]> ∈ RM2×d the orthogonal inducing points.

1. Note that kernel matrices like Kuu depend on Z instead of u.

2



SOLVE-GP

(a) SVGP, 5 (b) ODVGP, 5 + 100 (c) SOLVE-GP, 5 + 5 (d) SVGP, 10

Figure 2: Posterior process on the Snelson dataset. The learned inducing locations are
shown at the bottom of each figure, where + correspond to Z; blue and dark triangles
correspond to O in ODVGP and SOLVE-GP, respectively.

The joint distribution is then p(y|f⊥ + KfuK
−1
uuu)p(u)p⊥(f⊥|v⊥)p⊥(v⊥). Notice that stan-

dard SVGP methods correspond to using the variational distribution q(u)p⊥(v⊥)p⊥(f⊥|v⊥).
To obtain better approximations we can replace p⊥(v⊥) with a tunable variational factor
q(v⊥): q(u, f⊥,v⊥) = q(u)q(v⊥)p⊥(f⊥|v⊥). This gives the SOLVE-GP lower bound:

Eq(u)q(v⊥)p⊥(f⊥|v⊥)

[
log p(y|f⊥ + KfuK

−1
uuu)

]
−KL [q(u)‖p(u)]−KL [q(v⊥)‖p⊥(v⊥)] . (4)

In the general setting, Eq. (4) can be maximized using minibatch training in O(M3 +M3
2 )

time per gradient update. In App. D we derive a collapsed version of this bound for GP
regression and compare to the Titsias (2009) bound. For the function values at test data
points X∗, the predictive density given by our approximate posterior can be found in App. E.

Our method introduces another set of inducing points. One natural question to ask is:
How does this compare to the standard SVGP algorithm with the inducing points chosen
to be union of the two sets? We answer the question in App. F by interpreting our method
as using a structured covariance in the variational approximation for SVGP. Interestingly,
under this interpretation SOLVE-GP can be seen as a generalization of a recently proposed
decoupled-inducing-points method (Salimbeni et al., 2018) (see App. H). As the decoupled
method often comes with a complex dual formation in RKHS, our framework provides a
simpler derivation and more intuitive understanding for it.

3. Experiments

3.1. 1D Regression

Table 1: Convolutional GP for CIFAR-10
classification. Previous SOTA is 64.6%,
achieved by SVGP with 1K inducing
points (van der Wilk et al., 2017).

M(+M2) Test Acc Test LL Time

SVGP
1K 66.07% -1.59 0.241 s/iter

1.6K 67.18% -1.54 0.380 s/iter
SOLVE-GP 1K + 1K 68.19% -1.51 0.370 s/iter

SVGP 2K* 68.06% -1.48 0.474 s/iter

We begin by illustrating our method on
a 1D regression problem (Snelson and
Ghahramani, 2006) with 100 training points
and batch size 20. We compare the follow-
ing methods: SVGP with 5 and 10 induc-
ing points, ODVGP (M = 5,M2 = 100),
and SOLVE-GP (M = 5,M2 = 5). As plot-
ted in Fig. 2, SVGP (M = 5) cannot fit the
data well and underestimates uncertainty in
regions beyond the training data. Increas-
ing M to 10 fixes the issues, but requires 8x
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more computation than using 5 inducing points.2 Decoupled methods provides a cheaper
alternative and we have tried ODVGP (M = 5,M2 = 100) using 100 additional inducing
points for modeling the mean function. Comparing Fig. 2a and Fig. 2b, we can see that
this results in a much better fit for the mean function. As ODVGP is a special case of
the SOLVE-GP framework, we can improve over it in terms of covariance modeling. As
seen in Fig. 2c, adding 5 orthogonal inducing points can closely approximate the results of
SVGP (M = 10), with only 2-fold increase in time complexity relative to SVGP (M = 5).

3.2. (Deep) Convolutional Gaussian Process

One class of applications that benefit from SOLVE-GP is the training of large, hierarchical
GP models where the posterior distribution is difficult to approximate with a small number
of inducing points. Convolutional GPs (van der Wilk et al., 2017) and their deep vari-
ants (Blomqvist et al., 2018; Dutordoir et al., 2019) are such models. It is straightforward
to apply SOLVE-GP to them (details in Sec. G).

Convolutional GP. We train convolutional GPs on CIFAR-10. We compare SVGP
with 1K and 2K inducing points, SOLVE-GP (M = 1K,M2 = 1K), and SVGP (M =
1.6K) which has a similar running time on GPU as SOLVE-GP. As shown in Table 1,
SOLVE-GP outperforms SVGP (M = 1K). It also outperforms SVGP with the number of
inducing points chosen to match the SOLVE-GP running time (M = 1.6K). SOLVE-GP
also performs on par with the 4x more expensive SVGP (M = 2K), which indicates that the
structured covariance approximation is fairly accurate for this large, non-conjugate model.

Deep Convolutional GPs. We further extend SOLVE-GP to deep convolutional
GPs. We experiment with 2-layer and 3-layer models that have 1K inducing points in the
output layer and 384 inducing points in each lower layer. The results are summarized in
Table 2. These models are already fairly expensive on a single GPU, as can be seen from the
time per iteration. SOLVE-GP allows to double the number of inducing points in each layer
while only introducing a 2-fold increase in computation. This gives superior performance
on both accuracy and test predictive likelihoods. The SVGP with 2x the inducing points
takes a week to train and is included only for comparison purposes.

On both single-layer and deep convolutional GPs, we improve the state-of-the-art results
of CIFAR-10 classification by 3-4 percentage points. This leads to more than 80% accuracy
on CIFAR-10 with a purely GP-based model, without any neural network components,
closing the gap between GP/kernel regression and CNN baselines presented in (Novak et al.,
2019; Arora et al., 2019). All the results were obtained without data augmentation.

3.3. Regression Benchmarks

Besides classification experiments, we evaluate our method on 10 regression datasets, with
size ranging from tens of thousands to millions. The results are described in detail in App. I.

2. In practice the cost is negligible in this toy problem but we are analyzing the theoretical complexity.
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Table 2: Deep convolutional GPs for CIFAR-10 classification. Previous SOTA is 76.17% by
a 3-layer model with 384 inducing points in all layers (Dutordoir et al., 2019).

2-layer 3-layer

SVGP SOLVE-GP SVGP SVGP SOLVE-GP SVGP

M(+M2) 384, 1K 384 + 384, 1K + 1K 768, 2K* 384, 384, 1K
384 + 384, 384 + 384,

1K + 1K
768, 768, 2K*

Test Acc 76.35% 77.8% 77.46% 78.76% 80.3% 80.33%

Test LL -1.04 -0.98 -0.98 -0.88 -0.79 -0.82

Time 0.392 s/iter 0.657 s/iter 1.104 s/iter 0.418 s/iter 0.752 s/iter 1.246 s/iter
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Appendix A. Background

Here, we briefly review Gaussian processes and sparse variational GP methods. A GP is
an uncountable collection of random variables indexed by a real-valued vector x, of which
any finite subset has a multivariate Gaussian distribution. It is defined by a mean function
m(x) = E[f(x)] and a covariance function k(x,x′) = Cov[f(x), f(x′)]:

f ∼ GP(m(x), k(x,x′)).

Let X = [x1,x2, . . . ,xN ]> ∈ RN×d be (the matrix containing) the training data points and
f = f(X) ∈ RN denote the corresponding function values. Similarly we denote the test
data points by X∗ and their function values by f∗. Then the joint distribution over f , f∗ is
given by:

p(f , f∗) := N
(

f
f∗

∣∣∣∣[ m(X)
m(X∗)

]
,

[
Kff Kf∗
K∗f K∗∗

])
,

where Kff is an N × N kernel matrix with its (i, j)th entry as k(xi,xj), and similarly
[Kf∗]ij = k(xi,x

∗
j ), [K∗∗]ij = k(x∗i ,x

∗
j ). In practice we often observe the training func-

tion values through some noisy labels y, generated by the likelihood function p(y|f). For
regression, the likelihood usually models independent Gaussian observation noise: yn =
f(xn) + εn, εn ∼ N (0, σ2). In this situation the exact posterior distribution p(f∗|y) can be
computed in closed form:

f∗|y ∼ N (K∗f (Kff + σ2I)−1y,K∗∗ −K∗f (Kff + σ2I)−1Kf∗). (5)

As seen from Eq. (5), exact GP prediction involves the inverse of matrix Kff + σ2I, which
requires O(N3) computation. For large datasets, it is clear that we need to avoid the cubic
complexity by resorting to approximations.

Inducing points have played a central role in previous works on scalable GP inference.
The general idea is to summarize f with a small number of variables u = f(Z), where
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Z = [z1, . . . , zM ]> ∈ RM×d is a set of parameters called inducing points in the input space.
The augmented joint distribution over u, f , f∗ is p(f , f∗|u)p(u), where p(u) = N (0,Kuu)
and Kuu denotes the kernel matrix of inducing points with the (i, j)th entry corresponding
to k(zi, zj). There is a long history in developing sparse approximations for GPs by making
different independence assumptions for the conditional distribution p(f , f∗|u) to reduce the
computational cost (Quiñonero-Candela and Rasmussen, 2005). However, these methods
made modifications to the GP prior and tended to suffer from degeneracy and overfitting
problems.

Sparse variational GP methods (SVGP), first proposed in Titsias (2009) and later ex-
tended for minibatch training and nonconjugate likelihoods (Hensman et al., 2013, 2015a),
provide an elegant solution to these problems. By reformulating the posterior inference
problem as variational inference and restricting the variational distribution to be q(f , f∗,u) :=
q(u)p(f , f∗|u), the variational lower bound for minimizing KL [q(f , f∗,u)‖p(f , f∗,u|y)] is
simplified as:

N∑
n=1

Eq(u)p(fn|u) [log p(yn|fn)]−KL [q(u)‖p(u)] . (6)

For GP regression the bound has a collapsed form obtained by solving for the optimal q(u)
and plugging it into (6) (Titsias, 2009):

logN (y|0,Qff + σ2I)− 1

2σ2
tr (Kff −Qff ) , (7)

where Qff = KfuK
−1
uuKuf . Computing this objective requires O(M2N + M3) operations,

in constrast to the O(N3) complexity of exact inference. The inducing points Z can be
learned as variational parameters by maximizing the lower bound. More generally, if we
do not collapse q(u) we obtain the uncollapsed bound suitable for minibatch training and
non-Gaussian likelihoods (Hensman et al., 2013, 2015a).

Appendix B. Tighter Sparse Variational Bounds for GP Regression

Another direction to improve the variational distribution q(u)p⊥(f⊥) in SVGP is to add some
dependence between u and f⊥. The best possible approximation of this family is obtained
by the setting q(u) to the optimal exact posterior conditional q∗(u) = p(u|f⊥,y). The cor-
responding collapsed bound for GP regression can be derived by analytically marginalising
out u from the joint model in p(y,u, f⊥) = p(y|f⊥ + KfuK

−1
uuu)p(u)p⊥(f⊥),

p(y|f⊥) =

∫
p(y|f⊥ + KfuK

−1
uuu)p(u) du (8)

= N (y|f⊥,Qff + σ2I), (9)

and then forcing the approximation p⊥(f⊥):

Ep⊥(f⊥) logN (y|f⊥,Qff + σ2I). (10)

This bound has a closed-form as

logN (y|0,Qff + σ2I)− 1

2
tr
[
(Qff + σ2I)−1(Kff −Qff )

]
, (11)
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Applying the matrix inversion lemma to (Qff + σ2I)−1, we have an equivalent form that
can be directly compared with Eq. (7):

logN (y|0,Qff + σ2I)− 1

2σ2
tr(Kff −Qff )

+
1

2σ4
tr
[
Kfu(Kuu + σ−2KufKfu)−1Kuf (Kff −Qff )

]
, (12)

where the first two terms recover Eq. (7), suggesting this is a tighter bound than the Titsias
(2009) bound. This bound is not amenable to large-scale datasets because of O(N2) storage
requirements and O(MN2) computational time (dominated by the matrix multiplication
KufKff ). However, it is still of theoretical interest and can be applied to medium-sized
regression datasets, just like the SGPR algorithm using the Titsias (2009) bound.

Appendix C. Orthogonal Decomposition

In this section we derive the orthogonal decomposition in the function space that corre-
sponds to the reparameterization of f into f⊥ and KfuK

−1
uuu. Recall that the GP prior is

a distribution over functions p : f ∼ GP(0, k(x,x′)). Consider a subspace spanned by the
kernel basis functions indexed by the inducing points z1, . . . , zM :

V =


M∑
j=1

αjk(zj , ·)

∣∣∣∣∣∣ α = [α1, . . . , αM ]> ∈ RM

 .

Samples from the GP prior can be decomposed (Cheng and Boots, 2016; Hensman et al.,
2017) as

f = f‖ + f⊥, f‖ ∈ V and f⊥ ⊥ V. (13)

Since f‖ ∈ V , we let f‖ =
∑M

j=1 α
‖
jk(zj , ·). By 〈f, f ′〉H = 〈f‖, f ′〉H,∀f ′ ∈ V , where 〈〉H is

the inner product defined as 〈f, k(x, ·)〉H = f(x), we can solve for the coefficients: α‖ =
K−1uuu. Interestingly, we can check that f‖ is itself a sample from a GP with a zero mean

function and covariance function Cov[f‖(x), f‖(x
′)] = ku(x)>K−1uuku(x′), where ku(x) =

[k(z1,x), . . . , k(zM ,x)]>. Similarly we can show that f⊥ is a sample from another GP and
we denote these two independent GPs as p‖ and p⊥:

f‖ ∼ p‖ ≡ GP(0,ku(x)>K−1uuku(x)), (14)

f⊥ ∼ p⊥ ≡ GP(0, k(x,x′)− ku(x)>K−1uuku(x)). (15)

Appendix D. The Collapsed SOLVE-GP Lower Bound

To intuitively understand the improvement over the standard SVGP methods, we derive a
collapsed version of Eq. (4) for GP regression by seeking the optimal q(u) that is independent
of f⊥,v⊥. Then we can compare it to the Titsias (2009) bound.

First we rearrange the terms in the uncollapsed SOLVE-GP bound (Eq. (4)) as

Eq(u)

{
Eq(v⊥)p⊥(f⊥|v⊥)

[
logN

(
y|f⊥ + KfuK

−1
uuu, σ

2I
)]}
−KL [q(u)‖p(u)]−KL [q(v⊥)‖p⊥(v⊥)] .
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Let mf⊥ and Sf⊥ denote the mean and covariance matrix of the variational predictive
distribution in the orthogonal process:

q⊥(f⊥) =

∫
q(v⊥)p⊥(f⊥|v⊥)dv⊥. (16)

We can compute them as

mf⊥ = CfvC
−1
vvmv, (17)

Sf⊥ = Cff + CfvC
−1
vv(Sv −Cvv)C−1vvCvf . (18)

where Cfv := Kfv − KfuK
−1
uuKuv is the kernel matrix of the orthogonal process on the

training inputs and orthogonal inducing points and similarly for the other matrices. In the
first term we can simplify the expectation over v⊥ and f⊥ as:

Eq(v⊥)p⊥(f⊥|v⊥) logN
(
y|f⊥ + KfuK

−1
uuu, σ

2I
)

= Eq⊥(f⊥)

[
−N

2
log 2π − N

2
log σ2 − 1

2σ2
(y− f⊥ −KfuK

−1
uuu)>(y− f⊥ −KfuK

−1
uuu)

]
=

[
−N

2
log 2π − N

2
log σ2 − 1

2σ2
(y−mf⊥ −KfuK

−1
uuu)>(y−mf⊥ −KfuK

−1
uuu)

]
− Eq⊥(f⊥)

[
1

2σ2
(f⊥ −mf⊥)>(f⊥ −mf⊥)

]
= logN (y|KfuK

−1
uuu + mf⊥ , σ

2I)− 1

2σ2
tr(Sf⊥). (19)

Plugging into Eq. (D) and rearranging the terms, we have

Eq(u)

[
logN (y|KfuK

−1
uuu + mf⊥ , σ

2I)
]
−KL [q(u)‖p(u)]− 1

2σ2
tr(Sf⊥)−KL [q(v⊥)‖p⊥(v⊥)] .

Clearly the leading two terms form a variational lower bound of the joint distribution
N (y|KfuK

−1
uuu + mf⊥ , σ

2I)p(u). The optimal q(u) will turn it into the log marginal likeli-
hood:

log

∫
N (y|KfuK

−1
uuu + mf⊥ , σ

2I)p(u) du = logN (y|mf⊥ ,Qff + σ2I). (20)

Plugging this back, we have the collapsed SOLVE-GP bound:

logN (y|CfvC
−1
vvmv,Qff + σ2I)− 1

2σ2
tr(Sf⊥)−KL [N (mv,Sv)‖N (0,Cvv)] , (21)

This bound now can be tighter than the Titsias (2009) bound. For example, notice
that when q(v⊥) is equal to the prior p⊥(v⊥), i.e. mv = 0 and Sv = Cvv, the bound in
(21) reduces to the one in (7). Another interesting special case arises when the variational
distribution has the same covariance matrix as the prior (i.e. Sv = Cvv), while the mean
mv is learnable. Then the bound becomes

logN (y|CfvC
−1
vvmv,Qff + σ2I)− 1

2σ2
tr (Kff −Qff )− 1

2
m>vC

−1
vvmv. (22)

Here we see that the second set of inducing variables v⊥ mostly determines the mean
prediction over y, which is zero in Titsias (2009) bound (Eq. (7)).

10
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Appendix E. Predictions with SOLVE-GP

For the function values at test data points X∗, the predictive density given by our approx-
imate posterior is

p(f∗|y,X∗) ≈ N (f∗|m∗,S∗) :=

∫
p(f∗|K∗uK−1uuu + f∗⊥)q(u)p⊥(f∗⊥|v⊥)q(v⊥) dudv⊥.

Then for q(u) = N (mu,Su), the predicted mean and covariance are

m∗ = K∗uK
−1
uumu + C∗vC

−1
vvmv. (23)

S∗ = K∗uK
−1
uuSuK

−1
uuKu∗ + C∗∗ −C∗vC

−1
vv(Cvv − Sv)C−1vvCv∗. (24)

Appendix F. SOLVE-GP as Structured Covariance Approximation

To obtain this structured covariance matrix, we need to express our variational approxima-
tion w.r.t. the original GP. Let v = f(O) denote the function outputs at the orthogonal
inducing points. We have the following relationship between u,v and u,v⊥:[

u
v

]
=

[
I 0

KvuK
−1
uu I

] [
u
v⊥

]
. (25)

By change-of-variable we compute the joint variational distribution over u and v that
corresponds to the factorized q(u)q(v⊥):

q(u,v) = q(u)q(v⊥)

(
det

∣∣∣∣ I 0
KvuK

−1
uu I

∣∣∣∣)−1
= N (u|mu,Su)N (v−KvuK

−1
uuu|mv,Sv). (26)

Using Gaussian identities we can show that q(u,v) is a Gaussian distribution with mean

mu,v =
[
mu,mv + KvuK

−1
uumu

]>
and covariance matrix

Su,v =

[
Su SuK

−1
uuKuv

KvuK
−1
uuSu Sv + KvuK

−1
uuSuK

−1
uuKuv

]
.

Interestingly, despite Su,v being a (M + M2) × (M + M2) matrix, it can be inverted with
O(M3+M3

2 ) computation, which gives a 4x speed-up over a fully parameterized multivariate
Gaussian distribution for q(u,v) when M = M2.

Appendix G. Extensions

A direct extension of SOLVE-GP is that we can introduce more than two sets of induc-
ing points by repeatedly applying the orthogonal decomposition, however this adds more
complexity to the implementation. Below we show that the SOLVE-GP framework can be
easily extended to different GP models where the standard SVGP method applies.

Inter-domain Inducing Points and Convolutional GP. Similar to SVGP meth-
ods, SOLVE-GP can deal with inter-domain inducing points (Lázaro-Gredilla and Figueiras-
Vidal, 2009) which lie in a different domain from the input space. The inducing variables

11
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u, which we used to represent outputs of the GP at the inducing points, is now defined as
u = g(Z) := [g(z1), . . . , g(zM )]>, where g is a different function from f that takes inputs in
the domain of inducing points. In convolutional GPs (van der Wilk et al., 2017), the input
domain is the space of images, while the inducing points are in the space of image patches.
The convolutional GP function is defined as

f(x) =
∑
p

wpg
(
x[p]
)
, (27)

where x[p] is the pth patch in the image x; w = [w1, . . . , wP ]> are the assigned weights to
different patches. In SOLVE-GP, we can choose either Z, O, or both to be inter-domain as
long as we can compute the covariance between u,v and f . When applied to convolutional
GP models, we set both Z and O to be a collection of image patches. Examples of the
covariance matrices we need for this model include Kvf and Kvu (used for Cvv). They can
be computed as

[Kvf ]ij = Cov[g(oi), f(xj)] =
∑
p

wpk(oi,x
[p]
j ), (28)

[Kvu]ij = Cov[g(oi), g(zj)] = k(oi, zj). (29)

Deep GP. We show that we can integrate SOLVE-GP with popular doubly stochastic
variational inference algorithms for deep GPs (Salimbeni and Deisenroth, 2017). The joint
distribution of a deep GP model with inducing variables in all layers is

p(y, f1:L,u1:L) = p(y|fL)

L∏
`=1

[
p(f `|u`, f `−1)p(u`)

]
,

where we define f0 = X and f ` is the output of the `th-layer GP. The doubly stochastic
algorithm applies SVGP methods to each layer conditioned on samples from the varia-
tional distribution in the previous layer. The variational distribution over u1:L, f1:L is
q(f1:L,u1:L) =

∏L
`=1

[
p(f `|u`, f `−1)q(u`)

]
. This gives a similar objective as in the single

layer case (Eq. (6)):

Eq(fL)

[
log p(y|fL)

]
−

L∑
`=1

KL
[
q(u`)‖p(u`)

]
,

where q(fL) =
∫ ∏L

`=1

[
p(f `|u`, f `−1)q(u`)du`

]
df1:L−1. Extending this using SOLVE-GP is

straightforward by introducing orthogonal inducing variables v1:L
⊥ for all layers, which gives

the lower bound:

Eq(uL,fL⊥)

[
log p(y|fL⊥ + KL

fu(KL
uu)−1uL)

]
−

L∑
`=1

{
KL
[
q(u`)‖p(u`)

]
+ KL

[
q(v`
⊥)‖p⊥(v`

⊥)
]}

,

where q(uL, fL⊥) is defined as:

q(uL, fL⊥) =

∫ L∏
`=1

[
p⊥(f `⊥|v`

⊥, f
`−1
⊥ ,u`−1)q(v`

⊥)q(u`)du`dv`
⊥

] L−1∏
`=1

df `⊥. (30)

12
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Appendix H. Related Work

Many approximate algorithms have been proposed to overcome the computational limita-
tions of GPs. The simplest of these are based on sub-sampling data points, which include
the naive subset-of-data training (Rasmussen and Williams, 2006) as well as the Nyström
approximation to the kernel matrix (Williams and Seeger, 2001). Better sparse approxima-
tions can be constructed by learning a set of inducing points to summarize the entire dataset.
These works can be divided into sparse approximations to the GP prior (SoR, DTC, FITC,
etc.) (Quiñonero-Candela and Rasmussen, 2005), and sparse variational methods (Titsias,
2009; Hensman et al., 2013, 2015a).

Recently there have been many attempts to reduce the O(M3) complexity of comput-
ing K−1uu for using a large set of inducing points. A notable line of work (Wilson and
Nickisch, 2015; Evans and Nair, 2018; Gardner et al., 2018) involves imposing grid struc-
tures on the locations of Z to perform fast structure exploiting computations. However,
to get such computational benefits Z need to be fixed due to the structure constraints,
which often suffers from curse-of-dimensionality in the input space. Another direction for
allowing the use of more inducing points is the decoupled method, first proposed in Cheng
and Boots (2017), where two different set of inducing points are used for modeling the
mean and the covariance function. This gives linear complexity in the number of mean
inducing points which allows using many more of them. Despite the increasing interest in
decoupled inducing points (Havasi et al., 2018; Salimbeni et al., 2018), the method has not
been well-understood due to its complexity. We found that our SOLVE-GP framework is
closely connected to a recent development of decoupled methods: the orthogonal decoupled
variational GP (ODVGP) (Salimbeni et al., 2018), as explained next.

Connection with decoupled inducing points. If we set the β and γ inducing points
in ODVGP (Salimbeni et al., 2018) to be Z and O, their approach becomes equivalent to
using the following variational distribution:

q′(u,v) = N
([

mu

mv + KvuK
−1
uumu

]
,

[
Su SuK

−1
uuKuv

KvuK
−1
uuSu Kvv+KvuK

−1
uu(Su−Kuu)K−1uuKuv

])
.

By comparing this covariance matrix to Su,v, we can see that we generalize their method by
introducing Sv, which replaces the original residual Kvv −KvuK

−1
uuKuv, so that we allow

more flexible covariance modeling while still keeping the block structure that facilitates
cheap inverse. This implies that ODVGP is a special case of SOLVE-GP by restricting
q(v⊥) to have the same covariance Cvv as the prior.

Besides inducing points, another way to construct sparse approximations is by exam-
ining the weight space representation of GPs, i.e., Bayesian linear regression in the kernel
feature space (Rasmussen and Williams, 2006). Relevance vector machines (Tipping, 2001)
use finite basis functions as features, while sparse spectrum GP (Lázaro-Gredilla et al.,
2010) uses random Fourier features. These two methods approximate the prior distribu-
tion. It is also possible to use the weight-space representation to approximate the posterior
distribution of GPs by variational inference (Shi et al., 2019).
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Figure 3: Changes of test RMSE and predictive log likelihoods during training, on (a)
Protein; (b) HouseElectric.

Table 3: Test log likelihood values of regression datasets.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric

N 25,600 29,267 31,248 40,708 278,319 329,820 373,280 1,311,539
d 8 9 20 27 3 90 77 9

SVGP
1024 0.0938(0.0056) -0.9628(0.0124) 0.9673(0.0111) 0.6784(0.0085) -0.6981(0.0051) -1.1934(0.0019) -0.0793(0.0040) 1.3036(0.0044)
1536 0.1287(0.0067) -0.9490(0.0116) 0.9442(0.0133) 0.6734(0.0100) -0.6744(0.0056) -1.1927(0.0018) -0.0786(0.0041) 1.3040(0.0069)

ODVGP
1024 + 1024 0.1372(0.0061) -0.9558(0.0116) -0.1988(0.1499) 0.1054(0.0739) -0.6644(0.0062) -1.1932(0.0016) -0.0783(0.0026) 1.3170(0.0052)
1024 + 8096 0.1444(0.0040) -0.9460(0.0108) -0.1364(0.1416) 0.1091(0.0747) -0.6568(0.0067) -1.1929(0.0016) -0.0789(0.0029) 1.3188(0.0086)

SOLVE-GP 1024 + 1024 0.1868(0.0050) -0.9429(0.0110) 0.9730(0.0073) 0.6804(0.0074) -0.6587(0.0034) -1.1918(0.0019) -0.0711(0.0033) 1.3332(0.0058)

SVGP 2048* 0.1374(0.0057) -0.9402(0.0112) 0.9071(0.0071) 0.6648(0.0099) -0.6689(0.0049) -1.1924(0.0018) -0.0788(0.0039) 1.3036(0.0056)

Appendix I. Additional Results

I.1. Regression Benchmarks

We follow the settings in Wang et al. (2019), where the results of exact GP regression
have been reported on these datasets with distributed training (Wang et al., 2019). We
implemented SVGP with M = 1024, 2048 inducing points, ODVGP and SOLVE-GP (M =
1024,M2 = 1024), as well as SVGP with M = 1536 inducing points, which has roughly
the same training time per iteration on GPU as the SOLVE-GP objective. An attractive
property of ODVGP is that by restricting the covariance of q(v⊥) to be the same as the
prior covariance Cvv, it can use far larger M2 because the complexity is linear with M2 and
sub-sampling of orthogonal inducing points can be used for each gradient update. Thus for
a fair comparison, we also include ODVGP (M2 = 8096), where in each iteration a subset
of size 1024 is sampled from the orthogonal inducing points to estimate the gradient.

We report the predictive log likelihoods on test data in Table 3. Due to space limit we
leave the results on two small datasets (Elevators, Bike) in App. I. We can see that the
performance of SOLVE-GP is competitive with the 4x more expensive SVGP (M = 2048).
Perhaps surprisingly, while SOLVE-GP uses a less flexible covariance in the variational
distribution, it often outperforms SVGP (M = 2048). We believe this is due to optimization
difficulties introduced by the 2048 × 2048 covariance matrix. We shall analyze this on
the HouseElectric dataset later. On most datasets, using a large number of additional
inducing points for modeling the mean function did improve the performance, as shown
by comparison between the ODVGP (M2 = 1024) and ODVGP (M2 = 8096). Though
more flexible covariance modeling seems to be more essential, as SOLVE-GP outperforms
ODVGP (M2 = 8096) on all datasets except 3dRoad.
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Table 4: Test RMSE values of regression datasets.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric

N 25,600 29,267 31,248 40,708 278,319 329,820 373,280 1,311,539
d 8 9 20 27 3 90 77 9

SVGP
1024 0.1933(0.0021) 0.6298(0.0092) 0.0975(0.0059) 0.1233(0.0021) 0.4825(0.0027) 0.7973(0.0018) 0.2628(0.0013) 0.0634(0.0003)
1536 0.1824(0.0028) 0.6208(0.0086) 0.0981(0.0054) 0.1232(0.0018) 0.4703(0.0032) 0.7967(0.0017) 0.2627(0.0012) 0.0633(0.0003)

ODVGP
1024 + 1024 0.1827(0.0025) 0.6247(0.0087) 0.1764(0.0268) 0.1561(0.0089) 0.4665(0.0031) 0.7975(0.0016) 0.2627(0.0014) 0.0624(0.0004)
1024 + 8096 0.1798(0.0014) 0.6176(0.0082) 0.1573(0.0194) 0.1567(0.0091) 0.4620(0.0037) 0.7973(0.0016) 0.2629(0.0017) 0.0624(0.0006)

SOLVE-GP 1024 + 1024 0.1721(0.0019) 0.6175(0.0083) 0.0951(0.0046) 0.1229(0.0016) 0.4639(0.0012) 0.7964(0.0018) 0.2608(0.0017) 0.0615(0.0003)

SVGP 2048* 0.1771(0.0026) 0.6151(0.0084) 0.0995(0.0060) 0.1236(0.0016) 0.4668(0.0030) 0.7964(0.0018) 0.2626(0.0011) 0.0634(0.0003)

In Fig. 3 we plot the change of test RMSE and test log likelihoods during training on
Protein and HouseElectric. Interestingly, on both datasets ODVGP (M2 = 8096) gets very
good performance at the beginning, then slowly converges to less competitive results. The
beginning stage is likely where the additional inducing points give good predictions but are
not in the best configuration for maximizing the training lower bounds. This phenomenon
is also observed on Elevators and Kin40k. We believe such mismatch between the training
lower bound and predictive performance is caused by fixing the covariance matrix of q(v⊥)
to the prior covariance. On HouseElectric, SVGP (M = 2048) does not improve over
SVGP (M = 1024) and is outperformed by SOLVE-GP. As previously mentioned, this
might be due to difficulties when optimising large covariance matrices. To verify this, we
tried the “whitening” trick (Murray and Adams, 2010; Hensman et al., 2015b) that is often
used to improve the optimization of SVGP methods by reducing the correlation in the
posterior distribution of u. As expected, the result of SVGP (M = 2048) then becomes
similar to SOLVE-GP, outperforming all other methods.

Due to space limit in the main text, we report the test predictive log likelihood values
on Elevators and Bike in Table 5. We also include the Root Mean Squared Error (RMSE)
on test data in Table 4 and Table 6.

Table 5: Test log likelihoods values of Elevators and Bike.

Elevators Bike

N 10,623 11,122
d 18 17

SVGP
1024 -0.5164(0.0144) -0.2176(0.0123)
1536 -0.5108(0.0149) -0.2030(0.0140)

ODVGP
1024 + 1024 -0.5184(0.0145) -0.1906(0.0140)
1024 + 8096 -0.5231(0.0137) -0.1860(0.0128)

SOLVE-GP 1024 + 1024 -0.5090(0.0150) -0.1891(0.0130)

SVGP 2048* -0.5075(0.0152) -0.1933(0.0138)

I.2. (Deep) Convolutional Gaussian Processes

We include here the full tables for CIFAR-10 classification, where we also report the accu-
racies and predictive log likelihoods on the training data. Table 7 contains the results by
convolutional GPs, while Table 8 and Table 9 include results of 2/3-layer deep convolutional
GPs.
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Table 6: Test RMSE values of Elevators and Bike.

Elevators Bike

N 10,623 11,122
d 18 17

SVGP
1024 0.3975(0.0092) 0.2831(0.0058)
1536 0.3959(0.0092) 0.2789(0.0065)

ODVGP
1024 + 1024 0.3974(0.0093) 0.2724(0.0064)
1024 + 8096 0.3992(0.0091) 0.2703(0.0063)

SOLVE-GP 1024 + 1024 0.3950(0.0094) 0.2724(0.0060)

SVGP 2048* 0.3949(0.0093) 0.2756(0.0063)

Table 7: 1-layer CIFAR-10 classification.

Train Acc Train LL Test Acc Test LL Time

SVGP
1000 77.81% -1.36 66.07% -1.59 0.241 s/iter
1600 78.44% -1.26 67.18% -1.54 0.380 s/iter

SOLVE-GP 1000 + 1000 79.32% -1.20 68.19% -1.51 0.370 s/iter

SVGP 2000* 79.46% -1.22 68.06% -1.48 0.474 s/iter

Table 8: 2-layer CIFAR-10 classification.

Inducing Points Train Acc Train LL Test Acc Test LL Time

SVGP 384, 1K 84.86% -0.82 76.35% -1.04 0.392 s/iter

SOLVE-GP 384 + 384, 1K + 1K 87.59% -0.72 77.8% -0.98 0.657 s/iter

SVGP 768, 2K* 87.25% -0.74 77.46% -0.98 1.104 s/iter

Table 9: 3-layer CIFAR-10 classification.

Inducing Points Train Acc Train LL Test Acc Test LL Time

SVGP 384, 384, 1K 87.7% -0.67 78.76% -0.88 0.418 s/iter

SOLVE-GP 384 + 384, 384 + 384, 1K + 1K 89.88% -0.57 80.3% -0.79 0.752 s/iter

SVGP 768, 768, 2000* 90.01% -0.58 80.33% -0.82 1.246 s/iter
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