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Abstract

In this paper, we propose an approach for making hierarchical reinforcement learn-1

ing practical for autonomous driving on multi-lane highway or urban structured2

roads. While this approach follows the conventional hierarchy of behavior decision,3

motion planning, and control, it introduces an intermediate layer of abstraction4

that specifically discretizes the state-action space for motion planning according to5

a given behavioral decision. This hierarchical design allows principled modular6

extension of motion planning, in contrast to relying on either monolithic behavior7

cloning or a large set of hand-written rules. We show that this design enables8

significantly faster learning than a flat design, when using both value-based and9

policy optimization methods (DQN and PPO). We also show that this design allows10

transferring of the trained models, without any retraining, from a simulated environ-11

ment with virtually no dynamics to one with significantly more realistic dynamics.12

Overall, our proposed approach is a promising way to allow reinforcement learning13

to be applied to complex multi-lane driving in the real world. In addition, we14

introduce and release an open source simulator for multi-lane driving that follows15

the OpenAI Gym APIs and is suitable for reinforcement learning research.16

1 Introduction17

Developing autonomous cars that reliably assist humans in everyday transportation is a grand research18

and engineering challenge. Mundane as it may seem, cruising on a multi-lane highway effectively19

and safely while taking full advantage of available driving space has proved challenging for existing20

autonomous cars. What makes multi-lane cruising significantly more challenging than the single-lane21

adaptive cruise control (ACC) is the fact that the multi-vehicle interaction happens both laterally (i.e.22

perpendicular to the lanes) and longitudinally (i.e. parallel to the lanes) and requires coordination23

between lateral and speed control.24

The current research focuses on multi-lane cruising as a special case of driving on structured roads in25

general. Different from classical feedback control scenarios, driving on structured roads is heavily26

regulated by signs, signals, and rules that come to apply at various points in time, space, or even27

history (e.g. all-way stop intersections). In the case of multi-lane cruising, lane markings dictate that28

driving takes place mostly within the boundaries of a single lane. Lane change is thus a short-lived,29

transitional event in continuous motion space that links two distinct states — driving in one lane30

vs. driving in an adjacent lane. Furthermore, because driving on structured roads in general is thus31

symbolically punctuated1, it is naturally hierarchical — higher level decisions on discrete state32

transitions are coordinated with lower level motion control in continuous state space. Because multi-33

lane cruising shares this hierarchical character, we propose using a hierarchical design for autonomous34

driving systems (similar to [16]), trusting that lessons we learn from this case can be generalized35

to other aspects of autonomous driving on structured roads. For this research, we take multi-lane36

1The symbols here could include traffic lights, lane markings, speed limit signs, fire truck sirens, signals of
other vehicles, and so on.
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cruising problem, requiring (a) lane changes, (b) in-lane maneuvers, and (c) speed control in order to37

maintain desirable speed, avoid obstacles, and stay safe. Furthermore, we have operationalized these38

essential aspects of the multi-lane cruising task in a small video game called SimpleTraffic2, which39

follows the OpenAI Gyms API conventions [2] and is conducive to reinforcement learning research.40

Autonomous driving systems typically consist of modules for perception and prediction, localization41

and mapping, and planning and control. Our study focuses on the planning and control part, where42

a hierarchy of behavior decision, motion planning, and control is widely adopted [10]. Classical43

methods for implementing the behavior planner are largely rule-based with finite state machines being44

a common choice [10]. Classical motion planner methods typically require optimization according45

to explicitly defined cost functions with the behavior decision expressed as constraint terms in the46

cost function [4, 18]. While rule-based behavior planner is extremely hard to maintain and does47

not scale well in complex dynamic scenarios, explicit cost functions for motion planner are hardly48

general enough and very difficult to tune for complex dynamic interactions. To avoid the limitations49

of traditional planning solutions, many recent studies attempted learning-based approaches. Bojarski50

et al. [1] proposed an end-to-end supervised learning scheme that directly maps images to steering51

commands. Sun et al. [17] in contrast use a mapping from state features to trajectories and then use52

an execution layer to further guarantee short term feasibility and safety. These approaches leverage53

expert experience for training. However, by directly cloning the expert’s driving strategy, they are54

limited to the expert’s performance and experience, failing to adequately explore the parts of the55

state-action space that may be less critical for safety and performance. In addition, planning and56

control is largely implemented as one monolithic network, which makes debugging, failure analysis,57

and incorporation of domain knowledge all very difficult.58

With the recent great success of reinforcement learning (RL) methods in decision making and control59

(e.g. [3, 8, 19]), RL methods are now frequently applied to autonomous driving tasks [6, 12, 13]. In60

such cases, RL agents learn driving tasks by exploring typically simulated driving environments while61

attempting to improve performance along some metrics such as safety, average speed, smoothness of62

maneuvers, and smoothness of speed profile. The hope here is that such RL agents will outperform63

classical solutions through scaling significantly better for complex dynamic scenarios, and thereby64

making competent autonomous driving available much more broadly.65

In the following, we aim to show that our design allows effective integration of RL for autonomous66

driving, by (1) eliminating the dependency on explicit cost functions in motion planning, (2) enabling67

significantly faster learning performance than a non-hierarchical or flat design, (3) allowing principled68

modular extension of motion planning in contrast to using either monolithic behavior cloning or a69

large set of hand-written rules. This in turn suggest that our proposed hierarchical architecture is a70

promising way to allow reinforcement learning to be applied to complex multi-lane cruising in the71

real world, which we demonstrate through transferring the trained models without retraining from a72

simulated environment with virtually no dynamics to one with significantly more realistic dynamics.73

To summarize, the main contributions of this paper are: (1) proposing a modularized skill-based74

planning framework with two layers of hierarchy (behavioral and motion planner) for cruising in multi-75

lane roads; (2) proposing a higher level of abstraction in the state-action space of driving in multi-lane76

roads; and (3) introducing an open source simulator, SimpleTraffic, for RL and autonomous driving77

research community. In Section II, we review the related state-of-the-art methods in autonomous78

driving. In Section III, we present the details of our planning framework. Section IV introduces79

SimpleTraffic simulator. In Section V we evaluate our approach comprehensively and conclude our80

work in Section VI.81

2 Related works82

Recent studies have utilized RL for higher level decision making [7, 9]. Mukadam et al. [9] trained83

a Q-network to issue only high level commands, e.g. switch left/right, while the execution and84

collision avoidance rely on the low-level rule-based controller. Mirchevska et al. [7] proposed an85

RL-based approach for autonomous driving in highway scenarios using the fitted Q-iteration with86

extremely randomized trees as a function approximator. Both of these approaches have utilized RL87

for high level decision making (BP in our case) only and adopted hand-crafted rule-based approaches88

for MoP [7, 9] and collision avoidance [9]. In contrast, in addition to behavioral planner, motion89

planner and collision avoidance are also handled by our hierarchical learning-based approach which90

2To be open sourced upon the publication of this paper.
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is more generalizable compared to its rule-based counterparts. Shalev-Shwartz et al. [15] proposed to91

decompose the autonomous driving problem into two phases. First, they apply supervised learning92

for predicting the near future states based on the current states. Second, they model a full trajectory93

of the agent using a recurrent neural network, where unexplained factors are modeled as (additive)94

input nodes. As this method uses fully supervised learning approach, it relies on the training data95

too much. Paxton et al. [11] learns both low-level control policies and high level task policies by96

integrating a learning-based approach (Monte Carlo Tree Search) with a heuristic search algorithm to97

achieve a complex task. Their learned low-level policies sometimes can have oscillatory behavior98

that makes the car unstable. Given well established controllers such as PID and MPC, we believe99

that learning-based methods are more effective in the high and mid levels (e.g. BP and MoP) of a100

decision making rather than in the low-level controllers.101

3 Technical approach102

3.1 The Planning Hierarchy103

Driving is a symbolically punctuated behavior. Different from classical feedback control scenarios,104

driving is heavily punctuated by signs and rules on top of what is largely a continuous control task.105

The symbols here include lane markings, traffic lights, speed limit signs, fire truck sirens, turning106

signals of the heading vehicle, and so on. As an example, lane markings dictates that most driving107

happen within a single lane. Lane changes are thus short-lived, transitional events that link forward108

driving in one lane to forward driving in an adjacent lane – two discrete states at a higher level109

of abstraction in the state space of driving. Because driving is thus symbolically punctuated, it is110

naturally hierarchical: higher level decisions on discrete state transitions with lower level execution in111

continuous state space, which suggests a hierarchical structure in the design of planning systems for112

autonomous driving. Figure 1 illustrates our proposed hierarchical decision making architecture for113

cruise in multi-lane roads. As shown in Figure 1, the proposed decision making framework includes114

behavioral planner that makes high level decisions about transitions between discrete states, and115

motion planner that generates a target spatio-temporal trajectory with a target speed according to116

the decisions made by BP. The target trajectory is then fed to the controller to follow the trajectory117

by controlling the steering wheel, throttle, and brake in continuous state space. The hierarchical118

structure of our planning framework facilitates analysis of the decisions that are made during driving.119

In addition, structured layers allows for convenience for modularizing different skills, e.g. adaptive120

cruise control, lane switching, etc. Each modularized skill acts as an independent entity and forms a121

comprehensive maneuver function considering its own constraints and safety internally. This also122

enables modifing and replacing sub-modules according to new requirements and conditions.123

3.2 Behavior Planner124

Behavior decision is about transitioning between states that are discrete only at a higher level of125

abstraction. BP is responsible to drive the car to the destination safely and as fast as possible. In our126

current setting, BP makes high level decisions including keep lane, switch to the left lane, and switch127

to the right lane subject to the following conditions: (1) following the mission planner (drive to the128

destination); (2) navigating the ego-car to less busy lanes so the car can drive to the maximum speed129

limit (drive as fast as possible); and (3) avoiding collisions (drive safely).130

BP takes the full set of states as input which includes:, target lane suggested by Mission planner131

(MiP), current lane, current speed, speed and distance to the nearest heading car for current and132

neighboring lanes, and speed and distance to nearest car in the back for current and neighboring lanes.133

We design a coarse-grained reward function and avoid any fine-grained rules in our reward feedback.134

This way, we give the RL agent a chance to explore the state space and to come up with solutions135

that possibly outperform classical rule-based planners. We design the reward for BP in a way that it136

gets more reward if the car drives closer to the lane specified by the mission planner and closer to the137

speed limit and it gets a large negative reward if it collides with an obstacle.138

3.3 Motion Planner139

Motion planner’s main task is to provide a safe and collision-free path towards its destination, while140

taking into account road boundaries, the vehicle dynamics, its maneuver capabilities in the presence141

of obstacles along with traffic rules or other constraints dictated by BP. In our design, motion planner142

generates a target trajectory defined as a set of 2D points (i.e. path) coupled with a target speed value.143

We propose a new level of road abstraction, through which each lane consists of Nc corridors, as144

depicted in Figure 2. Corridors are defined in the Frenét coordinate frame along center lines provided145
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Figure 1: Overview of our hierarchical planning
framework: Behavioral planner (BP) and Motion
planners (MoP).

Figure 2: Corridor abstraction for structured
roads. Here Green lines separate corridors, Blue
line is the corridor selected by MoP, and Yellow
line is the generated trajectory corresponding to
the selected corridor (Red car is the ego-car).

by mission planner, constructed based on road centers (waypoints) or path planning algorithms146

for unstructred environments. As corridors are defined in the Frenét coordinate frame, tracking147

performance remains invariant to transformation [18]. As such, motion planner can be considered148

to be agnostic to lanes, intersections, and other road structures. As a result, there is no difference149

between straight roads, curvy roads, and roundabout. This road abstraction reduces the the continuous150

trajectory generation problem to the discrete corridor selection.151

An MoP agent in our framework selects two sets of actions: 1) A lateral action identifying the target152

corridor; and 2) A speed action which selects the target speed. Corridor selection is equivalent to153

selecting a path among a set of predefined paths (clothoids or splines) along the mission planner154

routes. An MoP agent chooses the best target corridor based on the behavioral planner decisions:155

BP == Keep lane: MoPkeep_lane should select a corridor within the current lane while avoiding any156

collision. This enables MoP to maneuver around small objects in the lane without switching lane; and157

BP == Switch left/right: MoPswitch_left/right should select a corridor in the adjacent lanes. We158

included the nearest corridor to the target lane to MoP choices to consider prepare-for-merge action.159

Figure 2 illustrates corridor selection by an MoP agent.160

MoP agents also select target speed based on BP actions and physical boundaries (e.g. heading cars,161

or any interfering object on the road) while ensuring safety and smoothness. By selecting a target162

speed, cruise in lane, emergency stop, vehicle following, and other BP-speed dependent actions can163

be handled. By adjusting the target speed, MoP agents can avoid collision while keeping the lane164

or switching to adjacent lanes. The target corridor and speed that are selected by MoP are relative165

quantities. The absolute corridor and speed are calculated in the Action post-processing module in166

Figure 1 and fed into the Trajectory generator module. Trajectory generator is a non-learning-based167

module implemented using a simple curve fitting from point A to point B (Yellow line in Figure 2).168

The generated trajectory is extended along the target corridor as the vehicle moves and is guaranteed169

to be smooth and feasible for the controller node.170

MoP must also be a function of the complete set of environment states because it must always be171

safe no matter what the current BP decision is. MoP input states include: current lane and corridor,172

current speed, speed and distance to heading cars for each corridor in current and neighboring lanes,173

and speed and distance to cars in the back for each corridor in current and neighboring lanes. Similar174

to BP reward function, MoP reward function also need to avoid using any fine-grained rules and175

should remain coarse-grained. A Keep lane agent is responsible for adaptive cruise control (ACC).176

Keep lane agent is responsible to remain in the current lane, maintain the distance to the heading177

car and the car in the back (if it is too close to the ego-car), and maneuver around small obstacles178

within the current lane. The reward for MoPswitch_left and MoPswitch_right was designed such that179

the agent gets positive reward as it gets closer to the lane specified by BP. The reward function for180

MoPkeep_lane is designed to encourage the agent to keep a desired distance from the heading cars181
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Figure 3: HRL vs. Flat agent. Top row: PPO agent. Bottom row: DQN agent.

if there exist any heading car or maintain safe front and back distance when the car in the back is182

too close to the vehicle. All MoP agents get penalized with a negative value if they collide with183

obstacles.184

3.4 Training185

In the proposed hierarchical RL framework, BP issues a high level command which is executed by186

the corresponding MoP. As opposed to the other hierarchical frameworks (e.g. [5]), BP does not wait187

until its command gets executed. Considering any fixed lifetime for BP commands is dangerous for188

autonomous driving. In fact, BP should be able to update its earlier decisions (at every time step)189

according to the new states. MoP is designed to prioritize safety over BP decisions. Our framework190

is flexible when it comes to choosing RL algorithms to be applied for BP and MoPs. We tested our191

framework with DQN [8], and PPO [14]. Potentially, we can train the HRL agent in two phases. In192

the first phase, we initialize the exploration of BP and MoP agents to 1, and train BP coupled with a193

rule-based MoP, and MoP coupled with a rule-base BP. This leads to pre-training BP and MoPs. In194

the second phase, we may jointly train BP and MoPs. However, in this study, we only present the195

results corresponding to the first phase.196

4 Simulator197

We developed a simulator, called SimpleTraffic, for cruising in multi-lane roads. SimpleTraffic has198

been developed in Python and is compatible with OpenAI Gym environments. We will open source199

SimpleTraffic for research community under GPL3. Concepts such as lane and corridor as well as200

ego-car and traffic obstacles (e.g. other cars or motorbikes) have been implemented in the simulator201

and can be customized for different scenarios. A user can set the number of lanes, number of corridors202

per lane, maximum and minimum speed of the ego-car and traffic obstacles. Currently, two sets of203

traffic obstacles have been implemented in SimpleTraffic: cars and motorbikes. In the default setting,204

each car occupies three corridors and each motorbike occupies one corridor only. Having these two205

sets of obstacles enables agent to distinguish between small objects that can be bypassed without206

changing the lane and larger objects that can only be bypassed by a lane change.207

SimpleTraffic uses discrete time steps. Therefore, neither the speed of computers nor a slow archi-208

tecture (e.g. huge neural network) influences the result. This way, researchers can debug their RL209

systems easier and more effectively. At every time step, the SimpleTraffic environment expects an210

action in the form of a tuple (corridor, speed) where corridor specifies the corridor index, Figure 2,211

and speed specifies the target speed. After executing the action SimpleTraffic returns the next state,212

reward, and a flag indicating whether a terminal state is reached. The simulator states include: total213

number of lanes and corridors, current ego-car lane and corridor id, current ego-car speed, current214

ego-car lateral position, target lateral position (specified by the previous action), distance to heading215

cars and cars in the back at each corridor, and speed of heading cars and cars in the back at each216

corridor. A trajectory generator module has been developed inside the simulator that generates a217

smooth trajectory from the current position of the ego-car to the selected corridor.218

3To be released on http://www.github.com
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Figure 4: Corridor selection of the transferred model in a new environment with Lincoln MKZ
simulated dynamic model.

5 Experiments219

We tested our framework with both Q-learning-based and policy-gradient-based techniques and chose220

popular algorithms from each of these categories, namely DQN and PPO, respectively.221

SimpleTraffic: We trained both HRL and flat agents for 10 million time steps and deployed them222

on SimpleTraffic simulator. During evaluation, each model was deployed on the simulator 10 times223

for 1000 time steps and recording the average speed, the time to first collision, and the number of224

collisions per 1000 steps. During our experiments, we noticed that some agents lean towards driving225

too slowly to avoid any collision. This is not a desirable behavior, especially in a highway. On226

the other hand, other agents drive more aggressively (i.e. too fast) to maximize the speed reward,227

which may result in higher tendency to crash into other vehicles. In such case considering average228

speed and time to first collision separately is not fully informative. However, combining them can be229

more informative. Therefore, we define another metric we call collision-free travel length which is a230

multiplication of time to first collision and average speed. Figure 3 compares the performance of the231

HRL agent with the flat agent over time for PPO and DQN algorithms. These figures illustrate the232

aforementioned metrics over time; from initial agent (not trained) to trained agent (after 10 million233

time steps). Figures 3(a) and 3(b) confirm that both HRL and flat agents have learned to maximize the234

collision-free travel length, however, HRL agents managed to obtained better results by controlling235

their speed and sacrificing speed reward in order to drive safer. We emphasize that the same rewards236

were used for both HRL and flat agents.237

Transfer to real vehicles: In section III we introduced our road abstraction and state representation238

for an RL agent that not only facilitates the learning procedure, but also helps to transfer the models239

to similar environment including real vehicle. As a proof of concept, we tested the transferability of240

the trained models by deploying them on a new ROS environment and using a Lincoln MKZ 2015241

model as the vehicle dynamic model. Figure 4 illustrates few snapshots of the deployed model on the242

new environment. Our trained agents managed to successfully bypass static and dynamic obstacles243

by choosing appropriate corridors and cruise safely in multi-lane roads.244

6 Conclusion & future work245

We proposed an RL-based hierarchical framework for autonomous multi-lane cruising. We introduced246

a key intermediate abstraction within the motion planner to discretize the state-action space according247

to high level behavioral decisions. Furthermore, we showed that the hierarchical design for an248

autonomous vehicle system enables significantly better learning performance than a non-hierarchical249

design, when using both a value-based method (DQN) and a policy optimization method (PPO). The250

proposed framework allows for principled modular extension of motion planning, which is not the case251

in rule-based or monolithic behavior cloning-based approaches. Moreover, we experimentally showed252

that our state-action space abstraction allows transferring of the trained models from a simulated253

environment with virtually no dynamics to the one with significantly more realistic dynamics without254

a need for retraining. We also introduced our open source OpenAI Gym compatible simulator, called255

SimpleTraffic, to the reinforcement learning research community. Although training BP and MoP256

individually could sufficiently address the cruising in multi-lane problem, as our future work, we257

aim to train the BP and MoP agents jointly (in an end-to-end fashion) to acquire higher level of258

performance.259
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