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ABSTRACT

This paper proposes a representational model for image pair such as consecutive
video frames that are related by local pixel displacements, in the hope that the model
may shed light on motion perception in primary visual cortex (V1). The model
couples the following two components. (1) The vector representations of local
contents of images. (2) The matrix representations of local pixel displacements
caused by the relative motions between the agent and the objects in the 3D scene.
When the image frame undergoes changes due to local pixel displacements, the
vectors are multiplied by the matrices that represent the local displacements. Our
experiments show that our model can learn to infer local motions. Moreover, the
model can learn Gabor-like filter pairs of quadrature phases.

1 INTRODUCTION

Our understanding of the primary visual cortex or V1 (Hubel & Wiesel, |1959) is still very limited
(Olshausen & Field, |2005). In particular, the mathematical and representational models for V1 are
still in short supply. Two prominent examples of such models are sparse coding (Olshausen & Field,
1997) and independent component analysis (ICA) (Bell & Sejnowski, [1997). Although such models
do not provide detailed explanations of V1 at the level of neuronal dynamics, they help us understand
the computational problems being solved by V1.

In this article, we propose a model of this sort. It is a representational model

of natural image pair that are related by local pixel displacements. The image M(5(z)) %
pair can be consecutive frames of a video sequence, where the local pixel () vess ()
displacements are caused by the relative motions between the agent and the )

objects in the 3D environment. Perceiving such local motions can be crucial \ /

for inferring ego-motion, object motions, and 3D depth information.

As is the case with existing models, we expect our model to explain only 2)
limited aspects of V1, some of which are: (1) The receptive fields of V1
simple cells resemble Gabor filters (Daugman), |1985). (2) Adjacent simple
cells have quadrature phase relationship (Pollen & Ronner, [1981). (3) The
V1 cells are capable of perceiving local motions. While existing models Figure 1: Scheme of
can all explain (1), our model can also account for (2) and (3) naturally. representation
Compared to models such as sparse coding and ICA, our model serves a

more direct purpose of perceiving local motions.

Our model consists of the following two components. See Figure[I|for an illustration, where the
image is illustrated by the big rectangle. A pixel is illustrated by a dot. The local image content is
illustrated by a small square around it. The displacement of the pixel is illustrated by a short arrow,
which is within the small square. The vector representation of the local image content is represented
by a long vector, which rotates as the image undergoes deformation due to the pixel displacements.
Section [3|explains the notation.

(1) Vector representation of local image content. The local content around each pixel is represented
by a high dimensional vector. Each unit in the vector is obtained by a linear filter. These local filters
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or wavelets are assumed to form a normalized tight frame, i.e., the image can be reconstructed from
the vectors using the linear filters as the basis functions.

(2) Matrix representation of local displacement. The change of the image from the current time frame
to the next time frame is caused by the displacements of the pixels. Each possible displacement is
represented by a matrix that acts on the vector. When the image changes according to the displace-
ments, the vector at each pixel is multiplied by the matrix that represents the local displacement, in
other words, the vector at each pixel is rotated by the matrix representation of the displacement of
this pixel.

One motivation of our work comes from Fourier analysis. An image patch I can be expressed by the
Fourier decompositionI = )", ¢ et {wr:?) - Assuming the image patch undergoes a smooth motion
so that all the pixels are shifted by a constant displacement dz, the shifted image patch J(z) =
I(x — dz) = Y, cre ¥ wrd2)¢i{wr:2)  The change from the complex number cj, to cpe ™ {@r:d2)
corresponds to rotating a 2D vector by a 2 x 2 matrix. However, we emphasize that our model does
not assume Fourier basis or its localized version such as Gabor filters. The model figures it out with
generic vector and matrix representations.

We train this representational model on image pairs where in each pair, the second image is a deformed
version of the first image, and the deformation is known. We learn the encoding matrices for vector
representation and the matrices that represent the pixel displacements from the training data.

Our experiments show that our method can learn V1-like units that can be well approximated by
Gabor filters with quadrature phase relationship. After learning the encoding matrices for vector
representation and the matrix representations of the displacements, we can infer the displacement
field using the learned model. Compared to current optical flow estimation methods (Dosovitskiy:
et al., 2015} [Iig et al., [2017), which use complex deep neural networks to predict the optical flow,
our model is much simpler and is based on explicit vector and matrix representations. We also
demonstrate comparable results to these methods, in terms of the inference of displacement field.

In terms of biological interpretation, the vectors can be interpreted as activities of groups of neurons,
and the matrices can be interpreted as synaptic connections. See subsections [4.3]and .4 for details.

2 CONTRIBUTIONS AND RELATED WORK

This paper proposes a simple representational model that couples the vector representations of local
image contents and matrix representations of local pixel displacements. The model is new and
different from existing models for V1. It explains some aspects of V1 simple cells such as Gabor-
like receptive fields and quadrature phase relationship. It adds to our understanding of V1 motion
perception in terms of a representational and relational model.

The following are two themes of related work.

(1) V1 models. Most well known models for V1 are concerned with statistical properties of natural
images or video sequences. Examples include sparse coding model (Olshausen & Field, |1997;
Lewicki & Olshausen| [1999; |Olshausen, 2003)), independent component analysis (ICA) (Hyvérinen
et al.,2004; Bell & Sejnowski, [1997; |van Hateren & Ruderman, |1998)), slowness criterion (Hyviarinen
et al., [2003; Wiskott & Sejnowskil, |2002)), and prediction (Singer et al.,[2018)). While these models
are very compelling, they do not serve a direct purpose of perceptual inference. Our model is learned
for the direct purpose of perceiving local motions caused by relative motion between the agent and
the surrounding 3D environment.

We want to emphasize that our model is complementary to the existing models for V1. Similar to
existing models, our work assumes a linear generative model for image frames, but our model adds
a relational component with matrix representation that relates the consecutive image frames. Our
model is also complementary to slowness criterion in that when the vectors are rotated by matrices,
the norms of the vectors may remain constant.

(2) Matrix representation. In representation learning, it is a common practice to encode the signals
or states as vectors. However, it is a much less explored theme to represent the motions, actions or
relations by matrices that act on the vectors. An early work in this theme is (Paccanaro & Hinton,
2001), which learns matrices to represent relations. More recently, (Jayaraman & Grauman, 2015)
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learns matrix representation for ego-motion. (Gao et al.l 2018) learns vector representation for
self-position and matrix representation for self-motion in a representational model for grid cells. Our
work constitutes a new development along this theme.

The matrix representation of local displacements in our work is partially inspired by the group
representation theory, where the group elements are represented by matrices acting on the vectors
(Fulton & Harris|, 2013). In our work, local displacements belong to 2D Euclidean group. Our
modeling of local motion dx is similar to the treatment of Lie group via Lie algebra by analyzing
infinitesimal changes. The objects in the image may undergo more complex motions which form
more complex Lie groups (e.g., rotations and translations). We can again represent the objects (e.g.,
their poses) in the scene by vectors, and represent the motions of the objects by matrices. The
representation theory underlies much of modern mathematics and holds the key to the quantum
theory (Zee, 2016)). Perhaps it also underlies the visual and motor cortex, where the neuron activities
encode vectors, and the synaptic connections encode the matrices that rotate them, with the matrices
representing motions, actions, and relations.

3 REPRESENTATIONAL MODEL

3.1 VECTOR REPRESENTATION

Let {I(z),z € D} be an image observed at a certain instant, where z = (z1,22) € D is the
2D coordinates of pixel. D is the image domain (e.g., 128 x 128). We represent the image I by
vectors {v(x),z € D_}, where each v(x) is a vector defined at pixel x, and D_ may consist of a
sub-sampled set of pixels in D (e.g., sub-sampled every 8 pixels). V = {v(x),2 € D_} forms a
vector representation of the whole image.

We assume the vector encoding is linear and convolutional. Specifically, let I[z] be a squared patch
(e.g., 16 x 16) of I centered at x. We can make I[x] into a vector (e.g., 256 dimensional). Let

v(z) = Wlz], x € D_, (D

be the linear encoder, where W is the encoding matrix that encodes I[z] into a vector v(z), and W is
the same for all z, i.e., convolutional. The rows of W are the linear filters and can be displayed as
local image patches of the same size as the image patch I[z]. We can write V' = W1, if we treat I as
a vector, and the rows of W are the shifted or translated versions of W.

3.2 NORMALIZED TIGHT FRAME AND ISOMETRY

We assume that W is an auto-encoding normalized tight frame, i.e.,
I=W'V, 2)

Thus, the linear filters for bottom-up encoding also serve as basis functions for top-down decoding.
Both the encoder and decoder can be implemented by convolutional linear neural networks.

The normalized tight frame assumption can be justified by the fact that for two images I and J,
we have (WI, WJ) = ITWTWJ = (I, J), that is, the vector representation preserves the inner
product. As a result, [|[WI|| = ||I||, ||[WJ|| = ||J||, thus the vector representation also preserves the
angle and has the isometry property.

When the image I changes from I; to I, its vector representation V' changes from V; to V;, 1, and
the angle between I; and I, is the same as the angle between V; and V;, ;.

3.3 SUB-VECTORS

The vector v(z) can be high-dimensional. We further divide v(x) into K sub-vectors, v(z) =
(v®) (), k = 1, ..., K). Each sub-vector is obtained by an encoding sub-matrix W *), i.e., v®) (z) =
W®I[z], k = 1,..., K, where W) consists of the rows of W that correspond to v(¥). According
to the normalized tight frame assumption, we have I =", S°% W™ Ty (). In practice,
we find that this assumption is necessary for the emergence of V1-like receptive field.
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3.4 MATRIX REPRESENTATION

Let I, be the image at time frame ¢. Suppose the pixels of I; undergo local displacements, where the
displacement at pixel x is 6(x). We assume that 6(x) is within a squared range A (e.g., [—6, 6] x
[—6, 6] pixels) that is inside the range of I;[x] (e.g., 16 x 16 pixels). Let I} be the resulting image.
Let v;(z) be the vector representation of I;[x], and let v; 11 (x) be the vector representation of I [x].

Then v;(z) = (v (2),k =1, ..., K), and vy 14 (z) = (01, (2), k = 1, .., K).

The transition from I, to I, is illustrated by the following diagram:

M (5(x))x
k k
v (@) —— o)

w k) 4 1 1+ W) 3)
6(x)
It —_— It+1
Specifically, we assume that
vt () = M® (§(2)of”(x), Vo € D_ k=1,... K. @)

That is, when I changes from I; to I, v(k)(z) undergoes a linear transformation, driven by
a matrix M*)(§(z)), which depends on the local displacement §(z). In terms of the whole
vector v(z) = (v®)(z),k = 1,..., K), we have v, 1(z) = M(5(x))v,(x), where M(5(z)) =
diag(M®) (§(z)), k = 1, ..., K) is the matrix representation of the local displacement §(z).

3.5 DISENTANGLED ROTATIONS

The linear transformations of the sub-vectors v(*) () can be considered as rotations. Here we use
the word “rotation” in the loose sense without strictly enforcing M (*) () to be orthogonal. v(z) is
like a multi-arm clock, with each arm v(¥)(z) rotated by M *) (§(xx)). The rotations of v(*)(z) for
different £ and x are disentangled. Here disentanglement means that the rotation of a sub-vector does
not depend on other sub-vectors.

The disentanglement between different positions x is the key feature of our model. Recall the change
of image I is caused by the displacement of pixels, yet the rotations of sub-vectors v(¥) (x) at different
pixels x are disentangled. This enables the agent to sense the displacement of a pixel only by sensing
the rotations of the sub-vectors at this pixel without having to establish the correspondences between
the pixels of consecutive frames.

3.6 PARAMETRIZATION

We can discretize the displacement § () into a finite set of possible values {J}, and we learn a separate
M) (5) for each 6. We can also learn a parametric version of M (¥)(§) as the second order Taylor

expansion of a matrix-valued function of § = (81, d), M¥)(§) = I + B%k)él + Bék)ég + Bﬁ)éf +
352)55 + B§§)5152, where T is the identity matrix, and B(*) = (B%lc)7 Bék), Bﬁ), Bég), Bg)) are
matrices of coefficients of the same dimensionality as M (¥ ().

3.7 LOCAL MIXING

If §(z) is large, v,fi)l (z) may contain information from adjacent image patches of I, in addition to

I;[z]. We can generalize the motion model in Equation (4)) to allow local mixing of encoded vectors.
Let S be a local support centered at 0. We assume that

v (@) = 3 M®(§(x), dz)o? (z + dx) 5)
dzeS

In the learning algorithm, we discretize dz and learn a separate M (¥)(§, dz) for each dz.
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4 LEARNING AND INFERENCE

The input data consist of the triplets (I, (6(x),x € D_),I,41), where (6(z)) is the given displace-
ment field. The learned model consists of matrices (W*) M *)(§),k =1, ..., K,§ € A), where A

is the range of 4. In the case of parametric M (¥), we learn the B matrices in the second order Taylor
expansion in subsection 3.6}

4.1 LOSS FUNCTIONS FOR LEARNING

We use the following loss functions:

(1) Rotation loss

2
Liox = HW(’“)IHl[I]fM(k)(5(x))W(k)It[x]H. (6)

For local mixing generalization, L1, x = ||[W "™ [2] — 34, cs MP (8(2), dz)W W (z + dx) H2

(2) Reconstruction loss

2 2

Ly = |[L— Y WIWL]| +|[Ty— Y W W] . (7)
zeD_ reD_

In the learning algorithm, we learn the model by a weighted sum of the expectations of
Zszl > wep. L1.ek and Ly, where the expectations are taken over the training pairs of images and
the corresponding displacement fields.

4.2 INFERENCE OF MOTION

After learning (W), M) (5), Yk, V5), for a testing pair (I, I;11), we can infer the pixel displace-
ment field (6(x), z € D_) by minimizing the rotation loss: 6(z) = arg maxsea L1 4(J), where

K 2
L1a(8) = > [WOLiafo] - MO@OWOLE]| = [Wliafe] - MOWLEE. ®)
k=1

This algorithm is efficient because it can be parallelized for all x € D_ and for all § € A.

If we learn a parametric model for M(*) (), we can infer the displacement field (6(z), V) by
minimizing ) L ,(0(x)) using gradient descent with an initialization of (d(x)) from random
small values. To encourage the smoothness of the displacement field, we can add the penalty term

[V ()]1*.

4.3 BIOLOGICAL INTERPRETATIONS OF CELLS AND SYNAPTIC CONNECTIONS

The learned (W *), M (*)(§)), Vk, §) can be interpreted as synaptic connections. For each &, W (*)
corresponds to one set of connection weights. Suppose § € A is discretized, then for each §, M) (§)
corresponds to one set of connection weights, and (M (%) (5),§ € A) corresponds to multiple sets of

connection weights. After computing vglfp) = WO, [x], M*) (6)1)15];) is computed simultaneously

for every § € A. Then §(x) is inferred by max pooling according to Equation (8).
(k)

P can be interpreted as activity of a

v, can be interpreted as activities of simple cells, and ||vt(];) |2
(k)

complex cell. If we enforce norm stability so that ||v,§km) | ~ [|v;31 .l then the complex cell response

is invariant to the local motion and is related to the slowness property (Hyvérinen et al.,2003; Wiskott
& Sejnowski, [2002), which is a by-product of our model if A/ (¥) (0) is a rotation matrix, which is
covariant with the local motion.
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4.4  SPATIOTEMPORAL FILTERS AND RECURRENT IMPLEMENTATION

If we enforce norm stability or the orthogonality of M (*)(§), then minimizing ||v 1 . — M (8)vy . ||?
over 0 € A is equivalent to maximizing (v¢41,,, M (§)ve, »), Which in turn is equivalent to maximizing
lver1.2 + M(8)ve||* so that vy 1, and M (8)v; . are aligned. This alignment criterion can be
conveniently generalized to multiple consecutive frames, so that we can estimate the velocity at x by
maximizing the m-step alignment score ||u||?, where

m m

w=Y MO ipia =Y M) WIy;[z] 9)
1=0

=0

consists of responses of spatiotemporal filters, and ||u||? corresponds to the energy of motion d in
the motion energy model (Adelson & Bergen, [1985) for direction selective cells. Thus our model
is connected with the motion energy model. Moreover, our model enables a recurrent network for
computing u by w; = vip; o+ M (§)u;—1 fori =0, ...,m, withu_q = 0, and u = w,,. This recurrent
implementation is much more efficient and biologically plausible than the plain implementation of
spatiotemporal filtering which requires memorizing all the I, ; for ¢ = 0, ..., m. See (Pachitariu &
Sahani,[2017) for a discussion of biological plausibility of recurrent implementation of spatiotemporal
filtering in general.

5 EXPERIMENTS

First, in section we introduce the datasets used to learn the models. Then in section we
show the learned Gabor-like units, and make connection with the spatial profile of simple cells in cat
and Macaque monkey in terms of neuroscience metrics, indicating the biological plausibility of the
learned units. Then in sections and [5.4] we show the learned representations can be applied to
infer displacement field reasonably well, and the representations can be trained either in a supervised
or unsupervised manner. Please refer to appendix [A]for the implementation details. In appendices
and [F] we illustrate that the learned representations are capable of two extra tasks, frame animation
and interpolation.

5.1 SYNTHETIC AND PUBLIC DATASETS

V1Deform. Usually it is difficult to get ground truth motions from natural video frames. Thus
we consider learning from image pairs with synthetic motions. First we consider random smooth
deformations for natural images. Specifically, We can obtain the training data by collecting static
images for (I;) and simulate the displacement field (§(x)). The simulated displacement field is then
used to transform I, to obtain I; ;. We retrieve natural images as I; from MIT places365 dataset
(Zhou et al., |2016). The images are scaled to 128 x 128. We sub-sample the pixels of images
into a m x m grid (m = 4 in the experiments), and randomly generate displacements on the grid
points, which serve as the control points for deformation. Then ¢(x) for € D can be obtained by
spline interpolation of the displacements on the control points. We get 1,1 by warping I, using J(x)
(Jaderberg et al., 2015)). When generating a displacement § = (1, d2), both §; and 02 are randomly
sampled from a range of [—6, +6]. We generate 20, 000 pairs for training and 3, 000 pairs for testing.
We name this dataset V1Deform.

V1FlyingObjects. Next we consider separating the displacement field into motions of the background
and foreground, to jointly simulate the self-motion of the agent and the motion of the objects in the
natural 3D scenes. To this end, we create a synthetic dataset, by applying affine transformations
to background images collected from MIT places365 (Zhou et al., 2016) and foreground objects
from a public 2D object dataset COIL-100 (Nene et al.,[1996). The background images are scaled
to 128 x 128, and the foreground images are randomly rescaled. To generate motion, we randomly
sample affine parameters of translation, rotation, and scaling for both the foreground and background
images. The motion of the foreground objects are relative to the background images, which can be
explained as the relative motion between the moving object and agent. We tune the distribution of the
affine parameters to keep the range of the displacement fields within [—6, 4-6], which is consistent
with the V1Deform dataset. Together with the mask of the foreground object and the sampled
transformation parameters, we render the image pair (I;,I;41) and its displacement field (6(z)) for
each pair of background image and foreground image.
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Specifically, we obtain the estimated masks from (tevl [2006) for the 2D foreground objects and
remove some textureless objects, resulting in 96 objects with 72 views per object available. We
generate 14,411 synthetic image pairs with their corresponding displacement fields and further
split 12,411 pairs for training and 2, 000 pairs for testing. We name this dataset V1FlyingObjects.
Compared with previous optical flow dataset like Flying Chairs (Dosovitskiy et al.,|2015) and scene
flow dataset like FlyingThings3D (Mayer et al.l 2016), the proposed V1FlyingObjects dataset has
various foreground objects with more realistic texture and smoother displacement fields, which
simulates more realistic environments. We shall release this dataset.

MPI-Sintel. MPI-Sintel (Butler et al.l [2012; Wulff et al| |2012) is a public dataset designed for
the evaluation of optical flow derived from rendered aritificial scenes, with special attention to
realistic image properties. Since MPI-Sintel is relatively small which contains around a thousand
image pairs, we use it only for testing the learned models in the inference of displacement field and
frame animation, as described in details in sections[5.3|and Appendix [E} We use the final version
of MPI-Sintel and resize each frame into size 128 x 128. We select frame pairs whose motions are
within the range of [—6, +6], resulting in 384 frame pairs in total.

MUG Facial Expression. MUG Facial Expression dataset (Aifanti et al.,[2010) records natural facial
expression videos of 86 subjects sitting in front of one camera. This dataset has no ground truth of
displacement field, which we use for unsupervised learning as stated in details in section [5.4] 200
videos with 30 frames are randomly selected for training, and anther 100 videos are sampled for
testing. The frame images are resized to 64 x 64.

5.2 LEARNED GABOR-LIKE UNITS WITH QUADRATURE PHASE RELATIONSHIP

In this section we show and analyze the learned units. Figure[§[a) displays the learned units, i.e., rows
of W) on V1Deform. The units are learned with non-parametric M (0), i.e., we learn a separate
M (6) for each displacement. §(z) is discretized with an interval of 0.5. Similar patterns can be
obtained by using parametric version of M (). Please refer to the supplementary and@]for more
results, including animation of filters, filters learned with local mixing motion model (eqn. @)), with
different block sizes, and learned on V1FlyingObjects. V1-like patterns emerge from the learned
units. Moreover, within each sub-vector, the orientations and frequencies of learned units are similar,
while the phases are different.

To further analyze the spatial profile of the learned units, we fit every unit by a two dimensional Gabor
function (Jones & Palmer, |1987): h(z',y) = Aexp(—(2'/v/20.)% — (y' [V 20,)) cos(2m fz' + ¢),
where (2',y) is obtained by translating and rotating the original coordinate system (z, yo): ' =
(x —xg)cosO + (y —yo)sinb,y = —(z — x0)sinf + (y — yo) cos §. The fitted Gabor patterns
are shown in figure b), with the average fitting r? equal to 0.96 (std = 0.04). The average
spatial-frequency bandwidth is 1.13 octaves, with range of 0.12 to 4.67. Figure(c) shows the
distribution of the spatial-frequency bandwidth, where the majority falls within range of 0.5 to 2.5.
The characteristics are reasonably similar to those of simple-cell receptive fields in the cat (Issa et al.}
2000) (weighted mean 1.32 octaves, range of 0.5 to 2.5) and the macaque monkey (Foster et al.|
1985)) (median 1.4 octaves, range of 0.4 to 2.6). To analyze the distribution of the spatial phase ¢,
we follow the method in (Ringachl [2002) to transform the parameter ¢ into an effective range of 0
to 7/2, and plot the histogram of the transformed ¢ in figure c). The strong bimodal with phases
clustering near 0 and /2 is consistent with those of the macaque monkey (Ringach} 2002).

In the above experiment, we fix the size of the convolutional filters (16 x 16 pixels). A more
reasonable model is to have different sizes of convolutional filters, with small size filters capturing
high frequency content and big size filters capturing low frequency content. For fixed size filters,
they should only account for the image content within a frequency band. To this end, we smooth
every image by two Gaussian smoothing kenels (kernel size 8, o = 1, 4), and take the difference
between the two smoothed images as the input image of the model. The effect of the two smoothing
kernels is similar to a bandpass filter, so that the input images are constrained within a certain range
of frequencies. The learned filters on V1Deform are shown in[3{a). Again for every unit, we fit it by
a two dimensional Gabor function, resulting in an average fitting 7> = 0.83 (std = 0.12). Following
the analysis of (Ringach| [2002;[Rehn & Sommer, [2007), a scatter plot of n, = o, f versus ny = o, f
is constructed in Figure Ekb) based on the fitted parameters, where n, and n, represent the width
and length of the Gabor envelopes measured in periods of the cosine waves. Compared to Sparsenet
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(a) Learned units (b) Fitted Gabor patterns (c) Frequency and phase

Figure 2: Learned results on V1Deform. (a) Learned units. Each block shows two learned units within the
same sub-vector. (b) Fitted Gabor patterns. (c) Distributions of spatial-frequency bandwidth (in octaves) and
spatial phase ¢.

(Olshausen & Field, [1996}[1997), the learned units by our model have more similar structure to the
receptive fields of macaque monkey.

We also show profile of the learned units within each sub-vector in Figure [3[c). Within each sub-
vector, the frequency f and orientation 6 of the paired units tends to be the same. More importantly,
most of the paired units differ in phase ¢ by approximately 7 /2, consistent with the quadratic phase
relationship between adjacent simple cells (Pollen & Ronner, [198T; [Emerson & Huang), [1997).
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Figure 3: Learned results on band-pass image pairs from V1Deform. (a) Learned units. Each block shows two
learned units within the same sub-vector. (b) Distribution of the Gabor envelope shapes in the width and length
plane. (c) Difference of frequency f, orientation 6 and phase ¢ of paired units within each sub-vector.

5.3 INFERENCE OF DISPLACEMENT FIELD

We then test the learned representations in terms of inferring the displacement field (§(z)) be-
tween pairs of frames (I;,I;11). To get valid image patches for the inference, we leave out those
displacements at image border (8 pixels at each side).

We infer the displacement field (d(z)) using the learned vector and matrix representation. On top
of that, we also train a CNN model with ResNet blocks [2016) to refine the inferred
displacement field. In training this CNN, the input is the inferred displacement field, and the output is
the ground truth displacement field, with least squares regression loss. The detailed model structure
is in appendix [} For V1Deform, we train the representational model without refinement and test on
the testing set of V1Deform. For V1FlyingObjects, we train both the representational model and the
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refinement CNN on the training set, and test on the testing set of V1FlyingObjects and MPI-Sintel
datasets. The refinement CNN is to approximate the processing in visual areas V2-V6 that integrates
and refines the motion perception in V1 (Gazzaniga et al.,[2002; [Lyon & Kaas|, [2002}; [Moran &
[Desimonel, (1985}, [Born & Bradley}, 2005 [Allman & Kass), [1975).

Figure [ displays several examples of the inferred displacement field, learned with non-parametric
M (9), using the local mixing motion model (eqn. ), where the local support S is in a range of
[—4, +4], and dz is taken with a sub-sampling rate of 2. We also show the inferred results from
pre-trained FlowNet 2.0 model as a comparison. In Table[I] we report the average
endpoint error (EPE) of the inferred results. We compare with some baseline methods, such as the
FlowNet and its variants (Dosovitskiy et al., 2015} Tlg et al,[2017), by obtaining the pre-trained
models and testing on the corresponding datasets. Note that those methods train deep and complicated
neural networks with large scale datasets to predict optical flows in supervised manners, while our
model can be treated as a simple one-layer auto-encoder network, accompanied by weight matrices
representing motions. We achieve competitive results to these methods.

N
;:0;0:0

Gt FN2  Ours'

| P FN2 Ours

i S 1
e

:"ﬂ i

Figure 4: Examples of inference of displacement field on V1Deform, V1FlyingObjects and MPI-Sintel. For
each block, from left to right are I, I+41, ground truth displacement field and inferred displacement field by
pre-trained FlowNet 2.0 model and our learned model respectively. © indicates that the results are refined by
the refinement CNN. The displacement fields are color coded. See supplementary for the color code
2010).

Table 1: Average endpoint error of the inferred displacement. (FN stands for FlowNet)
FN-C FN-S FN-CS FN-CSS FN2 Ours Ours + Refine

V1Deform 1324 1316 0713 0629  0.686  0.444 -
VIFlyingObjects ~ 0.852  0.865  0.362 0299 0285 0442 0.202
MPI-Sintel 0363 0410  0.266 0234  0.146 0337 0.212
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5.4 UNSUPERVISED LEARNING

Assume there is a dataset of frame sequences, where the ground truth displacement fields are unknown.
We can learn the model by the following steps: (1) first we take the frames as static images, deform
the images like what we did for V1Deform to get image pairs, and learn the model as an initialization;
(2) then we infer the displacement fields between adjacent pair of frames using the initialized model;
(3) using adjacent pair of frames as training data, we alternatively update the model parameters and
re-infer displacement fields. In this task, we use the parametric M and infer the displacement field by
gradient descent on a weighted sum of > L; ,(6(z)) and ||V (x)||?. At each iteration, we start the
inference from the inferred displacement field from the last iteration.

We test the unsupervised learning on MUG Facial Expression dataset (Aifanti et al.| 2010). Figure[5]
shows some examples of inferred displacement fields by the unsupervised learning. The inference
results are reasonable, which capture the motions around eyes, eyebrows, chin or mouth. See
supplementary [D]and [H] for the learned filters and more inferred examples.

Figure 5: Examples of inferred displacement fields by unsupervised learning. The top row shows the observed
image sequences, while the bottom row shows the inferred color coded displacement field (Liu et al.| [2010).

We perform ablation studies to analyze the effect of two components of the proposed model: (1)
dimensionality of sub-vectors; (2) sub-sampling rate. Please refer to supplementary [G] for the details.

6 CONCLUSION

This paper proposes a simple representational model that couples vector representations of local
image contents and matrix representations of local motions. Unlike existing models for V1 that focus
on statistical properties of natural images or videos, our model serves a direct purpose of perception
of local motions caused by the relative motions between the agent and the 3D environment. Our
model learns Gabor-like units with quadrature phases. We also give biological interpretations of the
learned model and connect it to the spatiotemporal energy model. Our model is novel, and it is our
hope that it adds to our understanding of motion perception in V1 in terms of modeling and inference.

In our future work, we shall study the inference of ego-motion, object motions and 3D depth
information based on local pixel displacements by expanding our model. We shall also extend our
model to stereo in binocular vision by allowing separate encoding matrices for the pair of input
images to the two eyes related by pixel displacements caused by depths.
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A IMPLEMENTATION DETAILS

We learn our model (W) M) (§), k = 1, ..., K) from image pairs (I;, (6(2)), T;11). The number
of sub-vectors K = 40, and the number of units in each sub-vector v(¥)(z) is 2. We also try other
dimensionalities of sub-vector, e.g., 4 and 6. See supplementary materials. Each row of the encoding
matrix W () is a filter. The size of the filter is 16 x 16, with a sub-sampling rate of 8 pixels in order

to get D_. We learn the model using stochastic gradient descent implemented by Adam (Kingma &
Bal 2014), with learning rate 0.0008.

For unsupervised learning in section[5.4] since the image size reduces to 64, we use kernel size 8 with
a sub-sampling rate of 4 pixels. In stage (1) for model initialization, we set the range of displacement
to [—3, +3]. Displacements at image border are left out.

B COLOR CODE OF DISPLACEMENT FIELD

Figure[6] shows the color map for the color coded displacement fields used in this paper (Liu et al,
2010).
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Figure 6: Color map for the color coded displacement fields. The displacement of every pixel in this
map is the vector from the center of the square to this pixel. The center pixel does not move. The
range of color is taken according to the maximum length of flows in each displacement field.

C ANIMATION OF LEARNED UNITS: MOVING V 1-LIKE UNITS

We have M (*) (5)vt(k) (z) = M®)(5)WFT[z], where each row of the encoding matrix W (*) serves
as a filter. Let W) (§) = M*)(5)W %), By changing values of §, we can animate W (*) to make it
move. Figureshows several examples of the animation. Each block shows a certain T (*) animated
by a fixed 6. Each column shows the units in the same W()(§). As § changes, the orientations
of learned units remain the same, while the phases change, and the units belonging to the same
sub-vector tend to have similar movements.
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Figure 7: Animation of the learned filters

D LEARNED FILTERS

Figure [ shows the learned filters under different settings, including learned on V1FlyingObjects,
learned with parametric M, learned with local mixing model (eqn[5) and learned unsupervisedly.
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(d) Unsupervised learning

Figure 8: Filters learned from under different settings: (a) filters learned on V1FlyingObjects with
non-parametric M; (b) filters learned with parametric M; (c) filters learned with non-parametric
M and local mixing motion model (model used in section 5.3); (d) filters learned on MUG Facial
expression dataset with unsupervised learning (model used in section 5.4).

E MULTI-STEP FRAME ANIMATION

Given the starting frame Iy(z) and a sequence of displacement fields {d1 (), ..., 7 (), Yz}, we can
animate the subsequent multiple frames {I;(z),...,Ir(x)} using the learned model. We use the
model with local mixing with the same setting as in section[5.3] We introduce a re-encoding process
when performing multi-step animation. At time ¢, after we get the next animated frame I, 1, we take
it as the observed frame at time ¢ 4 1, and re-encode it to obtain the latent vector v, at time ¢ + 1.

Figure 9 displays several examples of a 6-step animation, learned with non-parametric version of M
on V1Deform and V1FlyingObjects. The animated frames match the ground truth frames well. As a
quantitative evaluation, we compute the per pixel distance between the predicted frames and observed
frames, which is 9.032 in the testing dataset for V1Deform and 12.076 for V1FlyingObjects.

Figure 9: Examples of multi-step animation. For each block, the first row shows the ground truth
frame sequences, while the second row shows the animated frame sequences.

F FRAME INTERPOLATION

Inspired by the animation and inference results, we show that our model can also perform frame
interpolation, by combining the animation and inference together. Specifically, given a pair of starting
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frame I and end frame I, we want to derive a sequence of frames (I, I, ..., Ir_1, I) that changes
smoothly. Let vg(xz) = WIy[z] and vr(x) = Wlp[z] for each x € D. At time step ¢ + 1, like the
inference, we can infer displacement field ;41 (x) by

o) (2,8) = dees ®)(5,dx)o™ (x + da),Va € D,VS € A,Vk (10)
2
Opi1(z) = argmmZH (k) vt_lf_)l (z (5)” Nz e D (11)

Like the animation, we get the animated frame I; 1 by decoding 9¢41 (z, d:4+1(z)), and then re-encode
it to obtain the latent vector v; 11 ().

The algorithm stops when I, is close enough to I (mean pixel error < 10). Figure [10| shows
several examples, learned with non-parametric M on V1Deform and V 1FlyingObjects. For 96.0%
of the testing pairs, the algorithm can accomplish the frame interpolation within 10 steps. With this
algorithm, we are also able to infer displacements larger than the acceptable range of §.

Figure 10: Examples of frame interpolation, learned with non-parametric M. For each block, the first
frame and last frame are given, while the frames between them are interpolated frames.

G ABLATION STUDY

We perform an ablation study to analyze the effect of several components of the proposed model. All
the models in the ablation study are trained with non-parametric M (§) on V1Deform.

Dimensionality of sub-vectors. In the experiments, we assume that the number of units in each
sub-vector v(*) (z) is 2, so that within each sub-vector, a pair of V1-like patterns are learned. However,
we show that the dimensionality of sub-vectors does not have to be 2. In figure[TT(a) we show the
learned filters with dimension of sub-vectors equal to 4 and 6. For fair comparison, we fix the
total number of units in the whole vector to 96, and change the number of units in each sub-vector.
Table 2] summarizes the quantitative analysis of the models learned with different dimensionalities of
sub-vectors, in terms of the performances of multi-step animation and inference of displacement field.
As the dimensionality of sub-vectors increases, the error rates of the two tasks decrease first and then
increase. Besides, in figure ﬂ;l'kb) we show the learned filters without the assumption of sub-vectors.

Table 2: Quantitative analysis of the models learned with different dimensionalities of sub-vectors.
Sub-vector dim 2 4 6 8 12
animation MSE ~ 8.684 8387 7.486 7.926 8.412
inference EPE ~ 0.554 0.520 0.496 0.500 0.528

Sub-sampling rate. Another factor that may affect the learned model is the sub-sampling rate in
order to get D_. In the experiments, we use sub-sampling rate 8, which is half of the filter size. We
can also increase or decrease the sub-sampling rate to make the adjacent image patches connected
with each other more loosely or tightly. Table 3] summarizes the performance of learned models with
different sub-sampling rates, in terms of multi-step animation and inference of displacement field.
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(a)
Figure 11: (a) Filters learned with higher dimension of sub-vectors. The total number of units in

the whole vector is fixed to 96. Each block shows the learned units within the same sub-vectors. (b)
Filters learned without sub-vector assumption.

Table 3: Quantitative analysis of the models learned with different sub-sampling rates.

Sub-sampling rate 4 8 16
animation MSE 7.492 8.094 10.808
inference EPE 0.658 0.505 0.565

H UNSUPERVISED LEARNING: MORE RESULTS

See figure [I2] for more inference results by unsupervised learning.

Figure 12: More examples of inferred displacement fields by unsupervised learning. The top row shows the
observed image sequences, while the bottom row shows the inferred color coded displacement field.

I REFINEMENT CNN MODEL STRUCTURE
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Table 4: Refinement CNN model structure

3 x 3 conv. 8 RelLU, stride 1
3 x 3 conv. 16 ReLU, stride 1

Residual blocks

3 x 3 conv. 16 BN ReLU, stride 1 4
3 x 3 conv. 16 BN, stride 1 x

3 x 3 conv. 8 RelLU, stride 1
3 x 3 conv. 2 RelU, stride 1
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