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ABSTRACT

We present a novel approach to train a natural media painting using reinforce-
ment learning. Given a reference image, our formulation is based on stroke-based
rendering that imitates human drawing and can be learned from scratch without
supervision. Our painting agent computes a sequence of actions that represent
the primitive painting strokes. In order to ensure that the generated policy is
predictable and controllable, we use a constrained learning method and train the
painting agent using the environment model and follows the commands encoded
in an observation. We have applied our approach on many benchmarks and our
results demonstrate that our constrained agent can handle different painting media
and different constraints in the action space to collaborate with humans or other
agents.

1 INTRODUCTION

Throughout human history, painting has been an essential element of artistic creation. There are
many diverse and complex artistic domains with various styles such as watercolor, oil painting,
sketching, and so on. As image processing and computer graphics have advanced, there has been
a considerable effort to simulate these styles using non-photorealistic rendering (NPR) techniques
(Kumar et al. (2019)). Hertzmann (1998); Winkenbach & Salesin (1996) generate compelling results
using stroke-based rendering. However, most prior methods in NPR are engineered for a specific
application or task, and cannot easily adapt to new styles or medium.

Recent developments in machine learning have resulted in significant advancements in computer
vision and computer graphics, including computer-based painting systems. Many visual genera-
tive methods based on generative adversarial networks (Goodfellow et al. (2014)) as Zhu et al.
(2017); Zhou et al. (2018); Huang et al. (2018); Karras et al. (2017); Sangkloy et al. (2017) have
demonstrated promising results. Many of these machine learning methods have also been applied to
stroke-based rendering tasks, including modeling the brush (Xie et al. (2012); Zheng et al. (2019)),
generating brushstroke paintings in an artist’s style (Xie et al. (2015)), reconstructing drawings for
specific paintings styles (Tang et al. (2018)), and constructing stroke-based drawings (Ha & Eck
(2017a); Zhou et al. (2018); Huang et al. (2019); Jia et al. (2019a)).

In this paper, we focus on a more general and challenging problem of training a natural media paint-
ing agent for interactive applications. Given a reference image, our goal is to develop a stroke-based
rendering approach that can imitate the human drawing or strokes used in generating the image. A
key challenge is to develop a method that can learn from scratch without any supervision. In this
regard, we present a technique that can handle all inputs and train an agent to manipulate natural
painting media such as charcoal, pencil, watercolor, and so on. We build a model-based natural
media environment using deep CNN and train a natural media painting agent using model-based
reinforcement learning. In order to introduce controls to the agents for interactive applications, we
use a constraint representation along with a different framework for training and use the constrained
painting agent. These constraints enable the agent to interact with a human or other agents and
generate various styles without retraining the model. The novel contributions of our work include:

• A method to train an agent that produces a stream of actions subject to constraint for each
action. These constraints can include restricting the start location, stroke width, color, and
other stroke parameters.
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• A method to roll out constrained agents so the user can produce new stylistic effects inter-
actively or automatically, as the agent is painting by modulating the action stream.
• By incorporate coarse-to-fine strategy, our painting agents can generate high-resolution

stylized images using various constraints and paintbrush configurations.

We evaluate our algorithm on different paintbrush configurations and datasets to highlights its ben-
efits over prior reinforcement learning based methods. We also employ differing constraint settings
to validate our constrained agents and produce new stylistic effects with a single trained model.

2 RELATED WORK

In this paper, we focus on the stroke-based rendering problem, which renders the reference image
with brush strokes. In contrast to image analogy approaches (Hertzmann et al. (2001); Gatys et al.
(2015); Vondrick et al. (2016); Zhu et al. (2017); Karras et al. (2017); Sangkloy et al. (2017); Li
et al. (2017; 2018)), stroke-based approaches can generate intermediate painting states for interactive
purposes. They can also be deployed in various painting environment to generate different artistic
effects.

One category of approaches for stroke-based rendering uses a heuristics-based method to guide
the agent while painting. Notable examples include the method in Winkenbach & Salesin (1996),
which can produce stylized illustrations, and the method in Hertzmann (1998), which can reproduce
a colorful painting in different styles. However, it is difficult to extend these methods to different
styles of painting because of the hand-engineered features.

Another category of approaches uses machine learning techniques to learn the policy. Compared
with predefined policies, these methods use machine learning techniques to learn the painting policy,
which enables the agent to generate a more natural result. Ha & Eck (2017b) train an RNN to learn
the latent space of the sketch data and generate the paintings in this latent space, which requires the
paired dataset for training.

Other approaches use deep reinforcement learning to learn the policy without supervised data. There
have been a few attempts to tackle related problems in this domain. Xie et al. (2012; 2015; 2013)
propose a series of works to simulate strokes using reinforcement learning and inverse reinforcement
learning. These prior approaches learn a policy either from reward functions or expert demonstra-
tions. Comparing with these approaches, we use a more general setup which does not rely on rewards
engineering.

Zhou et al. (2018) is based on the Deep Q network. Ganin et al. (2018) trains the discriminator
and the reinforcement learning framework at the same time. However, both methods can work on
either a small action space or a small observation space. Jia et al. (2019b;a) use proximal policy
optimization with curriculum learning and self-supervision to gradually increase the sampled action
space and the frequency of positive rewards. Zheng et al. (2019) train a differentiable painting
environment model, which helps learn the painting policy with gradient-based methods. Huang
et al. (2019) train a model-based RL using differentiable environment and DDPG (Lillicrap et al.
(2015)). This approach is limited by the OpenCV based renderer and the uncontrollable agent.

3 OVERVIEW

An overview of our approach is given in Fig. 1 This includes the training phase and extracting the
underlying neural network as the painting agent is used for the roll-out process. We highlight all the
symbols used in the paper in Table 1.

In section 4, we present the details of natural media painting agent with a environment model for
the agent to interact. Our approach is based on the training scheme described in Huang et al. (2019)
and uses Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. (2015)) to train the model-
based painting agent. For the roll-out algorithm, we apply the painting agent directly to the real
environment Rr as shown in Figure 1. In section 5, we present our representation of the underlying
constraints and the underlying techniques to encode and decode these constraints using reinforce-
ment learning. We use the unconstrained agent to identify the constraints, and encode them as
observations to train the constrained painting agent, as shown in Figure 3. In order roll out the
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Table 1: Notation Summary
Symbol Meaning Symbol Meaning

t step index st current painting state of step t, canvas
s∗ target painting state, reference image ŝ∗ reproduction of s∗
ct constraint of step t ot observation of step t
at action of step t, at = [αt, lt, wt, ct] rt reward of step t
qt accumulated reward of step t γ discount factor for computing the reward
π painting policy, predict a by o Vπ value function of the painting policy,

predict r by o
R(at, st) render function, render action to st O(s∗, st) observation function, encode the current

state and the target state
Rr real renderer Rn neural renderer

L(s, s∗) loss function, measuring distance between
state s and objective state s∗

constrained agent, we replace the unconstrained agent with user defined constraints or the action of
previous step.

Figure 1: Training the Natural Media Painting Agent (left): We use a actor-critic-based reinforce-
ment learning framework to train the painting agent. For each step, the current states of the canvas
and the reference image form the observation for the policy network. Based on the observation,
the painting agent predicts an action for the neural renderer Rn to execute and updates the canvas
accordingly. Roll-out of the Natural Media Painting Agent (right): We extract the actor neural net-
work as the painting agent for the roll-out process. We replace the neural renderer Rn with the real
renderer Rr to get the precise synthetic results.

4 NATURAL MEDIA PAINTING AGENT

In this section, we present our algorithm for training a natural media environment model and training
a painting agent to interact with this environment model.

4.1 RENDERER

The renderer of our painting agent generates the corresponding canvas by the given action, which
implements the blending functions and other synthetic programs. Unlike the previous learning-based
painting approaches Jia et al. (2019a); Huang et al. (2019); Zheng et al. (2019), we use a natural me-
dia painting renderer MyPaint (libmypaint contributors (2018)) for our experiment. Compared with
self-defined painting simulators, it provides rich visual effects and sophisticated blending functions.
Ganin et al. (2018) use the same environment but have not explored the various configurations of the
paintbrush. Using a pre-existing environment setup helps our approach concentrate on the learning
algorithm to make it easy to generalize.

4.2 ACTION REPRESENTATION

The action of our painting agent consists of the configurations it use to interact with the environ-
ment. For the action space, we follow the stroke definition of Ganin et al. (2018) using a quadratic
Bezier curve (QBC) of three points ((x0, y0), (x1, y1), (x2, y2)). Each stroke is a 3-point curve. The
pressure which affects the blending function is linear interpolated by the value of the start position
(x0, y0) and the end position (x2, y2). We use one color (R,G,B) for each stroke, and the trans-
parency of the pixels within the stroke is affected by the pressure (p0, p1). We use one brush size
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r for each stroke, and the actual stroke width within the stroke can also be affected by the pressure
(p0, p1). Formally, we represent the action at as:

at = (x0, y0, x1, y1, x2, y2, p0, p1, r, R,G,B) (1)

In practice, at ∈ R12. Each value is normalized to [0, 1]. The action is in a continuous space, which
makes it possible to control the agent precisely.

4.3 OBSERVATION REPRESENTATION

The observation of our painting agent consists of information to make decisions. In our setup,
the observation is represented by the reference image s∗, the current canvas st at step t, and the
constraint ct. Formally, ot = (s∗, st). For the constrained agent described in section 5, ot =
(s∗, st, ct). ct is a vector drawn from the sub-space of the action space. To unify the observation
representation for implementation, we upsample the constraint vector as a bitmap with size of st to
feed into the CNN of the policy network and the value network.

4.4 REWARD

Reward is a metric that enables our painting agent to measure effectiveness of the action. Aside
from the reinforcement learning algorithm, the definition of the reward can be seen as a guidance
for the policy π. For our problem, the goal of the painting agent is to reproduce the reference image
s∗. First, we define the loss function L between the current canvas st at step t and the reference
image s∗. In practice, we use l2 loss (Jia et al. (2019a)) and WGAN loss (Huang et al. (2019)) for
implementation. Then, we use the difference of the losses of two continuous steps as the reward rt.
We normalize rt using Eq.2, such that rt ∈ (−∞, 1].

rt =
L(st−1, s

∗)− L(st, s∗)
L(s0, s∗)

, (2)

where L is a loss function defined as l2 or WGAN. For our reinforcement learning setting, the
objective is to maximize the discounted accumulative rewards qt =

∑tmax

t=1 rtγ
t, where the discount

factor γ ∈ [0, 1]

4.5 ENVIRONMENT MODEL

For this painting environment, we use the rendering function R to represent the transition function.
The action only modifies the current painting state st with the current action at as st+1 = R(at, st).
Inspired by Huang et al. (2019) and Zheng et al. (2019), we model the behaviors of the real environ-
ment renderer Rr using a neural network as Rn. We use a 4-layer fully connected neural network
followed by 3 convolutional neural networks.

Figure 2: Environment Model We model the painting environment MyPaint(libmypaint contributors
(2018)) with different paintbrush configurations. The top row is rendered by the real renderer Rr
and the bottom row is rendered by the neural renderer Rn.
There are two main benefits of modeling the environment. First, the reinforcement learning algo-
rithm may have millions of steps, and it can be computationally expensive to use the real environ-
ment because of sophisticated synthetic algorithms. If we simplify the environment model, it can
save training time. Second, modeling the transition function of states using neural network makes
the entire framework differentiable, and the loss can be backpropagated through the renderer net-
work Rn.
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In practice, we model Rr by building a dataset consisting of paired data (at, st, st+1). To simplify
the problem, we always start from a blank canvas s0 so that the Rn only need to predict the stroke
image from a single action. At run-time, we synthesize the blending function by making the stroke
image transparent and adding it to the current canvas st. The paired dataset {a(i), s(i)} can be
collected by randomly sampling the ai and synthesising the corresponding si.

We treat different paintbrushes of MyPaint (libmypaint contributors (2018)) as separate models. It
is worth noting that we use the environment model Rn for the training process, but use the real
environment Rr for the roll-out process.

5 CONSTRAINED PAINTING AGENT

After we train the natural media painting agent, we make the agent controllable to handle interactive
scenarios and be used for generating stylized images.

To achieve this goal, one straightforward way is to constrain the agent with a modified action space.
However, this method is difficult to generalize to different constraints. For each different constraint
c in the same subspace C in action space A, the policy needs to be retrained. For example, if we
train a painting agent and constrain its stroke to width 0.8, we still need to train it again when we
need an agent to output a stroke with width 0.9.

In the rest of this section, we propose a constrained painting agent that, can follow any constraint c
drawn from the subspace of action space A. First, we define the constraint representation, including
the definition of the constraint, the encoding function, and the decoding function. Then we introduce
the training and roll-out schemes of the constrained agent.

5.1 CONSTRAINT REPRESENTATION

The constraint is the vector c in the constraint space C, which is the sub-space of the action space
A. While fixing the vector c, the agent has to explore the subtraction of A and C as A′ by sampling
a′ from A′ and concatenating with c:

a = a′ ⊕ c, a′ ∈ A′ = A− C, c ∈ C (3)

We can define C by selecting and combining dimensions in A. For example, we can constrain the
color of the stroke by defining C as the color space (R,G,B). We can constrain the start position
of the stroke by defining C as (x0, x1). We can constrain the stroke width of the stroke by defining
C as (r). Moreover, we can use the combination of the constraints to achieve complex effects.

As shown in Figure 3, the unconstrained agent takes the reference image and the current canvas
(s∗, st) as observation while the constrained agent takes the reference (s∗, st, ct) as an observation,
which has an additional constraint ct at step t. ct is a vector drawn from the sub-space of the action
space. To unify the observation representation for implementation, we encode the constraint vector
ct as a bitmap to feed into the CNN of the policy network and the value network.

To encode the constraint ct into observation, we upsample the constraint ct as a matrix c′t which has
the same size of s∗ and st, to stack them and feed into our policy network and our value network.
To decode the constraint c′t into ct, we implement a downsample module within the policy network.
The policy network pi can be seen as separate policy: πc and πa; πc outputs the downsampled
constraint c and πa outputs the constrained action a′. Then we concatenate a′ and c to form action
a.

Formally, we have ct = πc(c
′
t), a

′
t = πa(s

∗, st, c
′
t), and at = a′t ⊕ ct.

5.2 TRAINING THE CONSTRAINED PAINTING AGENT

After we introduce the constraint ct as part of the observation of the painting agent, we propose
the corresponding training scheme. Because the constraint representation is designed for interactive
purposes, we need to use either human experts or another agent to train the constrained agent.

As shown in Figure 3, we use an unconstrained agent to generate constraints by cascading them
together. For each step t, the unconstrained agent takes the reference image and the current canvas
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(s∗, st) as observations, and outputs the action a in action space A. Then we identify a subspace
in A as constraint space C and transfer at to ct, followed by upsampling the ct as c′t, as defined
in section 4. After that, the constrained agent takes the additional constraint c′t as an observation
(s∗, st, c

′
t) and outputs action at concatenated by ct and a′.

Figure 3: Framework for Training (Roll-out) the Constrained Agent We train the constrained agent
by cascading an unconstrained agent. First, we identify a subspace of the action space and extract
the constraint c from the action a. Then we upsample the constraint c and pass it on as an observation
of the constrained agent. We use Rn as renderer. For roll-out process (dashed line), we extract the
constraint from either the user defined constraint or the action of the previous step. We use real
renderer Rr to get the best visual quality.

5.3 ROLL-OUT CONSTRAINED PAINTING AGENT

For the roll-out of the constrained painting agent, we replace the unconstrained agent from the
training scheme in Figure 3 with the constraint extracted from either human command or a painting
agent’s output for each step t.

When the constraint is extracted from a human command, the agent can be ordered to place a paint
stroke with a given position (x0, y0), color (R,G,B), and stroke width r. When the constraint
is extracted from painting agent’s output, it can be seen that we split the one agent that explores
in entire action space A into two agents that explore separate action spaces A0 and A1, where
A = A0 +A1.

6 RESULT

6.1 NATURAL MEDIA PAINTING ENVIRONMENT MODEL

For training the natural media painting environment, we treat different paintbrushes as different
models. We run 50,000 iterations for each model and record the l2 loss on the validation dataset as
shown in Table 2. The learning curves of the training processes are shown in Figure 4 (left).

Table 2: l2 loss of paintbrush models

Paintbrush l2 Loss Paintbrush l2 Loss

charcoal 2.12× 10−3 impressionism 2.43× 10−3

pencil 8.37× 10−5 marker 5.01× 10−4

bulk 9.16× 10−4 dry brush 3.06× 10−3

calligraphy 5.92× 10−4 watercolor 1.16× 10−4

6.2 UNCONSTRAINED PAINTING AGENT

We train the unconstrained painting agent using the fixed envionment model with various dataset.
We use hand-written digits images (MNIST LeCun & Cortes (2010)), character images (KanjiVG
Apel (2014), face images (CelebA Liu et al. (2015), object images (ImageNet Deng et al. (2009))
as train painting agents. We run 10,000 episodes for each training task. Because of the difference
among the dataset, we use 5 strokes to reproduce hand-written digits images, 20 strokes to reproduce
character images, 100 strokes to reproduce face and object images.
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We measure the l2 loss between the reference images and reproduced images throughout the training
process shown as Figure 4(middle). The reproduced results is shown as Figure 5, and the corre-
sponding l2 loss is shown as Table 3(left).

Figure 4: l2 Loss over the Course of Training. We compute the l2 distance between the roll-out
results and the reference images on a validation dataset. (Left) is the course of training the neural
rendererRr using various paintbrush. (Middle) is the course of training the unconstrained agents us-
ing varisous dataset. (Right) is the course of training the constrained agents using various constraints
configurations.

Table 3: l2 training loss of training schemes

Training Scheme: Dataset l2 Loss Training Scheme: Constraint l2 Loss

MNIST 8.16× 10−3 width (r) 1.25× 10−2

KanjiVG 4.02× 10−2 start position (x0, y0) 1.43× 10−2

ImageNet 7.06× 10−3 color (R,G,B) 1.18× 10−2

CelebA 8.55× 10−3 all above (x0, y0, r, R,G,B) 1.63× 10−2

Figure 5: We trained our natural media painting agents using MNIST, KanjiVG, CelebA, and Ima-
geNet as reference images (left). We generate results (right) using Rr for the training and validating
process.
For the roll-out process, we employ a coarse-to-fine strategy to increase the resolution of the result
shown as Figure 6. First, we roll out the agent with a low-resolution reference image s∗ and get the
reproduction ŝ∗. Then we divide s∗ and ŝ∗ into patches and feed the agent as initial observation.
The roll-out results using various natural media are shown as Figure 7.

6.3 CONSTRAINED PAINTING AGENT

We train the constrained painting agents using the learning parameters as unconstrained painting
agents. We compute the l2 distance between the reference images and reproduce results for the
training process with various constraint configurations. To control variates, we use same neural
environmentRn (charcoal) and dataset (CelebA) for these experiments. We use the color (R,G,B),
the stroke width r, the start position (x0, y0) and all of them (x0, y0, r, R,G,B) as constraints.

The learning curves of these constraints are shown as Figure 4(right) and the l2 loss is shown as
Table 3(right). We demonstrate the constrained painting agents as Figure 2, which uses pencil as
paintbrush and incorporates coarse-to-fine strategy by dividing the reference images as 4×4 patches.
To constrain the color of strokes, we build a color palette by clustering the colors of the reference
image. For each action a, we constrain it from a color randomly selected from the color palette. To
constrain the stroke width, we use a constant stroke width for the roll-out process.
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Figure 6: Coarse-to-fine Roll-out We roll out the trained agent using a coarse-to-fine strategy. We
first roll out the model treating the reference image and canvas as one patch. Then we divide the
reference image and updated canvas into patches and feed to the agent. In this figure, we roll out
100 strokes in each patch.

Figure 7: Exemplary Result Results generated by the painting agent using different paintbrushes. We
demonstrate our natural media painting agent by rolling out agents trained with various paintbrushes
from MyPaint.

Figure 8: Roll-out Using Constrained Painting Agents We constrain the stroke width and the color
of the agent to get the stylized results.

7 CONCLUSION AND FUTURE WORK

In this paper, we train natural media painting agents that can generate artistic paintings using various
natural media, and collaborate with humans and other agents to get different visual effects. We
build a model of natural media environment using deep CNN and train a natural media painting
agent using model-based reinforcement learning. To introduce controls to the agents for interactive
purposes, we propose constraint representation, a framework for training a constrained painting
agent, and various roll-out schemes to apply the agent. We demonstrate our algorithm by applying
the trained model using various paintbrushes from MyPaint and constraints set up. The experimental
results show that our algorithm can reproduce reference images in multiple artistic styles.

For future work, we aim to extend the proposed algorithm by building a unified model for differing
paintbrush configuration. In addition, we will train a hierarchical agent that uses a constrained agent
as the low-level policy. We would like to apply our approach on other reference images and use for
interactive painting systems.
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A APPENDIX

Figure 9: Roll-out results using Various PaintbrushesWe roll out our natural media painting agents
trained with various brushes in MyPaint. To increase the resolutions of the generated images, we
incorporate the coarse-to-fine strategy. We use 8× 8 patches for first row and 4× 4 for second row.

Figure 10: Reproduction of Starry Night using Charcoal We roll out our natural media painting
agent trained with charcoal brush in MyPaint to reproduce Van Gogh’s starry night.We incorporate
the coarse-to-fine strategy by dividing the reference image and canvas into 16× 16 patches.
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Figure 11: Reproduction of Starry Night using Watercolor We roll out our natural media painting
agent trained with watercolor brush in MyPaint to reproduce Van Gogh’s starry night.We incorporate
the coarse-to-fine strategy by dividing the reference image and canvas into 16× 16 patches.
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