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Abstract

We consider the problem of compressed sensing and of (real-valued) phase re-
trieval with random measurement matrix. We analyse sharp asymptotics of the
information-theoretically optimal performance and that of the best known polyno-
mial algorithms under a generative prior consisting of a single layer neural network
with a random weight matrix. We compare the performance to sparse separable
priors and conclude that generative priors might be advantageous in terms of al-
gorithmic performance. In particular, while sparsity does not allow to perform
compressive phase retrieval efficiently close to its information-theoretic limit, it is
found that under the random generative prior compressed phase retrieval becomes
tractable.

Over the past decade the study of compressed sensing has lead to significant developments in the
field of signal processing, with novel sub-Nyquist sampling strategies and a veritable explosion of
work in sparse representation. A central observation is that sparsity allows one to measure the signal
with fewer observations than its dimension [1, 2]. The success of neural networks in the recent years
suggests another powerful and generic way of representing signals with multi-layer generative priors,
such as those used in generative adversarial networks (GANs) [3]. It is therefore natural to replace
sparsity by generative neural network models in compressed sensing and other inverse problems, a
strategy that was successfully explored in a number of papers, e.g. [4–11]. While this direction of
research seems to have many promising applications, the theory of what can be efficiently achieved
still falls short of the one developed over the past decade for sparse signal processing.

Here, we aim at proving precise asymptotics for the performance in two such inverse problems:
(real-valued) phase retrieval and compressed sensing. These two problems of interest can be framed
as a generalised linear estimation. One is given a set of observations y ∈ Rn generated from a fixed
(but unknown) signal x? as

y = ϕ (Ax?) , (1)
(for a given known ϕ, A), and the goal is to find back x? ∈ Rd from the knowledge of y and A.
Compressed sensing and phase retrieval are particular instances of this problem, corresponding to
ϕ(x) = x and ϕ(x) = |x| respectively. Structured signals - such as sparse or binary x? - have been
the subject of intense investigation, see e.g. [12, 13]. A typical situation in compressed sensing is
that x? is sparse, i.e. only k of the d components are non-zero.

In this manuscript, we consider structured signals from a generative-neural-network type. In order to
provide a sharp asymptotic theory, we restrict the analysis to a specific situation, when the signal x?
is drawn from a single-layer network with known random weight-matrix W:

x? = G (Wz) , (2)
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where G is a component-wise non-linearity and z ∈ Rk is the latent representation of the signal. We
take A ∈ Rn×d and W ∈ Rd×k to have i.i.d. Gaussian entries with zero means and variances 1/d
and 1/k, and focus on the high-dimensional regime given by taking n, d, k →∞ while keeping the
measurement rate α = n/d and the compression factor ρ = k/d constant. The specific results we
present are for z ∼ N (0, Ik) and for the common choices G ∈ {linear,ReLU}. We want to stress
that the presented analysis is valid for arbitrary G and separable zk ∼ Pz , and readily generalize to
multi-layer generative neural networks with random i.i.d. weight matrices, corresponding results will
be presented in an extended version of this manuscript. Another case that can be treated theoretically
and left for future work is when the weight matrices are random rotationally invariant matrices
independent from each other [8].

Our main contribution is specifying the interplay between the number of measurements needed
for exact reconstruction of the signal, parametrized by α, and its latent dimension k. Of particular
interest is the comparison between a sparse and separable signal (having a fraction ρs of non-zero
components) and the structured generative model above, parametrized by ρ = k/d. While the number
of unknown latent variables is the same in both cases if ρ = ρs, we show that the generative model
structure has algorithmic advantages over the sparse one.

Optimal estimation is in our setting given by computing the posterior distribution of the signal given
the observations. Although exact sampling from the posterior is intractable in the high dimensional
regime, it is still possible to track the behaviour of the minimum-mean-squared-error estimator as a
function of the parameters (α, ρ). Our main result are based on the line of works comparing, on one
hand, the information-theoretically best possible reconstruction, using an ideal Bayesian inference
decoder, regardless of the computation cost, and on the other, the best reconstruction using the most
efficient known polynomial algorithm.

Sparsity: In the case of a separable prior, and in particular a sparse one, the setting of this paper
has been the subject of many studies using the non-rigorous replica method, e.g. [14]. Later the
information theoretic results, as well as the corresponding minimum mean squared error (MMSE), has
been established fully rigorously in [15], together with the performance of the associated approximate
message passing (AMP) algorithm [16]. For both the linear estimation and phase retrieval, the
information theoretic limit for a perfect recovery is simply α > αIT = ρs, with ρs being the fraction
of non-zero components of the signal x?.

The ability of AMP to exactly reconstruct the signal, however, is different. A non-trivial line
αsparse
alg (ρs) > αIT appears below which AMP fails, and no other polynomial algorithm is known.

Strikingly, as discussed in [15], the behavior of the sparse linear estimation and phase retrieval is
drastically different: while αsparse

alg (ρs) is going to zero as ρs → 0 for sparse linear estimation hence
allowing for compressed sensing, it is not the case for the phase retrieval, for which αsparse

alg → 1/2
in this limit. As a consequence, no efficient approach to real-valued compressed phase retrieval, in
the limit considered here, is known.

Generative priors: In the case of a generative model prior, eq. (2), the computation of the infor-
mation theoretic and algorithmic limits is more involved, and requires the generalization of both
the replica method and of the approximate message passing algorithm. This generalization was
developed for the multi-layer estimation problem with random matrices in [6], and proven rigorously
for the single-layer prior in [17]. Neither of these works analysed the questions we are investigating
here. We thus evaluate the corresponding equations and interpret them with the purpose of comparing
sparse and generative priors for compressed sensing and phase retrieval.

From [6, 17] and our own rederivation it follows that the Bayes-optimal estimator x̂opt achieves in the
limit of n, d, k →∞ and α = n/d = Θ(1), ρ = k/d = Θ(1) the minimum mean-squared-error

mmse(α, ρ) = lim
d→∞

1

d
E||x̂opt − x?||22 = ρx − q?x (3)

where ρx is the second moment of Px? and the scalar parameter q?x ∈ [0, ρx] is the solution of the
following extremization problem

f(α, ρ) = extr
(qx,q̂x,qz,q̂z)

{
1

2
q̂xqx +

ρ

2
q̂zqz − αΨy (qx) + Ψout (q̂x, qz)− ρΨz(q̂z)

}
. (4)
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The so-called potentials (Ψy,Ψout,Ψz) are scalar functions depending on the choice of model and of
the generative prior, and are given by

Ψy(qx) = Eξ
[∫

dy Zy (y,
√
qxξ, qx) logZy (y,

√
qxξ, qx)

]
, (5)

Ψout(q̂x, qz) = Eξ,η
[
Zout(

√
q̂xξ, q̂x,

√
qzξ, ρz − qz) logZout(

√
q̂xξ, q̂x,

√
qzξ, ρz − qz)

]
, (6)

Ψz(q̂z) = Eξ
[
Zz(
√
q̂zξ, q̂z) logZz(

√
q̂zξ, q̂z)

]
, (7)

with ξ, η ∼ N (0, 1) and auxiliary functions

Zy (y, ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2δ (y − ϕ(x)) , Zz (B,A) =

∫
dz Pz(z)e−

A
2 z

2+Bz ,

Zout(B,A, ω, V ) =

∫
dx e−

A
2 x

2+Bx

∫
dz√
2πV

e−
1

2V (z−ω)2 δ(x−G(z)) . (8)

This reduces the asymptotics of the high-dimensional estimation problem to a low-dimensional
extremization problem. Solving eq. (4) provides the information theoretical thresholds for perfect
recovery (i.e. when mmse = 0). Interestingly, it also provides information about the algorithmic
hardness of the problem. The above extremization problem is closely related the state evolution of the
AMP algorithm for this problem, as derived in [6]. This algorithm is conjectured to provide the best
polynomial time algorithm for the estimation of x? in the considered setting and limit. Specifically,
the algorithm reaches a mean-squared error that corresponds to the local extremizer reached by
gradient descent in the function (4) starting with uninformative initial conditions.

Phase diagrams: Below we summarize the findings of the above theory in the form of so-called
phase diagrams. These are diagrams in the (ρ, α) plane quantifying the quality of reconstruction
of the signal for the corresponding problem. For both the phase retrieval and compressed sensing
problems we distinguish the following regions of parameters and the respective thresholds separating
them: Undetectable region where the best achievable error is as bad as a random guess from the prior
as if no measurements y were available. Weak recovery region where the optimal reconstruction error
is better than the one of a random guess from the prior, but exact reconstruction cannot be achieved.
Hard region where exact reconstruction can be achieved information-theoretically, but no efficient
algorithm achieving it is known. The so-called easy region where the aforementioned AMP algorithm
for this problem achieves exact reconstruction of the signal.

We locate the corresponding phase transitions in the following manner: For the weak recovery
threshold αc, we notice that the fixed point corresponding to an error as bad as a random guess
corresponds to the values of the order parameters (qx, qz) = (0, 0). This is an extremizer of the
free energy (4) when the prior Pz has zero mean and the non-linearity ϕ is an even function. This
condition is satisfied for the phase retrieval problem with generative priors that leads to zero-mean
distributions on the components of the signal, but is not achieved for the other analyzed cases. In case
this uninformative fixed point exists, we investigate its stability under the state evolution of the AMP
algorithm, thus defining the threshold αc. For α < αc the fixed point is stable, implying the algorithm
is not able to find an estimator better than random guess. In contrast, for α > αc the AMP algorithm
provides an estimator better than random guess. For phase retrieval with linear generative model in
the setting of the present paper this analysis leads to the threshold αc = ρ/[2(1 + ρ)]. If there exists a
region where the performance of the AMP algorithm and the information-theoretic one do not agree
we call it the hard region. The hard region is delimited by threshold αIT and αalg. Numerically we
find these two thresholds by following the state evolution from two different initializations: one close
to the ground truth x?, referred as informative, and a random initialization, referred as uninformative.
When these different initializations provide a different iterative fixed point we mark the presence of
the hard phase.

Fig. 1 depicts the compressed sensing problem with linear (left) and ReLU (right) generative priors.
We depict the phase transitions defined above. On the left hand side we compare to the algorithmic
phase transition known from [14] for sparse separable prior with fraction 1− ρ of zero entries and ρ
of Gaussian entries of zero mean presenting an algorithmically hard phase for ρ < α < αsparse

alg (ρ).
In case of compressed sensing with linear generative prior we do not observe any hard phase and
exact recovery is possible for α ≥ min(ρ, 1) due to invertibility (or the lack of there-of) of the matrix
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product AW . With ReLU generative prior we have αIT = min(ρ, 1/2) and the hard phase exists and
has interesting properties: The ρ→∞ limit corresponds to the separable prior, and thus in this limit
αalg(ρ → ∞) = αsparse

alg (ρs = 1/2). Curiously we observe αalg > αIT for all ρ ∈ (0,∞) except
at ρ = 1/2. Moreover the size of the hard phase is very small for ρ < 1/2 when compared to the
one for compressed sensing with separable priors, suggesting that exploring structure in terms of
generative models might be algorithmically advantageous over sparsity.

Fig. 2 depicts the phase diagram for the phase retrieval problem with linear (left) and ReLU (right)
generative priors. The information-theoretic transition is the same as the one for compressed sensing,
while numerical inspection shows that αPR

alg > αCS
alg for all ρ 6= 0, 1/2, 1. In the left hand side we

depict also the algorithmic transition corresponding to the sparse separable prior with non-zero
components being Gaussian of zero mean, αsparse

alg (ρs), as taken from [15]. Crucially, in that case
the algorithmic transition to exact recovery does not fall bellow α = 1/2 even for very small (yet
finite) ρs, thus effectively disabling the possibility to sense compressively. In contrast, with both
the linear and ReLU generative priors we observe αalg(ρ→ 0)→ 0. More specifically, the theory
for the linear prior implies that αalg/ρ(ρ → 0) → αsparse

alg (ρs = 1) ≈ 1.128 with the hard phase
being largely reduced. Again the hard phase disappears entirely for ρ = 1 for the linear model and
ρ = 1/2 for ReLU. We note that the limit αalg(ρ→∞) corresponds to the algorithmic transition for
separable priors, concretely for the linear prior αalg(ρ→∞)→ αsparse

alg (ρs = 1) ≈ 1.128.
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Figure 1: Phase diagrams for the compressed sensing problem with (left) linear generative prior and
(right) ReLU generative prior, in the plane (ρ, α). The αIT (red line) represents the information
theoretic transition for perfect reconstruction and αalg (green line) the algorithmic transition to perfect
reconstruction. In the left part we depict for comparison the algorithmic phase transition for sparse
separable prior αsparse

alg (dashed-dotted green line). Colored areas correspond respectively to the weak
recovery (orange), hard (yellow) and easy (green) phases.
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Figure 2: The same as Fig. 1 for the phase retrieval problem with (left) linear generative prior and
(right) ReLU generative prior. A major result is that while with sparse separable priors (green
dashed-dotted line) compressed phase retrieval is algorithmically hard for α < 1/2, with generative
priors compressed phase retrieval is tractable down to vanishing α (green line). In the left part we
depict additionally the weak recovery transition αc = ρ/[2(1 + ρ)] (dark red line). It splits the
no-exact-recovery phase into the undetectable (dark red) and the weak-recovery region (orange).
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