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Abstract

Biological neural networks face homeostatic and resource constraints that restrict the
allowed configurations of connection weights. If a constraint is tight it defines a very
small solution space, and the sizes of these constraint spaces determine their potential
overlap with the solutions for computational tasks. We study the geometry of the solution
spaces for constraints on neurons’ total synaptic weight and on individual synaptic
weights, characterizing the connection degrees (numbers of partners) that maximize
the size of these solution spaces. We then hypothesize that the size of constraints’
solution spaces could serve as a cost function governing neural circuit development. We
develop analytical approximations and bounds for the model evidence of the maximum
entropy degree distributions under these cost functions. We test these on a published
electron microscopic connectome of an associative learning center in the fly brain,
finding evidence for a developmental progression in circuit structure.

1 Introduction

Computation in neural networks is constrained by their architecture [14]. The capacity of a network (the
number of computations it can successfully learn) depends on a number of factors. For simple associative
memory models, the capacity depends on the structure of the inputs [15], the learning rule [26], and
constraints on the connectivity [6]. In biological neural networks, the cost function, learning rule, and
structure of input activity are often unknown. Increasingly, however, high-throughput connectomics
studies are revealing the architecture of neural circuits (e.g., [18, 23, 1, 13, 27, 32]). This allows us to
examine biological circuit structures for signatures of developmentally inspired cost functions governing
network architectures. Biological circuit structure is shaped by developmental programs and slow structural
plasticity, which construct a scaffold for and stabilize learning and memory on faster timescales [22].
Motivated by this, we hypothesize that developmental programs that structure circuits might aim for
flexibility: to optimize the number of available weight configurations under given constraints.

The total strength of synaptic connections between two neurons is limited by the amount of receptor and
neurotransmitter available and the size of the synapse [19]. Pyramidal neurons of mammalian cortex
and hippocampus undergo synaptic scaling, regulating their total synaptic input strengths to stabilize
postsynaptic activity levels [29]. We consider simple models of resource limitations and homeostatic
constraints on total and individual synaptic weights. We examine how the size of the solution space for
these constraints depends on the number of connections (the degree) and compute the optimally flexible
degrees under different constraints on total and individual connection strengths. We then develop the
maximum entropy degree distributions under these constraints. We derive the Laplace approximation for
the evidence of these degree distribution models. Finally, we apply these models to a recently characterized
connectome of a learning and memory center of the larval Drosophila melanogaster [13], asking which
constraints best explain the degree distributions of neurons at different developmental stages. We find that
overall, a homeostatically fixed net weight best predicts the degree distributions of Kenyon cell inputs and
outputs. The most mature Kenyon cells, however, are better explained by a simple binomial random wiring
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model, suggesting a developmental progression in the cost functions governing mushroom body wiring.
Most of the results of this abstract are presented in more detail in a preprint [24].

2 Geometry of constraint spaces

We consider a simple model of synaptic interactions where a neuron has degree K and the total strength of
projection i is Ji. K is the synaptic degree. We assume that the existence of a connection is determined
separately from its strength, and model individual synaptic weights as continuous variables, so the weight
configuration is a point in K-dimensional Euclidean space. Given K, a constraint on synaptic weights
defines a solution space. We will call the size of that constraint’s solution space the flexibility of the
constraint. The size of that solution space measures the flexibility of the constraint. are dimensionless
quantities and measure the size of aD-dimensional solution space by itsD-dimensional Hausdorff measure
(normalized so that theK-dimensional Haussdorff measure coincides with the standard Lebesgue measure).
For any K, the size of the constraint space approximates the number of K-dimensional synaptic weight
configurations allowed. If the synaptic weights are viewed as a channel dependent on input patterns X , the
marginal entropy (log size) of the synaptic weights also gives an upper bound on the mutual information
between the inputs and outputs (though it may not be a tight bound). We thus consider the constraint’s
flexibility a simple bound on the computational capacity of a neuron.

Flexibility under bounded net synaptic weight We begin by considering an upper bound on the net
synaptic weight, so that

K∑
i=1

Ji ≤ J̄Kp (1)

This bound could be interpreted multiple ways, for example as a presynaptic limit due to the number of
vesicles currently available before more are manufactured or a postsynaptic limit due to the amount of
dendritic tree available for synaptic inputs. Scaling the summed synaptic weight as Kp corresponds to
scaling the individual synaptic weights as Kp−1. If every synaptic weight has an order 1/K strength, the
sum of the synaptic weights would be order 1 and p = 0. If every synaptic weight has an order 1 strength,
the summed weight is order K and p = 1. If synaptic weights have balanced (1/

√
K) scaling [30], then

the summed weight would have p = 1/2. We require 0 ≤ p ≤ 1 and J̄ > 0.

With degree K, the solution space for Eq. 1 is the volume under a K − 1 simplex (Fig. 1a). Thus,
for the bounded weight constraint the number of weight configurations is proportional to the volume of
the K − 1 dimensional simplex, V (K, J̄) = (J̄Kp)

K

/K! (Fig. 1b). We can also view this as a count of
available configurations if we divide the maximum synaptic weight J̄ into N increments of measurable
synaptic weight changes ∆J , and measure synaptic weights relative to ∆J [24]. In the continuum limit
N → ∞, ∆J → 0 with J̄ fixed, the volume under the simplex approximates the number of synaptic
weight configurations. We call the synaptic degree that maximizes the volume under the simplex the
optimal degree, K∗. We computed this optimal degree [24]. It is approximately linearly related to the total
synaptic weight:

(K∗)pJ̄ =

(
K∗ +

1

2

)
exp (−p) +O (1/K∗) (2)

with a slope that depends on p (Fig. 1c). We can see from Eq. 2 that if p = 1, we obtain the condition
J̄ = 1/e (to leading order). So if p = 1 and J̄ = 1/e, the volume is approximately independent of K. If
p = 1, the volume decreases monotonically for J̄ < 1/e and increases monotonically for J̄ > 1/e.

Flexibility under fixed net synaptic weights Motivated by the observation that different types of
neuron regulate their total synaptic weights [29], we also consider a simple model of homeostatic synaptic
scaling:

∑K
j=1 Jj = KpJ̄ . The fixed net weight constraint defines the same simplices as the bounded

net weight, but requires synaptic weights to live on their surfaces instead of the volumes under them
(Fig. 1d). The size of this space of allowed weights is given by the surface area of the K − 1 simplex,
A(K, J̄, p) = (KpJ̄)

K−1√
K/(K−1)!. The surface area of the simplex increases with the net excitatory

weight, but for J̄ ≥ 1 it has a maximum at positive K (Fig. 1e). The optimal degrees obey [24]:

(K∗)pJ̄ = (K∗ + p− 1) exp (−p) +O (1/K∗) (3)
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Figure 1: Constraints on synaptic connectivity. (a) The set of allowed synaptic weights under a bounded
net weight for two inputs. (b) Volume of the K − 1 simplex as a function of K (here with p = 0). (c)
Relationship between the degree that optimizes the volume under the K − 1 simplex and the maximal net
synaptic weight. (d-f) Same as (a-c) for the fixed net weight constraint. (g, h) Same as (a, b) for bounded
individual synaptic weights. (i) Relation between the scaling of the net synaptic weight, p, and the limit on
individual synaptic weights at the maximum of the hypercube’s volume.

revealing an approximately linear relationship, similar to the constraint on the maximum possible synaptic
weight (Eq. 2). As for the bounded net weight, we can see from Eq. 3 that if p = 1, we obtain the condition
J̄ = 1/e (to leading order). So if p = 1 and J̄ = 1/e, the surface area is approximately independent of K.
If p = 1, the area decreases monotonically for J̄ < 1/e and increases monotonically for J̄ > 1/e.

Flexibility under individual connection strength bounds We consider a simple model for resource
limitations at individual connections: Jj ≤ W̄Kp−1. The scaling with Kp−1 here ensures that the
sum of K synaptic weights scales as Kp, as for the previous constraints. The volume of the hypercube,
C =

(
W̄Kp−1

)K
measures the size of the solution space. If p = 1 here (individual synaptic weights do

not scale with K) then the volume of the cube only decreases with K for W̄ < 1 and increases with K for
W̄ > 1. If p < 1, however, the volume exhibits a maximum at positive K (Fig. 1h). At those maxima,

W̄ (K∗)p−1 = exp(1− p) (4)

In contrast to the constraints on the total connection strength, the upper limit for each connection strength
is independent of K. In all these cases, the value of the constraint at the optimal degree decreases with p.

3 Maximum entropy degree distributions under connectivity constraints

We next asked what connectivity these different constraints predict. For given J̄ , p, and K, the maximum
entropy distribution on the synaptic weight configurations J under that constraint is the uniform distribution
over its solution space, SK . For the bounded net weight (Eq. ??), for example, SK is the volume under
the (K − 1) regular simplex with vertices at J̄Kp (Fig. ??a). We assume that a developmental process
chooses K without respect to the weight configurations so that for K from 1 to some finite maximum
Kmax, the maximum entropy distribution for synaptic weight configurations J is uniform over the union
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of S1, . . . ,SK . In this case, the degree distributions are proportional to the size of the solution space:
p
(
K | J̄ , p

)
= |SK |/ZS (5)

where |SK | is the size of the solution set SK (for the bounded net weight, the volume under the simplex and
for the fixed net weight, the surface area of the simplex). For large Kmax, we compute the normalization
constant as ZS

(
J̄ , p

)
=
∑Kmax

K=1 |SK |. These provide predictions for neural degree distributions. To test
them we turned to an electron microscopic reconstruction of connectivity of Kenyon cells in the larval
Drosophila melanogaster’s mushroom bodies, a center of learning and memory in the fly brain [13]. These
data include the number of synapses for each connection. To map these anatomical measurements onto
our theory, we assume that the synapse counts are proportional to the physiological synaptic weights (for
constraints on the net synaptic weight, J̄Kp = αS̄). We computed the Laplace approximation for the
model evidence (marginal likelihood) under each of the constraints discussed above, marginalizing out
the scale factor α relating the anatomical measurements to the modeled synaptic weights [24]. We also
computed the model evidence for a binomial random wiring model, using anatomical estimates for the
number of potential partners of Kenyon cells [24].
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Figure 2: Mushroom body con-
nectivity. (a) Model evidence for
Kenyon cells’ in-degree distributions.
Young, multi-claw and single-claw
Kenyon cells are in order of increas-
ing developmental maturity. The
model evidences for the fixed net
weight model is a lower bound aris-
ing from a bound on its normalization
constant. (b) Same, for Kenyon cell
out-degrees.

KCs can be morphologically classified by the structure of their dendrites. Immature KCs have smooth
dendrites, while more mature KCs’ dendrites exhibit claws around input axons. Single-claw KCs are more
mature than multi-claw KCs [13]. For models with a fixed net weight, the normalization constant was not
tractable; because of this we computed bounds for the evidence (Fig. 2b, c orange shows the lower bounds;
see [24] for more details).

The models with bounded individual synaptic weights provided the poorest explanations for KC con-
nectivity degrees (Fig. 2b, c green). For single-claw KCs, the binomial wiring model had the highest
evidence (Fig. 2b, c black; log likelihood ratio at least 1.57 for binomial vs fixed or bounded net weights
for in-degrees, at least 0.78 for out-degrees). For young and multi-claw KCs, the fixed net weight had the
highest evidence (Fig. 2b, c orange; log likelihood ratio at least 70.46 for fixed net weight vs bounded or
binomial models on young KC in-degrees; at least 9.92 for multi-claw KC in-degrees; at least 48.17 for
fixed net weight vs binomial on young KC out-degrees; at least 0.41 for fixed vs bounded net weight on
young KC out-degrees; at least 201.8 for fixed net weight vs binomial on multi-claw KC out-degrees; at
least 20.18 for fixed vs bounded net weight on multi-claw KC out-degrees). This suggests that less mature
KCs have connectivity governed by a homeostatically regulated total input and output strength and as KCs
mature, other factors come to dominate their wiring.

4 Discussion

We hypothesized that under a particular constraint, the probability of a neuron having degree K is
proportional to the size of the space of allowed circuit configurations with K partners. This corresponds to
the degree distribution of the maximum entropy synaptic weight configurations under a constraint. The
general idea of considering the space of allowed configurations can be traced back to Elizabeth Gardner’s
pioneering work examining the storage capacity of the perceptron for random input patterns [15]. In the
limit of infinitely many connections and input patterns, the idea that a neuron performs associations leads
to predictions for the distributions of synaptic weights [3, 5, 2, 6]. Here, in contrast, we examined the
hypothesis that the size of the space of allowed configurations governs the distribution of the number of
connections. We examined constraints on the total strength of connections to (or from) a neuron and on
individual connection strengths. The results with constraints on total connection strengths are a summary
of results shown in more detail in [24].
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Connectivity constraints Previous studies have shown that minimizing the amount of wire used to
connect neural circuits can predict the spatial layout of diverse neural systems (e.g., [12, 8, 21, 9, 7, 31, 4])
and pyramidal neurons’ dendritic arborizations [10, 11]. Here we examined, in contrast, the idea that the
number of synaptic partners to a neuron might be structured to make constraints flexible: to allow many
different connectivity configurations under a constraint. We hope that this focus on models of synaptic
weight configurations and degrees, rather than on physical wire and physical space, may expedite links
with theories of computation.

We discussed constraints that limit or fix neurons’ total input or output synaptic weight. We are not aware
of experimental studies directly measuring synaptic scaling or resource limitations in Kenyon cells. There
is evidence of homeostatic regulation of total synaptic weights in other Drosophila melanogaster neurons.
Growth from the first instar larva to the third instar larva is accompanied by a homeostatic regulation of
mechanosensory receptive fields [17] and functional motor neuron outputs [20] and nociceptive projections
[16]. In addition, changes in inputs to the central aCC neuron elicit structural modifications to its dendritic
tree that homeostatically maintain input levels [28].

Regularization In machine learning, regularizing weights is a common way to reduce generalization
errors. L2 regularization pressures the weights to lie in a L2-ball, and L1 pressures them to lie in an L1-ball;
if the weights are also only positive, L1 regularization pressures weights to lie on the surface of a simplex.
We examined regularization on its own, and observed that the sizes of solution spaces for simplicial weight
constraints depends on the degree. This motivated us to consider cost functions (equivalently, probability
distributions) for the degrees. We hope that these biologically inspired cost functions for connectivity
degrees might be useful for architecture search.

Computational capacity The Rademacher complexity of a set is bounded by its covering number: the
number of spheres of radius r that are required to cover a set [25]. The measure of configuration flexibility
we used are Haussdorff measures of the solution spaces for different constraints. The Haussdorff measure
has a similar flavor to the covering number. We have not yet formalized a relation between our approach
and the Rademacher complexity, but believe this to be a promising direction.
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