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Abstract

Deep learning models frequently trade handcrafted features for deep features
learned with much less human intervention using gradient descent. While this
paradigm has been enormously successful, deep networks are often difficult to
train and performance can depend crucially on the initial choice of parameters. In
this work, we introduce an algorithm called MetaInit as a step towards automating
the search for good initializations using meta-learning. Our approach is based on
a hypothesis that good initializations make gradient descent easier by starting in
regions that look locally linear with minimal second order effects. We formalize
this notion via a quantity that we call the gradient quotient, which can be computed
with any architecture or dataset. MetaInit minimizes this quantity efficiently
by using gradient descent to tune the norms of the initial weight matrices. We
conduct experiments on plain and residual networks and show that the algorithm
can automatically recover from a class of bad initializations. MetaInit allows us
to train networks and achieve performance competitive with the state-of-the-art
without batch normalization or residual connections. In particular, we find that
this approach outperforms normalization for networks without skip connections on
CIFAR-10 and can scale to Resnet-50 models on Imagenet.

1 Introduction

Deep learning has led to significant advances across a wide range of domains including transla-
tion [55], computer vision [24], and medicine [2]. This progress has frequently come alongside
architectural innovations such as convolutions [33], skip-connections [26, 22] and normalization meth-
ods [27, 4]. These components allow for the replacement of shallow models with hand-engineered
features by deeper, larger, and more expressive neural networks that learn to extract salient features
from raw data [43, 8]. While building structure into neural networks has led to state-of-the-art results
across a myriad of tasks, there are significant hindrances to this approach. Indeed, these larger and
more complicated models are often challenging to train and there are few guiding principles that can
be used to consistently train novel architectures. As such, neural network training frequently involves
large, mostly brute force, hyperparameter searches that are a significant computational burden and
obfuscate scientific approaches to deep learning. Indeed, it is often unclear whether architectural
additions - such as batch normalization or skip connections - are responsible for improved network
performance or whether they simply ameliorate training.

There are many ways in which training a neural network can fail. Gradients can vanish or explode
which makes the network either insensitive or overly sensitive to updates during stochastic gradient
descent [25]. Even if the gradients are well-behaved at initialization, curvature can cause gradients to
become poorly conditioned after some time which can derail training. This has led researchers to
try to consider natural gradient [3] or conjugate gradient [38] techniques. While some methods like
KFAC [37] are tractable, second order methods have found limited success due to the implementation
challenges and computational overhead. However, quasi-second order techniques such as Adam [30]
have become ubiquitous.
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The choice of initial parameters, θ0, is intimately related to the initial conditioning of the gradients and
therefore plays a crucial role in the success or failure of neural network training [32]. Consequently,
there is a long line of research studying initialization schemes for neural networks including early
seminal work by Glorot et al. [20] showing that the norms of the weights and biases in a fully-
connected network controls whether gradients explode or vanish on average. Subsequent work
by Saxe et al. [51] showed that the gradient fluctuations could additionally be controlled in deep
linear networks. More recent contributions have included initialization schemes for fully-connected
networks [52, 46], residual networks [23, 58, 63], convolutional networks [57], recurrent networks
with gating [9, 19], and batch normalization [59]. While this research has found success, the analysis
is often sophisticated, requiring significant expertise, and depends crucially on the architecture and
choice of activation functions. An automated approach to initialization would reduce the amount of
expertise necessary to train deep networks successfully and would be applicable to novel architectures.
However, no objective has been identified that works for a broader range of architectures. For example,
orthogonal initialization schemes identified in [51] fail in combination with ReLU nonlinearities [46]
and LSUV [41] is not compatible with pre-activation residual networks [63].

In this work, we propose a strategy to automatically identify good initial parameters of machine
learning models. To do this we first propose a quantity, called the gradient quotient, that measures
the change in the gradient of a function after a single step of gradient descent. We argue that low
gradient quotient correlates with a number of recently identified predictors of trainability including
the conditioning of the hessian [18], the Fisher Information [3], and of the neural tangent kernel [28,
17, 34]. We then introduce the MetaInit (Meta Initialize) algorithm that minimizes the gradient
quotient using gradieng descent to tune the norms of the initial weight matrices. We show that for two
key architecture families (vanilla CNNs and Resnets), MetaInit can automatically correct several bad
initializations. Moreover, we show that by initializing using MetaInit we can initialize deep networks
that reach state-of-the-art results without normalization layers (e.g. batch normalization) and near
state-of-the-art without residual connections. Finally, we show that MetaInit is efficient enough that
it can be applied to large-scale benchmarks such as Imagenet [12].

2 MetaInit: Initializing by searching for less curvy starting regions

In this section, we propose an algorithm called MetaInit that adjusts the norms of the parameters at
initialization so they are favorable to learning. To do so we must first identify a principle for good
initialization that can be formalized into an objective function. This objective function should have
other crucial properties such as being efficient to compute and easily amenable to minimization by
gradient descent. These requirements rule out well-known quantities such as the condition number of
the Hessian and led to the development of a novel criterion.

g(θ)=[1, 1]

g(θ	-	g(θ))=[1, 1]

GQ ≈ 0.00

g(θ)=[1, 1]

g(θ	-	g(θ))=[2, 1]

GQ ≈ 0.49

g(θ)=[0.5, 0.5]

g(θ	-	g(θ))=[2, 1]

GQ ≈ 1.99

g(θ)=[1, 1]

g(θ	-	g(θ))=[1, -1]

GQ ≈ 1

Figure 1: Illustration of the gradient quotient for different initial trajectories.

Recall that gradient descent is a first order algorithm that does not take the curvature of the function
into account at each step. As discussed above, a longstanding goal in deep learning is to develop
tractable optimization frameworks to try to take into account second-order information. Absent such
methods, we hypothesize that a favorable inductive bias for initialization is to start learning in a
region where the gradient is less affected by curvature. In this region, the magnitude and direction of
the gradient should not change too abruptly due to second order effects. This hypothesis is motivated
by Pennington et al. [46] that observed better gradient conditioning and trainability as networks
become more linear, Balduzzi et al. [5] that proposed a successful “looks-linear” initialization for
rectified linear layers, and Philipp et al. [47] who showed correlation between generalization and
“nonlinearity”.
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Accordingly, consider parameters θ ∈ RN for a network, along with a loss function `(x; θ). We
can compute the average loss over a batch of examples, L(θ) = Ex[`(x; θ)], along with the gradient
g(θ) = ∇L(θ) and Hessian H(θ) = ∇2L(θ). We would like to construct a quantity that measures
the effect of curvature near θ without the considerable expense of computing the full Hessian. To that
end, we introduce the gradient quotient,

GQ(L, θ) =
1

N

∥∥∥∥g(θ)−H(θ)g(θ)

g(θ) + ε
− 1

∥∥∥∥
1

≈ 1

N

∥∥∥∥g(θ − g(θ))

g(θ) + ε
− 1

∥∥∥∥
1

(1)

where ε = ε0(2g(θ)≥0 − 1) computes a damping factor with the right sign for each element, ε0 is a
small constant and ‖ · ‖1 is the L1 vector norm. As its name suggests, the gradient quotient is the
relative per-parameter change in the gradient after a single step of gradient descent. We find that the
step-size has virtually no effect on the gradient quotient aside from a trivial scaling factor and so
we set it to 1 without a loss of generality. Parameters that cause the gradient to change explosively
have a large gradient quotient, while parameters that cause vanishing gradients do not minimize this
criterion since g(θ) = g(θ− g(θ)) = 0 =⇒ GQ(L, θ) = 1 if ε > 0. By contrast, it is clear that the
optimal gradient quotient of 0 is approached when L(θ) is nearly a linear function so that H(θ) ≈ 0.

Relationship to favorable learning dynamics The gradient quotient is intimately related to several
quantities that have recently been shown to correlate with learning. Letting λi be the eigenvalues of
H(θ) along with associated eigenvectors, vi, it follows that g(θ) =

∑
i civi for some choice of ci.

Furthermore, neglecting ε the objective simplifies to

GQ(L, θ) =
1

N

∥∥∥∥H(θ)g(θ)

g(θ)

∥∥∥∥
1

=
1

N

∑
j

∣∣∣∣∣
∑
i λici(e

T
j vi)∑

i ci(e
T
j vi)

∣∣∣∣∣ . (2)

where the ei are standard basis vectors. This reveals the gradient quotient is intimately related to the
spectrum of the Hessian. Moreover, the gradient quotient can be minimized by either:

1. Improving the conditioning of the Hessian by concentrating its eigenvalues, λi, near 0.

2. Encouraging the gradient to point in the flat directions of H , that is to say ci should be large
when λi is close to zero.

There is significant evidence that improving conditioning in the above sense can lead to large
improvements in learning. Notice that the Hessian, the Fisher Information, and the Neural Tangent
Kernel all share approximately the same nonzero eigenvalues. From the perspective of the Hessian,
the relationship between conditioning and first-order optimization is a classic topic of study in
optimization theory. Most recently, it has been observed [51, 46, 18] that Hessian conditioning is
intimately related to favorable learning dynamics in deep networks. In addition, it has been shown
that a signature of failure in deep learning models is when the gradient concentrates on the large
eigenvalues of the Hessian [21, 18]. This is precisely what condition 2 avoids. Likewise, experiments
on natural gradient methods [3, 37] have shown that by taking into account the conditioning of the
Fisher, one can significantly improve training dynamics. Finally, the neural tangent kernel has been
shown to determine early learning dynamics [17, 34] and its conditioning is a strong predictor of
trainability. In the appendix we present numerical experiments showing that this qualitative picture
accurately describes improvements to a WideResnet during optimization of the gradient quotient.

Efficiency Computing the gradient quotient is on the same order of complexity as computing the
gradient.

In addition to using the gradient quotient to measure the quality of an initial choice of parameters, it
will be used as a meta-objective to learn a good initialization from a poor one as follows

MetaInit(L, θ) = argmin
θ

GQ(L, θ). (3)

Robustness as search objective Using gradient descent on a meta-learning objective to recover
from bad initialization typically would make things more difficult [36]. If the gradient vanishes for
gradient descent on L, then it likely vanishes for a meta-learning objective that involves multiple
steps on L like MAML [15]. The gradient quotient avoids this problem because it is sensitive to
parameters even in the presence of gradient vanishing by depending on the per-parameter values of
the gradient explicitly. As such there is a “short path” between each parameter and the objective
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under backpropagation. In other words, pre-training using the gradient quotient as an objective makes
training more robust.

Task agnosticity We solve the over-fitting problems associated with meta-learning by following
previous initialization approaches [52, 57] in using input data drawn completely randomly, such
as x ∼ N (0, 1), during meta-initialization. We find the gradient quotient is still informative with
random data and as a result the meta-initialization is largely task independent. This is not possible
for other meta-learning methods which typically require large amounts of true data to compute the
end-to-end training objective. It may be surprising that the gradient quotient is a good indicator even
with random data, but this is consistent with previous initialization work that used random data in
their analysis [20, 51] or found that good-initialization was relatively dataset agnostic [52]. We dub
the use of such objectives as task agnostic meta-learning (TAML). We note that the task-agnostic
nature of MetaInit implies that once a model has been initialized properly it can be used for a number
of tasks.

import torch

def gradient_quotient(loss, params, eps=1e-5):
grad = torch.autograd.grad(loss,

params, retain_graph=True, create_graph=True)
prod = torch.autograd.grad(sum([(g**2).sum() / 2 for g in grad]),

params, retain_graph=True, create_graph=True)

out = sum([((g - p) / (g + eps * (2*(g >= 0).float() - 1).detach())
- 1).abs().sum() for g, p in zip(grad, prod)])

return out / sum([p.data.nelement() for p in params])

def metainit(model, criterion, x_size, y_size, lr=0.1,
momentum=0.9, steps=500, eps=1e-5):

model.eval()
params = [p for p in model.parameters()

if p.requires_grad and len(p.size()) >= 2]
memory = [0] * len(params)
for i in range(steps):

input = torch.Tensor(*x_size).normal_(0, 1).cuda()
target = torch.randint(0, y_size, (x_size[0],)).cuda()
loss = criterion(model(input), target)
gq = gradient_quotient(loss, list(model.parameters()), eps)

grad = torch.autograd.grad(gq, params)
for j, (p, g_all) in enumerate(zip(params, grad)):

norm = p.data.norm().item()
g = torch.sign((p.data * g_all).sum() / norm)
memory[j] = momentum * memory[j] - lr * g.item()
new_norm = norm + memory[j]
p.data.mul_(new_norm / norm)

print("%d/GQ = %.2f" % (i, gq.item()))

Figure 2: Basic Pytorch code for the MetaInit algorithm.

3 Implementation

The proposed meta-algorithm minimizes Equation 1 using gradient descent. This requires computing
the gradient of an expression that involves gradients and a hessian-gradient product. However,
gradients of the GQ can easily be obtained automatically using a framework that supports higher
order automatic differentiation such as PyTorch [45], TensorFlow [1], or JAX [16]. Automatic
differentiation can compute the Hessian vector product without explicitly computing the Hessian
by using the identity ∇2`v = ∇(∇` · v). The gradient_quotient function in Algorithm 2
provides the PyTorch code to compute Equation 1.
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Like previous initialization methods [20], we find experimentally that it suffices to tune only the scale
of the initial weight matrices when a reasonable random weight distribution is used - such as Gaussian
or Orthogonal matrices. We can obtain the gradient with respect to the norm of a parameter w using
the identity w

‖w‖ · ∇w` as in [50]. The biases are initialized to zero and are not tuned by MetaInit.
As discussed above, the gradient quotient objective is designed to ameliorate issues with vanishing
and exploding gradients. Nonetheless, for the most pathological initialization schemes, more help is
needed. To that end we optimize Equation 1 using signSGD [7], which performs gradient descent
with the sign of the gradient elements. We find that using only the sign of the gradient prevents a
single large gradient from derailing optimization and also guarantees that vanishing gradients still
result in non-negligible steps. The metainit function in Algorithm 2 provides the PyTorch code to
perform Equation 3.

We find that successfully running the meta-algorithm for a Resnet-50 model on Imagenet takes 11
minutes on 8 Nvidia V100 GPUs. This represents a little less than 1% of the training time for that
model using our training setup. Though we expect that recovering from initializations worse than
those we consider in Section 4 could require more meta-training time.

4 Experiments

In this section, we examine the behavior of MetaInit algorithm across different architectures. We
consider plain CNNs, WideResnets [60], and Resnet-50 [24]. Here plain networks refer to networks
without skip connections that are otherwise the same as WideResnet. In order to isolate the effect
of initialization, unless explicitly noted, we consider networks without normalization (e.g. batch
normalization) - which has been shown to make networks less sensitive to the initial parameters. To
remedy the fact that, without normalization, layers have sightly fewer parameters, we introduce a
scalar multiplier initialized at 1 every two layers as in [63]. The networks without normalization do
not have biases in the convolutional layers. Unless otherwise noted, we use Algorithm 2 with the
default hyper-parameters.

4.1 Minimizing the gradient quotient corrects bad initial parameter norms

In this section, we evaluate the ability of metainit to correct bad initializations. For each architecture,
we evaluate two bad initializations: one where the magnitude of the initial parameters are too
small and one where they are too big. We then tune the norms of the initial parameters with the
meta-algorithm. We perform experiments with 28-layer deep linear networks so as to remove the
confounding factor of the activation function. The loss surface is still non-linear due to the cross-
entropy loss. We use the default meta-hyper-parameters except for the number of steps, which is set
to 1000, and the momentum, which is set to 0.5. As discussed above, we use randomly generated data
composed of 128× 3× 32× 32 input matrices and 10-dimensional multinomial targets. We evaluate
the method by comparing the norms of the weights at initialization and after meta-optimization with
a reference initialization that is known to perform well for that architecture.

We plot the norm of the weight matrices before-and-after MetaInit as a function of layer for each
initialization protocol outlined above in Figure 3. In these experiments Gaussian(0, σ2) refers to
sampling the weight matrices from a Gaussian with fixed standard deviation σ, Fixup (Nonzero)
refers to a Fixup initialization [63] where none of the parameters are initialized to zero. Gaussian(0,
σ2) is a bad initialization that has nonetheless been used in influential papers like [31]. We see that
MetaInit adjusts the norms of the initial parameters close to a known, good, initialization for both the
plain and residual architectures considered.

This is surprising because MetaInit does not specifically try to replicate any particular known
initialization and simply ensures that we start in a region with small curvature parallel to the gradient.
Though automatic initialization learns to match known initializations for certain models, we observe
that it tends to differ when non-linear activation functions are used. This is expected since the aim
is for the method to find new initializations when existing approaches aren’t appropriate. For these
types of network, we will evaluate the method through training in the next section.
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(c) Resnet with small initialization
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Figure 3: Norm of the weight matrices of a 28 layer linear network for a bad initialization (red),
MetaInit applied to correct the bad initialization (purple) and a reference good initialization (blue).
Note that the norm increases with the index because the number of channels in the weights increases.
These results report the average and standard error over 10 trials for each random initialization. We
observe that MetaInit learns norms close to known good initializations even when starting from a bad
initialization.

Model Method Gradient Quotient Test Error (%)

Plain 28-10
Batchnorm - 6.0
LSUV - 3.7
DeltaOrthogonal (Untuned) 1.00 90.0
DeltaOrthogonal → MetaInit 0.54 3.7

WideResnet 202-4 Batchnorm - 3.4
LSUV - 6.9
DeltaOrthogonal (Untuned) 2.72 6.7
DeltaOrthogonal → MetaInit 0.53 3.8

WideResnet 28-10 Batchnorm - 2.8
LSUV - 4.8
DeltaOrthogonal (Untuned) 0.87 3.2
DeltaOrthogonal → MetaInit 0.45 2.9

Table 1: Test accuracy on CIFAR-10 with the different methods. The gradient quotient reported here
is computed before training. Using MetaInit to improve the initialization allows training networks
that are competitive to networks with Batchnorm.

4.2 Improving bad initialization with MetaInit helps training

In this section, we evaluate networks trained from our meta-initialization on challenging benchmark
problems. Many works in deep learning, such as [24, 10, 49, 53], have tended to treat initializations
like Kaiming [23] and Orthogonal [51] as standards that can be used with little tuning to the
architecture. To illustrate the need to tune the initialization based on architecture, we will compare
with an untuned DeltaOrthogonal initialization [57], which is a state-of-the-art extension of the
Orthogonal initialization [51] to convolutional networks. Since we hope to show that MetaInit can

6



automatically find good initializations, we do not multiply the initial parameter values by a scaling
factor that is derived using expert knowledge based on the architecture.

It should be noted that the tuning done by MetaInit could also be derived manually but this would
require careful expert work. These experiments demonstrate that automating this process as described
here can be effective and comparatively easier.

CIFAR We use the βt-Swish(x) = σ(βtx)x activation function [49], with β0 initialized to 0 to
make the activation linear at initialization [5]. We use Mixup [62] with α = 1 to regularize all
models, combined with Dropout with rate 0.2 for residual networks. For plain networks without
normalization, we use gradient norm clipping with the maximum norm set to 1 [11]. We use a cosine
learning rate schedule [35] with a single cycle and follow the setup described in that paper. We
chose this learning rate schedule because it reliably produces state-of-the-art results, while removing
hyper-parameters compared to the stepwise schedule. All methods use an initial learning rate of
0.1, except LSUV which required lower learning rates of 0.01 and 0.001 for WideResnet 28-10 and
WideResnet 202-4 respectively. LSUV also uses DeltaOrthogonal initialization in convolutional
layers for fairness since it is an improvement over Orthogonal initialization. The batch size used for
the meta-algorithm is 32. The number of meta-algorithm steps for WideResnet 202-4 was reduced to
200 for this specific model. Apart from this, we use the default meta-hyper-parameters.

Table 1 shows the results of training with the various methods on CIFAR-10. We observe that without
tuning DeltaOrthogonal initialization does not generalize well to different architectures. The key
issue in the plain architecture case is that the effect of the activation function was not taken into
account. In our training setup, the β0-Swish = σ(0)x = 0.5x results in a multiplicative scaling factor
of 1/2 at every layer due to the initialization of β0 at 0. This results in vanishing gradient in the plain
architecture case. Surprisingly, while this gain is bad for plain networks it helps training for residual
networks. As explained by [58, 63], downscaling is necessary for residual networks to prevent
explosion. However, typically the scaling factor should be inversely proportional to the depth of the
network. By contrast, the naive initialization here uses a constant gain factor. Accordingly, we observe
that DeltaOrthogonal with this setup does not work well when we increase the number of layers
in the network - with the accuracy decreasing by 3%. The failure of the untuned DeltaOrthogonal
initialization in this setup demonstrates that the initialization must change with the architecture of the
network. By contrast, using MetaInit we are able to recover strong results independent of architecture.

Our results also show that adapting the DeltaOrthogonal initialization using MetaInit leads to ac-
curacies that exceed or are competitive to applying Batchnorm to the architectures considered here.
The gap between the meta-algorithm and Batchnorm for plain networks further corroborate the
theoretical results of [59], which showed that Batchnorm is not well-suited for networks without
residual connections. This suggests that in general Batchnorm should not be relied upon as much as
it has to correct mistakes in initialization. As a case in point, our results demonstrate that plain deep
networks can be much more competitive with Resnets than is commonly assumed when a proper
initialization and training setup is used. By comparison, the network with Batchnorm reaches an
accuracy that is at least 2% lower for this setup. Aside from proper initialization, the key components
to achieving this result for plain networks are the use of the β-Swish activation and clipping. As a
reference, when we combine BatchNorm and MetaInit for the WideResnet 28-10, we obtain the same
performance as BatchNorm by itself (2.8%). This is not unexpected since BatchNorm makes the
network more robust to initialization.

LSUV [41] is a data-dependent initialization method that tries to mimic BatchNorm by normalizing
the layers at initialization. Our results show that this approach improves results for plain networks,
but LSUV actually make results worse than the naive initialization for WideResnet. This failure is
consistent with the fact that LSUV cannot scale the residual layers by depth, which was shown to
be crucial for stability as in [58, 63]. As a result, LSUV requires using lower learning rates than the
other methods discussed here to prevent divergence.

Imagenet We use the Resnet-50 architecture with scalar bias before and after each convolution
following [63]. In order to showcase the importance of adapting the initialisation to the architecture
we will consider two activation functions - Swish = σ(x)x and ReLU. We use the same training
setup and hyper-parameters as [63] - except for the initialization which is set to DeltaOrthogonal. The
application of MetaInit was much less straightforward than in the previous case due to the complexity
of the model considered. In order to obtain a good estimate of the gradient quotient, we had to
use a batch size of 4096 examples. This required using smaller random inputs, of size 32 × 32,
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Activation BatchNorm* GroupNorm* Fixup* DeltaOrthogonal MetaInit
(Untuned)

ReLU 23.3 23.9 24.0 24.3 24.6
Swish - - - 99.9 24.0

Table 2: Top-1 Test error on Imagenet ILSVRC2012 for a Resnet-50 model with different methods.
* The columns for BatchNorm, GroupNorm and Fixup are reference results taken directly from
[63]. They are not initialized in the same way and so are not as directly comparable. MetaInit
produces more consistent results than untuned DeltaOrthogonal initialization as we vary the activation
functions.

compared with the size of Imagenet images while meta-initializing. Furthermore, it was necessary to
use cross-validation to select the momentum parameter for the meta-algorithm between the values of
0.5 and 0.9.

Table 2 shows that using MetaInit leads to more consistent results as we change the architecture
compared to untuned DeltaOrthogonal initialization. In this case, the change in architecture is driven
by the choice of activation function. As first noted by [23], ReLU activation layers downscale the
standard deviation of pre-activations by 1/√2; by contrast the Swish activation leads to a reduction
in the standard deviation of about 1/2 at each layer. Coincidentally, the downscaling provided by
the ReLU works well for this specific architecture, while that one implied by the Swish is too large
and prevents learning. However, with MetaInit, we observe training in both cases. Moreover, our
results are competitive with BatchNorm and GroupNorm. We believe that the gap in performance in
BatchNorm is mainly due to the regularization properties of BatchNorm. We view it is a success of
our method that we are able to disentangle trainability and generalization and quantify the regularizing
role of BatchNorm. Our results are also competitive to the Fixup [63] initialization method, which
was developed for residual networks with positive homogeneous activations - like ReLU units but
unlike Swish.

4.3 Ablation
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Figure 4: Meta-Learning curves for MetaInit
using L2 norm in Equation 1 instead L1. The
results reported are averaged over 10 trials.
Using the L1 norm leads to faster minimiza-
tion.

1 2 3 4 5
Iterations

20

30

40

50

60

70

80

90

Te
st

 E
rro

r (
\%

)

SGD (Untuned Init)
signSGD (Untuned Init)
SGD (MetaInit)

Figure 5: Learning curve of WideResnet 16-4
on CIFAR-10 comparing SGD with MetaInit
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tuned initialization during supervised training.
MetaInit leads to faster convergence.

We evaluate the importance of using the L1 norm in Equation 1 during the meta-optimization phase.
We will consider a linear plain network with 28 layers and width 1 with a bad initialization sampled
from Gaussian(0, 0.1). The random inputs have size 128 × 3 × 32 × 32 with 10 classes and the
momentum hyper-parameter set to 0.5. Figure 4 demonstrates the importance of the L1.

Next we evaluate how the proposed meta-initialization compares to using signSGD directly during
regular training to mitigate bad initializations. Figure 5 shows results on CIFAR-10 training for 5
supervised epochs with cosine learning rate. SGD and MetaInit were both trained using a learning
rate of 0.1 while the learning rate for signSGD had to be reduced to 0.001 to avoid divergence. Unlike
signSGD, MetaInit discovers a good initialization without using any supervised data. signSGD
must recover from the bad initialization using supervised updates, which could and does influence
convergence in this case.
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5 Limitations

The algorithm proposed in this paper has limitations, which we hope will be addressed in future work:

1. In some cases, applying MetaInit successfully requires tuning the meta-hyper-parameters.
However, the number of hyper-parameters added is small compared to directly cross-
validating over different initial norms for each parameter.

2. The proposed algorithm uses gradient descent to help gradient descent. However, the
gradient descent process on the meta objective can and does fail for very large scale models
and input dimensions. Getting good estimates of the gradient and Hessian-vector product
can require very large batch sizes for big models.

3. Improving initialization does not necessarily address all numerical instability problems. In
particular, training with lower precision without normalization is particularly unstable.

4. We learn the norms of the parameters, not the full parameters. This mirrors many influential
initializations, but it is possible to imagine that certain architectures might require adapting
all initial parameters. Thus, for the moment, selecting the initial distribution of parameters
still requires expert intervention.

6 Additional Related Work

There are a number of research directions that are related to MetaInit aside from the work on
optimizers, normalization methods, and initialization schemes already discussed above. Maclaurin
et al. [36] performed gradient descent on hyper-parameters by propagating gradients through the
entire training procedure. While this approach can be used to tune the parameter norms, it has a
significant computational cost, can lead to overfitting, and gradients taken through optimization can
be very poorly conditioned [40]. MAML [15] is a related meta-algorithm that searches for weight
initializations that are beneficial to few-shot learning. While it also produces a weight initialization,
it is not mutually exclusive with the proposed approach due to their different focus. For example,
MetaInit could be used as the initialization for MAML.

As discussed briefly above there has been a long line of significant work to improve optimizers to
be robust to poor initialization. Several examples of this include momentum [48, 42], RMSProp [],
ADAM and ADAMAX [30], ADADELTA [61], or NADAM [13]. Optimizers that exploit curvature
information such as [14] have been proposed but they can negatively affect generalization [54].
Furthermore, recovering from a bad initialization using regular supervised training steps could still
negatively affect the generalization of the model. A form of meta-learning can also be used to improve
optimization such as [6], which tunes the learning rate using hypergradient descent. More recently,
a natural extension of this work has focused on learning the structure of the optimizer itself using
meta-learning [39]. Finally, a series of papers has used population based training [29] to identify
training schedules. These powerful approaches still require a reasonable starting point for learning
and, as with MAML, could be paired well with MetaInit.

As described earlier, a very successful approach to improving training robustness is adding normal-
ization. The most successful of these approaches is arguably BatchNorm [27]. However, as first
explained in [59] and supported in Section 4.2, BatchNorm does not apply well to all architectures.
Other normalization methods such as LayerNorm [4] or GroupNorm [56] likewise appear to amelio-
rate training in some circumstances but have a deleterious effect in others cases. Finally, techniques
like gradient clipping [44] are extremely useful, but require a reasonable starting point for learning.
As discussed above, we observe that gradient clipping works well in combination with MetaInit.

7 Conclusion

We have proposed a novel method to automatically tune the initial parameter norms under the
hypothesis that good initializations reduce second order effects. Our results demonstrate that this
approach is useful in practice and can automatically recover from a class of bad initializations accross
several architectures.

9



Acknowledgements

We would like to thank David Grangier, Ben Poole, and Jascha Sohl-Dickstein for help discussions.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016.

[2] Michael David Abràmoff, Yiyue Lou, Ali Erginay, Warren Clarida, Ryan Amelon, James C Folk, and
Meindert Niemeijer. Improved automated detection of diabetic retinopathy on a publicly available dataset
through integration of deep learning. Investigative ophthalmology & visual science, 57(13):5200–5206,
2016.

[3] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The
shattered gradients problem: If resnets are the answer, then what is the question? In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 342–350. JMLR. org, 2017.

[6] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. Online
learning rate adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782, 2017.

[7] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd: Com-
pressed optimisation for non-convex problems. arXiv preprint arXiv:1802.04434, 2018.

[8] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. Activation atlas. Distill,
2019. https://distill.pub/2019/activation-atlas.

[9] Minmin Chen, Jeffrey Pennington, and Samuel S Schoenholz. Dynamical isometry and a mean field theory
of rnns: Gating enables signal propagation in recurrent neural networks. arXiv preprint arXiv:1806.05394,
2018.

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[11] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 933–941. JMLR. org, 2017.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[13] Timothy Dozat. Incorporating nesterov momentum into adam.(2016). Dostupné z: http://cs229. stanford.
edu/proj2015/054_report. pdf, 2016.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1126–1135. JMLR. org, 2017.

[16] Roy Frostig, Peter Hawkins, Matthew Johnson, Chris Leary, and Dougal Maclaurin. JAX: Autograd and
XLA. www.github.com/google/jax, 2018.

[17] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli, Giulio
Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization with number of
parameters in deep learning. arXiv preprint arXiv:1901.01608, 2019.

10

www.github.com/google/jax


[18] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via
hessian eigenvalue density. arXiv preprint arXiv:1901.10159, 2019.

[19] Dar Gilboa, Bo Chang, Minmin Chen, Greg Yang, Samuel S Schoenholz, Ed H Chi, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of lstms and grus. arXiv preprint arXiv:1901.08987, 2019.

[20] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

[21] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In European conference on computer vision, pages 630–645. Springer, 2016.

[25] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[28] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–8580, 2018.

[29] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi,
Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu.
Population based training of neural networks. CoRR, abs/1711.09846, 2017.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[34] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as linear models under gradient descent. arXiv
preprint arXiv:1902.06720, 2019.

[35] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[36] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International Conference on Machine Learning, pages 2113–2122, 2015.

[37] James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. CoRR, abs/1503.05671, 2015.

[38] James Martens and Ilya Sutskever. Training deep and recurrent networks with hessian-free optimization.
In Neural networks: Tricks of the trade, pages 479–535. Springer, 2012.

[39] Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-dickstein. Meta-learning update rules
for unsupervised representation learning. 2019.

11



[40] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein. Under-
standing and correcting pathologies in the training of learned optimizers. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 4556–4565, Long Beach, California,
USA, 09–15 Jun 2019. PMLR.

[41] Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422, 2015.

[42] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o
(1/kˆ 2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

[43] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
https://distill.pub/2017/feature-visualization.

[44] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks, 2012.

[45] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[46] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. In Advances in neural information processing systems,
pages 4785–4795, 2017.

[47] George Philipp and Jaime G Carbonell. The nonlinearity coefficient-predicting generalization in deep
neural networks. arXiv preprint arXiv:1806.00179, 2018.

[48] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–
151, 1999.

[49] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

[50] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pages 901–909,
2016.

[51] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[52] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. arXiv preprint arXiv:1611.01232, 2016.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[54] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value
of adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems,
pages 4148–4158, 2017.

[55] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[56] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 3–19, 2018.

[57] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional
neural networks. arXiv preprint arXiv:1806.05393, 2018.

[58] Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In Advances in
neural information processing systems, pages 7103–7114, 2017.

[59] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz. A mean
field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

[60] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

12



[61] Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

[62] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

[63] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

13


	Introduction
	MetaInit: Initializing by searching for less curvy starting regions
	Implementation
	Experiments
	Minimizing the gradient quotient corrects bad initial parameter norms
	Improving bad initialization with MetaInit helps training
	Ablation

	Limitations
	Additional Related Work
	Conclusion

