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Abstract

A collection of scientific papers is often accompanied by tags: keywords, topics, concepts
etc., associated with each paper. Sometimes these tags are human-generated, sometimes
they are machine-generated. We propose a simple measure of the consistency of the tagging
of scientific papers: whether these tags are predictive for the citation graph links. Since the
authors tend to cite papers about the topics close to those of their publications, a consistent
tagging system could predict citations. We present an algorithm to calculate consistency,
and experiments with human- and machine-generated tags. We show that augmentation,
i.e. the combination of the manual tags with the machine-generated ones, can enhance
the consistency of the tags. We further introduce cross-consistency, the ability to predict
citation links between papers tagged by different taggers, e.g. manually and by a machine.
Cross-consistency can be used to evaluate the tagging quality when the amount of labeled
data is limited.

1. Introduction

A part of a construction of a knowledge graph is the analysis of publications and adding
to them tags: concept names, keywords, etc. This often involves natural language pro-
cessing or other machine learning methods [Murty et al., 2018]. To develop such methods
one must have a measure of success: one should be able to determine whether the given
tagging is “good” or “bad”. The most direct way to test the machine produced tags is
to compare them to the tags produced by humans. One creates a “golden set” of papers
tagged by humans, and penalizes the algorithms for any deviation from these tags. There
are, however, certain problems with this approach. First, human tagging is expensive—
even more so for scientific papers, where human taggers must have a specialized training
just to understand what the papers are about. Second, even the best human taggers’
results are inconsistent. This provides a natural limitation for this method [Manning,
2011]. The latter problem is exacerbated when the tagging dictionary is large. For exam-
ple, the popular US National Library of Medicine database of Medical Subject Headings
(MeSH, https://www.nlm.nih.gov/mesh/) has just under 30 000 entries. A superset of
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MeSH, Unified Medical Language System (UMLS, https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/release/statistics.html) contains a stag-
gering amount of 3 822 832 distinct concepts. It is doubtful a human can do a good job
choosing the right tags from a dictionary so large. A domain expert usually deals with a
subsystem of the dictionary, covering her area of expertise. This presents obvious difficulties
for tagging papers about multidisciplinary research, that may require a combination of the
efforts of several highly qualified taggers. Another problem is the evaluation of tag augmen-
tation. Suppose we have papers tagged by humans, and we want to add machine-generated
tags, for example, to improve the search function in the collection. Do the new tags actually
add to the quality or subtract from it? How can we evaluate the result if our tags are by
definition different from those produced by humans?

Thus a measure of the tagging quality other than a direct comparison with manually
produced tags may be useful for the assessing the work of the tagging engines. This is
especially important for an ongoing quality control of an engine that continuously ingests
and tags fresh publications. In this paper we propose such a measure.

The idea for this measure is inspired by the works on graph embeddings [Hamilton
et al., 2018, Grover and Leskovec, 2016]. In these works one tags graph nodes and compares
different sets of tags. The usual comparison criterion is whether the tags can predict graph
edges: nodes connected by an edge should have similar tags, while nodes not connected
by an edge should have dissimilar tags. To use this approach we need to represent papers
as nodes on a graph. A natural choice is the citation graph: and edge from paper A to
paper B means that paper A cites paper B. This leads to the following assumptions:

1. Scientific papers cited by the given paper A are more similar to A than the other (non
cited) papers.

2. A good tagging system must reflect this.

In other words, a good set of tags must be able to predict links on the citation graph, and
the quality of the prediction reflects the quality of the tags. We will call this property
consistency : a good tagger consistently gives similar tags to similar papers.

It is worth stressing that consistency is just one component of the quality of a tagger.
If a tagger consistently uses keyword library instead of keyword bread [Borges, 1944], this
measure would give it high marks, despite tags being obviously wrong. A way to overcome
this deficiency is to calculate cross-consistency with a known “good” tagger. For example,
we can tag some papers manually, and some papers using machine generated tags, and then
predict citation links between these papers. This cross-consistency measures the similarity
between these taggers. This application is interesting because it allows us to expand the
number of labeled papers for evaluation of machine-based taggers. We can create a golden
set of manually tagged papers, and then generate tags for the papers in their reference lists,
and the random samples using the machine-based tagger. Since a typical paper cites many
publications, this approach significantly expands the quantity of data available for training
and testing.

To create a measure based on these ideas one should note that citation links strongly
depend on the time the candidate for citation was published. Even a very relevant paper
may not be cited if it is too old or too new. In the first case the citing authors may prefer
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Figure 1: A seed paper, its cited papers and negative examples (here k = 3, m = 2).

a newer paper on the same topic. In the second case they may overlook the most recent
publications. Therefore we recast our assumptions in the following way:

A consistent tagging system should be able to predict citation links from a given
paper to a set of simultaneously published papers.

The rest of the paper is organized as follows. In Section 2 we discuss the algorithm to
calculate the consistency of the given tagging system. Experiments with this measure are
discussed in Section 3. In Section 4 we present the conclusions.

2. Algorithm

The algorithm to calculate the consistency measure is shown as Algorithm 1. We select n
seed papers. For each seed paper we take up to k random papers from its reference list, and
label them with the label y = 1. These are our cited papers, or positive samples. For each
cited paper we randomly choose k papers from the corpus with the same publication date
as the cited paper. These are our negative samples (Figure 1). The notion of “publication
date” depends on the granularity g of publication dates. We label the chosen negative
samples with the label y = 0. Now we have a vector of labels yi of size k + km, with k ones
and km zeros. We calculate tags for the seed paper, positive and negative samples, and
the number of overlapping tags between the seed paper and each of positive and negative
samples. This gives us k+ km overlap numbers ti of each seed paper. We can solve the one
dimension classification problem y ∼ t and calculate its ROC curve [Fawcett, 2006]. The
area under curve (AUC) for this problem is the measure of the consistency of the tagging.
The average AUC and its variation are the numbers we are interested in.

Algorithm 1 can be used for calculation of consistency or cross-consistency of taggers.
In the latter case we just choose different sources of tags for seed papers and samples.

3. Experiments

For experiments we used the papers extracted from the PubMed database (https://www.
ncbi.nlm.nih.gov/pubmed/). These papers have MeSH tags attached manually by the
human taggers. We added to them additional tags by processing papers’ titles and abstracts
using several packages. Gene names were identified using GNAT [Hakenberg et al., 2011],
diseases were identified using DNORM [Leaman et al., 2013], and additional UMLS concepts
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Algorithm 1 Calculation of consistency measure for the given tagging system

Input: Parameters: n seed papers, k cited papers per seed paper, m negative samples per
cited paper, granularity g of the publication date

1: for all seed papers s do
2: Select min(k, bibliography length) random papers from the reference list of s (cited

papers or positive samples). Label them as yi = 1
3: for all cited papers c do
4: Select m random papers with same publication date as c, using date granularity

g (negative samples). Label them as yi = 0.
5: end for
6: Tag the seed paper, positive and negative samples.
7: for all positive and negative samples p do
8: Calculate the number ti of overlapping tags between the seed paper s and the

sample p
9: end for

10: Calculate AUC for the classification problem y ∼ t
11: end for
12: return The set of AUCs. . The average AUC is the consistency measure, while the

variation provides the error estimate

Tagging source Tags per paper Coverage

Mean Median

MANUAL 5.96 6 0.73
NEJI 12.22 4 0.55
DNORM 0.85 0 0.35
GNAT 0.18 0 0.08
MANUAL + NEJI 17.30 10 0.77
MANUAL + DNORM 6.74 6 0.74
MANUAL + GNAT 6.14 6 0.73
MANUAL + NEJI + DNORM + GNAT 18.26 11 0.77
NEJI + DNORM + GNAT 13.25 5 0.60

Table 1: Tags coverage by different sources. The last column shows the fraction of papers
with at least one tag.

were mapped using NEJI [Campos et al., 2013]. The coverage of papers by different tagging
sources is shown in Table 1.

The number of seed papers n in Algorithm 1 was chosen to be n = 100. Based on the
preliminary experiments we chose the following hyperparameters which produced a good
convergence of the measure: the number of cited papers per see paper k = 10, the number of
negative samples per cited paper m = 2. The date granularity chosen was year-month: two
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papers were considered published at the same time if their years and months of publication
in PubMed coincided.

The baseline to compare the results against was constructed by randomizing the tag
sets. We linked each paper (seeds, references, and negative samples) to the tags from all
the sources, and then randomly shuffled the papers, so each paper got a set of tags from
some other paper in our sample. We expect the average AUC for this random tag set to
be 0.5, reflecting the lack of discrimination between the cited papers and negative samples.

We calculate the AUC for each of our seed papers, and report the distribution of the
results in Tukey “box and whiskers” plots.

On Figure 2 we show the consistency measure for the tagging sources: DNORM, GNAT,
MANUAL, NEJI as well as the combined automatic taggers (NEJI + DNORM + GNAT).

Adding machine-generated tags to the manual ones is explored on Figure 3. Here we
take manually created tags and add machine-generated ones from different sources, again
using random tags as a baseline.

On Figure 4 we show cross-consistency between the manual tags and NEJI-generated
ones (since GNAT and DNORM are used to predict only specific concepts like genes and
diseases, they are omitted from the experiment). We used one source for tagging seed
papers, and another source for tagging samples (cited papers and negative samples).

4. Discussion and conclusions

First, there is clear difference between the consistency of the randomly generated tags and
the real ones (Figure 2). As expected, the consistency of the random tags is concentrated
at AUC = 0.5, with some outliers both above and below this value. In contrast, the
consistency of the real tags is almost always above AUC = 0.5. An exception is tagging
sources of low coverage like GNAT (see Table 1), where consistency is close to 0.5. Obviously
when the coverage is low, most positive and negative samples have zero overlap with their
seed papers, which lowers AUC. Unexpectedly, the consistency of high coverage machine
generated sources like NEJI is on par with the human tags.

Tags augmentation is explored on Figure 3. As expected, adding random tags to the
manually generated ones does not noticeably change the consistency of the result. However,
adding “real” machine generated tags is improving our measure, which is another evidence
that the measure itself is reasonable.

The cross-consistency between manual tags and machine-generated ones is shown on
Figure 4. Here we used different sources for seed papers and for samples. While cross-
consistency is lower than the internal consistency of each tagger, is still is significantly
higher than for random tags.

In conclusion, a simple measure of consistency of tagging: whether it is predictive for
citation links in a knowledge graph,—seems to be informative about the tagging process
and can be used, along with other measures, to assess and evaluate it. Cross-consistency
between different taggers can be used to estimate their similarity, especially when some
taggers (e.g. manual tagging) are too expensive to run on a large set of papers.
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David Campos, Sérgio Matos, and José Lúıs Oliveira. A modular framework for biomedical
concept recognition. BMC Bioinformatics, 14(1):281, September 2013. ISSN 1471-2105.
doi: 10.1186/1471-2105-14-281. URL https://doi.org/10.1186/1471-2105-14-281.

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874,
2006. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2005.10.010. URL http:

//www.sciencedirect.com/science/article/pii/S016786550500303X. ROC Analy-
sis in Pattern Recognition.

Aditya Grover and Jure Leskovec. Node2Vec: scalable feature learning for networks. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16, pages 855–864, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4232-2. doi: 10.1145/2939672.2939754. URL http://doi.acm.org/10.1145/

2939672.2939754.

Jörg Hakenberg, Martin Gerner, Maximilian Haeussler, Illés Solt, Conrad Plake, Michael
Schroeder, Graciela Gonzalez, Goran Nenadic, and Casey M Bergman. The GNAT library
for local and remote gene mention normalization. Bioinformatics (Oxford, England), 27
(19):2769–2771, October 2011. ISSN 1367-4803. doi: 10.1093/bioinformatics/btr455.
URL http://europepmc.org/articles/PMC3179658.

William L. Hamilton, Rex Ying, Jure Lescovec, and Rok Sosic. Representation learning
on networks. WWW-18 tutorial, April 2018. URL http://snap.stanford.edu/proj/

embeddings-www/.
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