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Abstract
Off-Policy reinforcement learning (RL) is an im-
portant class of methods for many problem do-
mains, such as robotics, where the cost of collect-
ing data is high and on-policy methods are con-
sequently intractable. Standard methods for ap-
plying Q-learning to continuous-valued action do-
mains involve iteratively sampling the Q-function
to find a good action (e.g. via hill-climbing), or
by learning a policy network at the same time as
the Q-function (e.g. DDPG). Both approaches
make tradeoffs between stability, speed, and accu-
racy. We propose a novel approach, called Cross-
Entropy Guided Policies, or CGP, that draws in-
spiration from both classes of techniques. CGP
aims to combine the stability and performance of
iterative sampling policies with the low compu-
tational cost of a policy network. Our approach
trains the Q-function using iterative sampling with
the Cross-Entropy Method (CEM), while training
a policy network to imitate CEM’s sampling be-
havior. We demonstrate that our method is more
stable to train than state of the art policy network
methods, while preserving equivalent inference
time compute costs, and achieving competitive
total reward on standard benchmarks.

1. Introduction
In recent years, model-free deep reinforcement learning
(RL) algorithms have demonstrated the capacity to learn
sophisticated behavior in complex environments. Starting
with Deep Q-Networks (DQN) achieving human-level per-
formance on Atari games (Mnih et al., 2013), deep RL has
led to impressive results in several classes of challenging
tasks. While many deep RL methods were initially limited
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to discrete action spaces, there has since been substantial
interest in applying deep RL to continuous action domains.
In particular, deep RL has increasingly been studied for use
in continuous control problems, both in simulated environ-
ments and on robotic systems in the real world.

A number of challenges exist for practical control tasks such
as robotics. For tasks involving a physical robot where
on-robot training is desired, the physical constraints of
robotic data collection render data acquisition costly and
time-consuming. Thus, the use of off-policy methods like
Q-learning is a practical necessity, as data collected during
development or by human demonstrators can be used to train
the final system, and data can be re-used during training.
However, even when using off-policy Q-learning methods
for continuous control, several other challenges remain. In
particular, training stability across random seeds, hyperpa-
rameter sensitivity, and runtime are all challenges that are
both relatively understudied and are critically important for
practical use.

Inconsistency across runs, e.g. due to different random
initializations, is a major issue in many domains of deep RL,
as it makes it difficult to debug and evaluate an RL system.
Deep Deterministic Policy Gradients (DDPG), a popular
off-policy Q-learning method (Lillicrap et al., 2015), has
been repeatedly characterized as unstable (Duan et al., 2016;
Islam et al., 2017). While some recent work has improved
stability in off-policy Q-learning (Haarnoja et al., 2017;
2018c; Fujimoto et al., 2018), there remains significant room
for improvement. Sensitivity to hyperparameters (i.e. batch
size, network architecture, learning rate, etc) is a particularly
critical issue when system evaluation is expensive, since
debugging and task-specific tuning are difficult and time
consuming to perform. Finally, many real robotics tasks
have strict runtime and hardware constraints (i.e. interacting
with a dynamic system), and any RL control method applied
to these tasks must be fast enough to compute in real time.

Mitigating these challenges is thus an important step in
making deep RL practical for continuous control. In this
paper, we introduce Cross-Entropy Guided Policy (CGP)
learning, a general Q-function and policy training method
that can be combined with most deep Q-learning methods
and demonstrates improved stability of training across runs,
hyperparameter combinations, and tasks, while avoiding
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the computational expense of a sample-based policy at in-
ference time. CGP is a multi-stage algorithm that learns a
Q-function using a heuristic Cross-Entropy Method (CEM)
sampling policy to sample actions, while training a deter-
ministic neural network policy in parallel to imitate the
CEM policy. This learned policy is then used at inference
time for fast and precise evaluation without expensive sam-
ple iteration. We show that this method achieves perfor-
mance comparable to state-of-the-art methods on standard
continuous-control benchmark tasks, while being more ro-
bust to hyperparameter tuning and displaying lower variance
across training runs. Further, we show that its inference-
time runtime complexity is 3-6 times better than when using
the CEM policy for inference, while slightly outperforming
the CEM policy. This combination of attributes (reliable
training and cheap inference) makes CGP well suited for
real-world robotics tasks and other time/compute sensitive
applications.

2. Related Work
The challenge of reinforcement learning in continuous ac-
tion spaces has been long studied (Silver et al., 2014; Hafner
& Riedmiller, 2011), with recent work building upon on-
policy policy gradient methods (Sutton et al., 1999) as well
as the off-policy deterministic policy gradients algorithm
(Silver et al., 2014). In addition to classic policy gradient
algorithms such as REINFORCE (Sutton et al., 1999) or
Advantage Actor Critic (de la Cruz et al., 2018), a num-
ber of recent on-policy methods such as TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017) have been
applied successfully in continuous-action domains, but their
poor sample complexity makes them unsuitable for many
real world applications, such as robotic control, where data
collection is expensive and complex. While several recent
works (Matas et al., 2018; Zhu et al., 2018; Andrychowicz
et al., 2017) have successfully used simulation-to-real trans-
fer to train in simulations where data collection is cheap, this
process remains highly application-specific, and is difficult
to use for more complex tasks.

Off-policy Q-learning methods have been proposed as a
more data efficient alternative, typified by Deep Determinis-
tic Policy Gradients (DDPG) (Lillicrap et al., 2015). DDPG
trains a Q-function similar to (Mnih et al., 2016), while
in parallel training a deterministic policy function to sam-
ple good actions from the Q-function. Exploration is then
achieved by sampling actions in a noisy way during policy
rollouts, followed by off-policy training of both Q-function
and policy from a replay buffer. While DDPG has been used
to learn non-trivial policies on many tasks and benchmarks
(Lillicrap et al., 2015), the algorithm is known to be sensi-
tive to hyperparameter tuning and to have relatively high
variance between different random seeds for a given configu-

ration (Duan et al., 2016; Henderson et al., 2018). Recently
multiple extensions to DDPG have been proposed to im-
prove performance, most notably Twin Delayed Deep Deter-
ministic Policy Gradients (TD3) (Fujimoto et al., 2018) and
Soft Q-Learning (SQL)/Soft Actor-Critic (SAC) (Haarnoja
et al., 2017; 2018b).

TD3 proposes several additions to the DDPG algorithm
to reduce function approximation error: it adds a second
Q-function to prevent over-estimation bias from being prop-
agated through the target Q-values and injects noise into the
target actions used for Q-function bootstrapping to improve
Q-function smoothness. The resulting algorithm achieves
significantly improved performance relative to DDPG, and
we use their improvements to the Q-function training algo-
rithm as a baseline for CGP.

In parallel with TD3, (Haarnoja et al., 2018b) proposed Soft
Actor Critic as a way of improving on DDPG’s robustness
and performance by using an entropy term to regularize the
Q-function and the reparametrization trick to stochastically
sample the Q-function, as opposed to DDPG and TD3’s
deterministic policy. SAC and the closely related Soft Q-
Learning (SQL) (Haarnoja et al., 2017) have been applied
successfully for real-world robotics tasks (Haarnoja et al.,
2018c;a).

Several other recent works propose methods that use CEM
and stochastic sampling in RL. Evolutionary algorithms take
a purely sample-based approach to fitting a policy, including
fitting the weights of neural networks, such as in (Salimans
et al., 2017), and can be very stable to train, but suffer
from very high computational cost to train. Evolutionary
Reinforcement Learning (ERL) (Khadka & Tumer, 2018)
combines evolutionary and RL algorithms to stabilize RL
training. CEM-RL (Pourchot & Sigaud, 2019) uses CEM
to sample populations of policies which seek to optimize
actions for a Q-function trained via RL, while we optimize
the Q-function actions directly via CEM sampling similar
to Qt-Opt (Kalashnikov et al., 2018).

There exists other recent work that aims to treat learning a
policy as supervised learning (Abdolmaleki et al., 2018b;a;
Wirth et al., 2016). Abdolmaleki et al. propose a formula-
tion of policy iteration that samples actions from a stochastic
learned policy, then defines a locally optimized action prob-
ability distribution based on Q-function evaluations, which
is used as a target for the policy to learn (Abdolmaleki et al.,
2018b;a).

The baseline for our method is modeled after the CEM
method used in the Qt-Opt system, a method described by
(Kalashnikov et al., 2018) for vision-based dynamic ma-
nipulation trained mostly off-policy on real robot data. Qt-
Opt eschews the use of a policy network as in most other
continuous-action Q-learning methods, and instead uses
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CEM to directly sample actions that are optimal with respect
to the Q-function for both inference rollouts and training.
They describe the method as being stable to train, particu-
larly on off-policy data, and demonstrate its usefulness on a
challenging robotics task, but do not report its performance
on standard benchmark tasks or against other RL meth-
ods for continuous control. We base our CEM sampling
of optimal actions on their work, generalized to MuJoCo
benchmark tasks, and extend it by learning a deterministic
policy for use at inference time to improve performance and
computational complexity, avoiding the major drawback of
the method- the need to perform expensive CEM sampling
for every action at inference time (which must be performed
in real time on robotic hardware).

3. Notation and Background
We describe here the notation of our RL task, based on the
notation defined by Sutton and Barto (Sutton & Barto, 1998).
Reinforcement learning is a class of algorithms for solving
Markov Decision Problems (MDPs), typically phrased in
the finite time horizon case as an agent characterized by
a policy π taking actions at in an environment, with the
objective of maximizing the expected total reward value
E
∑T
t=1 γ

tr(st, at) that agent receives over timesteps t ∈
{1 . . . T} with some time decay factor per timestep γ. To
achieve this, we thus seek to find an optimal policy π∗ that
maximizes the following function:

J(π) = Es,a∼π[
T∑
t=1

γtr(st, at)]

A popular class of algorithms for solving this is Q-learning,
which attempts to find an optimal policy by finding a func-
tion

Q∗(st, at) = r(st, at) + γmaxat+1
(Q∗(st+1, at+1))

which satisfies the Bellman equation (Sutton & Barto,
1998):

Q(s, a) = r(s, a) + E[Q(s′, a′)], a′ ∼ π∗(s′)

Once Q∗ is known π∗ can easily be defined as π∗(s) =
argmaxa(Q

∗(s, a)). Q-learning attempts to learn a function
Qθ that converges to Q∗, where θ is the parameters to a
neural network. Qθ is often learned through bootstrapping,
wherein we seek to minimize the function

J(θ) = Es,a[(Qθ − [r(s, a) + γmaxa′(Q̂(s′, a′))])2]

where Q̂ is a target Q-function, here assumed to be a time
delayed version of the current Q-function, Q̂θ̂(Mnih et al.,
2016).

To use the above equation, it is necessary to define a func-
tion π(s) which computes argmaxa(Q(s, a)). In discrete

Algorithm 1 Cross Entropy Method Policy (πCEM) for Q-
Learning

Input: state s, Q-function Q, iterations N , samples n,
winners k, action dimension d
µ← 0d

σ2 ← 1d

for t = 1 to N do
A← {ai : ai

i.i.d.∼ N (µ,σ2)}
Ã← {ãi : ãi = tanh(ai)}
Q ← {qi : qi = Q(ãi)}
I ← {sort(Q)i : i ∈ [1, . . . , k]}
µ← 1

k

∑
i∈I ai

σ̂2 ← Vari∈I(ai)
σ2 ← σ̂2

end for
return ã∗ ∈ Ã such that Q(ã∗) = maxi∈I Q(ãi)

action spaces, π(s) is trivial, since argmaxa can be com-
puted exactly by evaluating each possible a with Q. In
continuous-valued action spaces, such a computation is in-
tractable. Further, as most neural network Q-functions are
highly non-convex, an analytical solution is unlikely to ex-
ist. Various approaches to solving this optimization prob-
lem have been proposed, which have been shown to work
well empirically. (Lillicrap et al., 2015) show that a neural
network function for sampling actions that approximately
maximize the Q-function can be learned using gradients
from the Q-function. This approach forms the basis of much
recent work on continuous action space Q-learning.

4. From Sampling-based Q-learning to
Cross-Entropy Guided Policies (CGP)

In this section, we first describe an established method for
using a sampling-based optimizer to optimize inputs to a
Q-function which can be used as a policy to train the Q-
function via standard Q-learning. We then present two novel
methods for training deterministic policies separately from
the Q-function.

4.1. Q-Learning with Sampling-Based Policies

The basis for our method is the use of a sampling-based
optimizer to compute approximately optimal actions with re-
spect to a givenQ function and a given state s. Formally, we
define the policy πSQ(s) = SQ(s), where SQ is a sampling-
based optimizer that approximates argmaxaQ(s, a) for ac-
tion a and state observation s. We can then train a Q-
function Qθ parameterized by the weights of a neural net-
work using standard Q-learning as described in Section 3 to
minimize:

J(θ) = Es,a[(Qθ − [r(s, a) + γQ̂(s′, πSQ̂θ
(s′))])2]
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Figure 1. Both CGP and QGP utilize the same training method to train their respective Q-functions. However, in CGP (left) we regress
πCGP on the L2-norm between the current πCGP and the CEM-based policy πCEM . In QGP (right), we train πQGP to maximize Q
given st by directly performing gradient ascent on Q.

The choice of sampling-based optimizer SQ can have a sig-
nificant impact on the quality of the policy it induces, and
therefore has a significant impact on the quality of Qθ after
training - while we leave the exploration of optimal sam-
pling methods to future work, we used a simple instantiation
of the Cross-Entropy method (CEM), which was empirically
demonstrated by Kalashnikov et al. to work well for certain
continuous-control tasks (Kalashnikov et al., 2018). In this
formulation, each action vector is represented as a collection
of independent Gaussian distributions, initially with mean
µ = 1 and standard deviation σ = 1. These variables are
sampled n times to produce action vectors a0, a1, ..., an−1,
which are then scored byQ. The top k scoring action vectors
are then used to reparameterize the Gaussian distributions,
and this process is repeated N times. For brevity, we refer
to this policy as πCEM. The full algorithm can be found in
Algorithm 1.

4.2. Imitating πCEM with a Deterministic Policy

While πCEM is competitive with learned policies for sam-
pling the Q-function (described in Section 5), it suffers from
poor runtime efficiency, as evaluating many sampled actions
is computationally expensive, especially for large neural net-
works. Further, there is no guarantee that sampled actions
will lie in a local minimum of the Q-value energy landscape
due to stochastic noise. Our main methodological contribu-
tion in this work, formalized in Algorithm 2, is the extension
of πCEM by training a deterministic neural network policy
πφ(s) to predict an approximately optimal action at infer-
ence time, while using πCEM to sample training data from
the environment and to select bootstrap actions for training
the Q-function.

A single evaluation of πφ is much less expensive to com-
pute than the multiple iterations of Q-function evaluations

required by πCEM. Even when evaluating CEM samples
with unbounded parallel compute capacity, the nature of
iterative sampling imposes a serial bottleneck that means
the theoretical best-case runtime performance of πCEM will
be N times slower than πφ. Additionally, as πCEM is inher-
ently noisy, by training πφ on many approximately optimal
actions from πCEM(s) evaluated on states from the replay
buffer, we expect that, for a given state s and Qθ, πφ will
converge to the mean of the samples from πCEM, reducing
policy noise at inference time.

While the idea of training an inference-time policy to pre-
dict optimal actions with respect to Qθ is simple, there are
several plausible methods for training πφ. We explore four
related methods for training πφ, the performance of which
are discussed in Section 5. The high-level differences be-
tween these methods can be found in Figure 1.

4.2.1. Q-GRADIENT-GUIDED POLICY

A straightforward approach to learning πφ is to use the same
objective as DDPG (Lillicrap et al., 2015):

J(φ) = Es∼ρπCEM (∇πφQθ(s, πφ(s)))

to optimize the weights φ off-policy usingQθ and the replay
data collected by πCEM. This is the gradient of the policy
with respect to the Q-value, and for an optimal Q should
converge to an optimal policy. Since the learned policy
is not used during the training of the Q-function, but uses
gradients from Q to learn an optimal policy, we refer to this
configuration as Q-gradient Guided Policies (QGP), and
refer to policies trained in this fashion as πQGP. We tested
two versions of this method, an “offline” version where
πφ is trained to convergence on a fixed Q-function and
replay buffer, and an “online” version where πφ is trained in
parallel with the Q-function, analogous to DDPG other than
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Algorithm 2 CGP: Cross-Entropy Guided Policies

TRAINING
Initialize Q-functions Qθ1 , Qθ2 and policy πφ with ran-
dom parameters θ1, θ2, φ, respectively
Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2, φ

′ ← φ

Initialize CEM policies πQθ1CEM, π
Qθ′1
CEM

Initialize replay buffer B
Define batch size b
for e = 1 to E do

for t = 1 to T do
Step in environment:
Observe state st
Select action at ∼ π

Qθ1
CEM(st)

Observe reward rt, new state st+1

Save step (st, at, rt, st+1) in B
Train on replay buffer (j ∈ 1, 2):
Sample minibatch (si, ai, ri, si+1) of size b from B
Sample actions ãi+1 ∼ π

θ′1
CEM

Compute q∗ = ri + γminj∈1,2Qθ′j (si+1, ãi+1)

Compute losses `Qj =
(
Qθj (si, ai)− q∗

)2
CGP loss: `CGP

π = (πφ(si)− πθ1CEM(si))
2

QGP loss: `QGP
π = −Qθ1(si, πφ(si))

Update θj ← θj − ηQ∇θj `Qj
Update φ← φ− ηπ∇φ`π
Update target networks:
θ′j ← τθj + (1− τ)θ′j , j ∈ 1, 2
φ′ ← τφ+ (1− τ)φ′

end for
end for
INFERENCE
for t = 1 to T do

Observe state st
Select action at ∼ πφ(st)
Observe reward rt, new state st+1

end for

that πφ is not used to sample the environment or to select
actions for Q-function bootstrap targets. We refer to these
variants as QGP-Offline and QGP-Online respectively.

4.2.2. CROSS-ENTROPY-GUIDED POLICY

However, as shown in Figure 3, while both variants that
train πφ using the gradient of Qθ can achieve good perfor-
mance, their performance varies significantly depending on
hyperparameters, and convergence to an optimal (or even
good) policy does not always occur. We hypothesize that the
non-convex nature of Qθ makes off-policy learning some-
what brittle, particularly in the offline case, where gradient
ascent on a static Q-function is prone to overfitting to lo-
cal maxima. We therefore introduce a second variant, the
Cross-Entropy Guided Policy (CGP), which trains πφ using

an L2 regression objective

J(φ) = Est∼ρπCEM (∇πφ ||πφ(st)− πCEM(st)||2)

This objective trains πφ to imitate the output of πCEM with-
out relying on CEM for sampling or the availability of Qθ
at inference time. If we assume πCEM is an approximately
optimal policy for a given Qθ (an assumption supported by
our empirical results in Section 5), this objective should
converge to the global maxima of Qθ, and avoids the lo-
cal maxima issue seen in QGP. As πCEM can only be an
approximately optimal policy, CGP may in theory perform
worse than QGP since QGP optimizes Qθ directly, but we
show that this theoretical gap does not result in diminished
performance. Moreover, we demonstrate that CGP is signif-
icantly more robust than QGP, especially in the offline case.
We explore both online and offline versions of this method
similar to those described for QGP.

While QGP and CGP are compatible with any Q-learning
algorithm, to improve performance and training stability
further we combine them with the TD3 Q-learning objective
described in (Fujimoto et al., 2018), which adds a second
Q-function for target Q-value computation to minimize func-
tion approximation error, among other enhancements. Our
method of using πCEM to sample actions for Q-function
training and training πφ for use at inference time is agnostic
to the form of the Q-function and how it is trained, and could
be combined with future Q-learning methods. Pseudocode
for the full CGP method can be found in Algorithm 2.

5. Experiments
To characterize our method, we conduct a number of experi-
ments in various simulated environments.

5.1. Experiment Setup

Our experiments are intended to highlight differences be-
tween the performance of CGP and current state-of-the-art
methods on standard RL benchmarks. We compare against
DDPG, TD3, Soft Actor-Critic (SAC), and an ablation of
our method which does not train a deterministic policy but
instead simply uses πCEM to sample at test time similar to
the method of (Kalashnikov et al., 2018). To obtain con-
sistency across methods and with prior work we used the
author’s publicly available implementations for TD3 and
SAC, but within our own training framework to ensure con-
sistency. We attempt to characterize the behavior of these
methods across multiple dimensions, including maximum
final reward achieved given well-tuned hyperparameters, the
robustness of the final reward across diverse hyperparam-
eters, the stability of runs within a given hyperparameter
set, and the inference time computational complexity of the
method.
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We assess our method on an array of continuous control
tasks in the MuJoCo simulator through the OpenAI gym
interface, including HalfCheetah-v2, Humanoid-v2, Ant-
v2, Hopper-v2, Pusher-v2 (Brockman et al., 2016). These
tasks are intended to provide a range of complexity, the
hardest of which require significant computation in order to
achieve good results. The dimensionality of the action space
ranges from 2 to 17 and the state space 8 to 376. Because of
the large amount of computation required to train on these
difficult tasks, robustness to hyperparameters is extremely
valuable, as the cost to exploring in this space is high. For
similar reasons, stability and determinism limit the number
of repeated experiments required to achieve an estimate of
the performance of an algorithm with a given degree of
certainty. In order to test robustness to hyperparameters,
we choose one environment (HalfCheetah-v2) and compare
CGP with other methods under a sweep across common
hyperparameters. To test stability, we perform 4 runs with
unique random seeds for each hyperparameter combination.
Each task is run for 1 million time steps, with evaluations
every 1e4 time steps.

After tuning hyperparameters on HalfCheetah-v2, we then
selected a single common ”default” configuration that
worked well on each method, the results of which for
HalfCheetah-v2 are shown in Figure 2. We then ran this
configuration on each other benchmark task, as a form of
holdout testing to see how well a generic set of hyperparam-
eters will do for unseen tasks.

We also include several variants of our method, as described
in Section 4.2. We compare robustness and peak perfor-
mance for both online and offline versions of CGP and
QGP.

5.2. Comparisons

Performance on standard benchmarks When run on 5
different standard benchmark tasks for continuous-valued
action space learning (HalfCheetah-v2, Humanoid-v2,
Hopper-v2, Pusher-v2, and Ant-v2), CGP achieves max-
imum reward competitive with the best methods on that task
(with the exception of Ant-v2, where TD3 is a clear winner).
Importantly, CGP performed consistently well across all
tasks, even though its hyperparameters were only optimized
on one task- in all tasks it is either the best or second best
method. Other methods (i.e. SAC and TD3) perform well
on one task with the given set of hyperparameters, such
as TD3 on Ant-v2 or SAC on Humanoid-v2, but perform
poorly on one or more other tasks, as TD3 performs poorly
on Humanoid-v2 and SAC on Ant-v2. We note that for
each method better performance can be achieved using hy-
perparameters tuned for the task (for example, Haarnoja
et al. report much better performance on Humanoid-v2 us-
ing task-specific hyperparameters (Haarnoja et al., 2018d)),

but as we are interested in inter-task hyperparameter robust-
ness we do not perform such tuning. Additionally, even
though CGP is based on the Q-function used in the TD3
method, it greatly outperforms TD3 on complex tasks such
as Humanoid-v2, suggesting that the CEM policy is more
robust across tasks. See Figure 2 for details.

Stability across runs Across a wide range of hyperpa-
rameters (excluding very large learning rate ≥ 0.01), CGP
offers a tight clustering of final evaluation rewards. Other
methods demonstrated higher-variance results, where indi-
vidual runs with slightly different hyperparameters would
return significantly different run distributions. To arrive at
this conclusion, we ran a large battery of hyperparameter
sweeps across methods, the detailed results of which can
be observed in Appendix A of the supplement. We con-
sider CGP’s relative invariance to hyperparameters that are
sub-optimal one of its most valuable attributes; we hope
that it can be applied to new problems with little or no
hyperparameter tuning.

Robustness across hyperparameters We evaluated the
robustness of each method over hyperparameter space, us-
ing a common set of hyperparameter configurations (with
small differences for specific methods based on the method).
For most hyperparameters, we held all others fixed while
varying only that parameter. We varied learning rate (LR)
and batch size jointly, with smaller learning rates matching
with smaller batch sizes, and vice versa. We varied LR
among the set {0.01, 0.001, 0.0001}, and batch size among
{256, 128, 64, 32}. We also independently varied the size
of the network in {512, 256, 128, 32}. For methods using
random sampling for some number of initial timesteps (CGP
and TD3), we varied the number in {0, 1000, 10000}, and
for those which inject noise (all other than SAC) we varied
the exploration and (for CGP and TD3) next action noise in
{0.05, 0.1, 0.2, 0.3}. We evaluated CGP entirely with no
exploration noise, which other methods using deterministic
policies (TD3, DDPG) cannot do while remaining able to
learn a non-trivial policy. The overall results of these sweeps
can be seen in Figure 3, while detailed results breaking the
results down by hyperparameter are in the supplement.

Overall, we see that while CGP does not perform as well
in the top quartile of parameter sweeps, it displays a high
degree of stability over most hyperparameter combinations,
and displays better robustness than SAC in the lower half
of the range and DDPG everywhere. CGP also performs
slightly better for almost all states than the CEM policy it
learns to imitate. The failure cases in the tail were, specifi-
cally, too high a learning rate (LR of 0.01, which is a failure
case for CGP but not for CEM) and less initial random sam-
pling (both 0 and 1000 produced poor policies for some
seeds).
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Figure 2. Performance of various methods (CGP, SAC, DDPG, and TD3) on OpenAI Gym benchmark tasks, simulated in a MuJoCo
environment. We note that in all cases CGP is either the best or second best performing algorithm, while both TD3 and SAC perform
poorly on one or more tasks, and DDPG fails to train stably on most tasks. The thick lines represent the mean performance for a method
at step t across 4 runs, and upper and lower respectively represent the max and min across those runs. Parameters for each method
were optimized on the HalfCheetah-v2 benchmark, and then applied across all other benchmark tasks. Due to high variance we applied
smoothing to all trend lines for all methods for Hopper-v2.

Inference speed and training efficiency We bench-
marked the training and inference runtime of each method.
We computed the mean over 10 complete training and infer-
ence episodes for each method with the same parameters.
The results can be found in Table 1. CEM-2, CGP-2, CEM-
4, and CGP-4 refer to the number of iterations of CEM
used(2 or 4). πCGP greatly outperforms πCEM at inference
time, and performs the same at training time. Other methods
are faster at training time, but run at the same speed at infer-
ence time Importantly, the speed of πCGP at inference time
is independent of the number of iterations of CEM sampling
used for training.

5.3. CGP Variants

We consider several variants of our method, as detailed in
Section 4.2. We ran each variant on a suite of learning rate
and batch size combinations to evaluate their robustness.
We tested LR values in {0.001, 0.0001} and batch sizes in
{32, 128, 256}. See Figure 4 for a comparison of all runs
performed.

CGP versus QGP The source of the supervision signal is
a critical determinant of the behavior of the policy. Thus it

Table 1. Runtime in average seconds per episode of HalfCheetah-
v2 (without rendering) on an otherwise-idle machine with a Nvidia
GTX 1080 ti GPU. CGP achieves a constant inference runtime
independent of the number of CEM iterations used, which matches
the performance of other methods.

METHOD MEAN TRAIN (S) MEAN INFERENCE (S)

RANDOM - 0.48
DDPG 5.75 2.32
TD3 5.67 2.35
SAC 11.00 2.35
CEM-2 7.1 6.3
CEM-4 9.3 10.1
CGP-2 11.03 2.35
CGP-4 14.46 2.35

is important to compare the performance of the policy when
trained to directly optimize the learned Q-function and when
trained to imitate CEM inference on that same policy. We
find that directly optimizing the learned Q-function suffers
from more instability and sensitivity to chosen hyperparame-
ters, particularly when learning offline. In comparison, both
CGP variants train well in most cases. This suggests that
the CEM approximation to the policy gradient is not only a
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Figure 3. Stability of various methods on the HalfCheetah-v2
benchmark task. This figure shows the percentage of runs across
all hyperparameter configurations that reached at least the indi-
cated reward level. Each hyperparameter set was run for 1000
episodes, with 4 replicates for each run. The same hyperparameter
sets were used across methods. While CGP is outperformed with
optimized parameters, its performance decays much slower for
sub-optimal configurations.

reasonable approximation but is also easier to optimize than
the original gradient.

Online versus Offline Another dimension of customiza-
tion of CGP is the policy training mode; training can either
be online (train the policy function alongside the Q-function,
with one policy gradient step per Q-function gradient step)
or offline (train only at the end of the Q-function training
trajectory). An advantage of the CGP method is that it per-
forms similarly in both paradigms; thus, it is suitable for
completely offline training when desired and online learning
when the Q-function is available during training.

We find that the online training runs of both CGP and QGP
are mildly better than offline training. This result is some-
what intuitive if one considers the implicit regularization pro-
vided by learning to optimize a non-stationary Q-function,
rather than a static function, as in the offline learning case.
Ultimately, CGP is effective in either regime.

6. Discussion
In this work, we presented Cross-Entropy Guided Policies
(CGP) for continuous-action Q-learning. We show that
CGP is robust and stable across hyperparameters and ran-
dom seeds, competitive in performance when compared
with state of the art methods, as well as both faster and more
accurate than the underlying CEM policy. We demonstrate
that not only is CEM an effective and robust general-purpose
optimization method in the context of Q-learning, it is an ef-
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Figure 4. Stability of variants of CGP, as measured by the percent
of runs across all hyperparameter configurations tested reaching
at least the total reward given on the y-axis. Three of the four
methods (CGP-Online, CGP-Offline, and QGP-Online) performed
roughly equivalently in the upper quartiles, while CGP-Online
performed better in the bottom quartile.

fective supervision signal for a policy, which can be trained
either online or offline. Our findings support the conven-
tional wisdom that CEM is a particularly flexible method for
reasonably low-dimensional problems (Rubinstein, 1997),
and our findings suggest that CEM remains effective even
for problems that have potentially high-dimensional latent
states, such as Q-learning.

We would also like to consider more of the rich existing
analysis of CEM’s properties in future work, as well as
explore other sample-based algorithms for optimizing the
actions of Q-functions, such as covariance matrix adaptation
(Hansen & Ostermeier, 2001). Another direction to explore
is entropy-based regularization of the Q-function similar to
SAC (Haarnoja et al., 2018d), which may further improve
stability and make the Q-function easier to optimize, as an
entropy objective encourages Q-value smoothness.

We believe that there is potential for further gains in stable
and robust continuous action Q-learning through sampling
methods. While such developments may come at a compu-
tational cost, our success in training inference-time policies
shows that by doing so we achieve runtime performance
comparable to other non-sampling methods independent of
sampling compute times. Therefore, we believe that sample-
based Q-function optimization represents a promising new
direction for continuous-action Q-learning research that of-
fers unique advantages and can combine well with other
Q-learning methods.
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