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ABSTRACT

Convolution operator is the core of convolutional neural networks (CNNs) and
occupies the most computation cost. To make CNNs more efficient, many methods
have been proposed to either design lightweight networks or compress models.
Although some efficient network structures have been proposed, such as MobileNet
or ShuffleNet, we find that there still exists redundant information between con-
volution kernels. To address this issue, we propose a novel dynamic convolution
method named DyNet in this paper, which can adaptively generate convolution
kernels based on image contents. To demonstrate the effectiveness, we apply DyNet
on multiple state-of-the-art CNNs. The experiment results show that DyNet can
reduce the computation cost remarkably, while maintaining the performance nearly
unchanged. Specifically, for ShuffleNetV2 (1.0), MobileNetV2 (1.0), ResNet18
and ResNet50, DyNet reduces 37.0%, 54.7%, 67.2% and 71.3% FLOPs respec-
tively while the Top-1 accuracy on ImageNet only changes by +1.0%, −0.27%,
−0.6% and −0.08%. Meanwhile, DyNet further accelerates the inference speed
of MobileNetV2 (1.0), ResNet18 and ResNet50 by 1.87×, 1.32× and 1.48× on
CPU platform respectively. To verify the scalability, we also apply DyNet on
segmentation task, the results show that DyNet can reduces 69.3% FLOPs while
maintaining the Mean IoU on segmentation task.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved state-of-the-art performance in many computer
vision tasks (Krizhevsky et al., 2012; Szegedy et al., 2013), and the neural architectures of CNNs are
evolving over the years (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy et al., 2015;
He et al., 2016; Hu et al., 2018; Zhong et al., 2018a;b). However, modern high-performance CNNs
often require a lot of computation resources to execute large amount of convolution kernel operations.
Aside from the accuracy, to make CNNs applicable on mobile devices, building lightweight and
efficient deep models has attracting much more attention recently (Howard et al., 2017; Sandler et al.,
2018; Zhang et al., 2018; Ma et al., 2018). These methods can be roughly categorized into two types:
efficient network design and model compression. Representative methods for the former category are
MobileNet (Howard et al., 2017; Sandler et al., 2018) and ShuffleNet (Ma et al., 2018; Zhang et al.,
2018), which use depth-wise separable convolution and channel-level shuffle techniques to reduce
computation cost. On the other hand, model compression based methods tend to obtain a smaller
network by compressing a larger network via pruning, factorization or mimic (Chen et al., 2015; Han
et al., 2015a; Jaderberg et al., 2014; Lebedev et al., 2014; Ba & Caruana, 2014).

Although some handcrafted efficient network structures have been designed, we observe that the
significant correlations still exist among convolutional kernels, and introduce large amount of re-
dundant calculations. Moreover, these small networks are hard to compress. For example, Liu
et al. (2019) compress MobileNetV2 to 124M, but the accuracy drops by 5.4% on ImageNet. We
theoretically analyze above observation, and find that this phenomenon is caused by the nature of
static convolution, where correlated kernels are cooperated to extract noise-irrelevant features. Thus
it is hard to compress the fixed convolution kernels without information loss. We also find that if we
linearly fuse several convolution kernels to generate one dynamic kernel based on the input, we can
obtain the noise-irrelevant features without the cooperation of multiple kernels, and further reduce
the computation cost of convolution layer remarkably.
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Figure 1: The overall framework of the proposed dynamic convolution.

Based on above observations and analysis, in this paper, we propose a novel dynamic convolution
method named DyNet. The overall framework of DyNet is shown in Figure 1, which consists of a
coefficient prediction module and a dynamic generation module. The coefficient prediction module
is trainable and designed to predict the coefficients of fixed convolution kernels. Then the dynamic
generation module further generates a dynamic kernel based on the predicted coefficients.

Our proposed dynamic convolution method is simple to implement, and can be used as a drop-in
plugin for any convolution layer to reduce computation cost. We evaluate the proposed DyNet on
state-of-the-art networks such as MobileNetV2, ShuffleNetV2 and ResNets. Experiment results show
that DyNet reduces 37.0% FLOPs of ShuffleNetV2 (1.0) while further improve the Top-1 accuracy on
ImageNet by 1.0%. For MobileNetV2 (1.0), ResNet18 and ResNet50, DyNet reduces 54.7%, 67.2%
and 71.3% FLOPs respectively, the Top-1 accuracy on ImageNet changes by −0.27%, −0.6% and
−0.08%. Meanwhile, DyNet further accelerates the inference speed of MobileNetV2 (1.0), ResNet18
and ResNet50 by 1.87×,1.32×and 1.48× on CPU platform respectively.

2 RELATED WORK

We review related works from three aspects: efficient convolution neural network design, model
compression and dynamic convolutional kernels.

2.1 EFFICIENT CONVOLUTION NEURAL NETWORK DESIGN

In many computer vision tasks (Krizhevsky et al., 2012; Szegedy et al., 2013), model design plays
a key role. The increasing demands of high quality networks on mobile/embedding devices have
driven the study on efficient network design (He & Sun, 2015). For example, GoogleNet (Szegedy
et al., 2015) increases the depth of networks with lower complexity compared to simply stacking
convolution layers; SqueezeNet (Iandola et al., 2016) deploys a bottleneck approach to design a very
small network; Xception (Chollet, 2017), MobileNet (Howard et al., 2017) and MobileNetV2 (Sandler
et al., 2018) use depth-wise separable convolution to reduce computation and model size. ShuffleNet
(Zhang et al., 2018) and ShuffleNetV2 (Ma et al., 2018) shuffle channels to reduce computation of
1× 1 convolution kernel and improve accuracy. Despite the progress made by these efforts, we find
that there still exists redundancy between convolution kernels and cause redundant computation.

2.2 MODEL COMPRESSION

Another trend to obtaining small network is model compression. Factorization based methods
(Jaderberg et al., 2014; Lebedev et al., 2014) try to speed up convolution operation by using tensor
decomposition to approximate original convolution operation. Knowledge distillation based methods
(Ba & Caruana, 2014; Romero et al., 2014; Hinton et al., 2015) learn a small network to mimic a
larger teacher network. Pruning based methods (Han et al., 2015a;b; Wen et al., 2016; Liu et al., 2019)
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try to reduce computation by pruning the redundant connections or convolution channels. Compared
with those methods, DyNet is more effective especially when the target network is already efficient
enough. For example, in (Liu et al., 2019), they get a smaller model of 124M FLOPs by pruning
the MobileNetV2, however it drops the accuracy by 5.4% on ImageNet compared with the model
with 291M FLOPs. While in DyNet, we can reduce the FLOPs of MobileNetV2 (1.0) from 298M to
129M with the accuracy drops only 0.27%.

2.3 DYNAMIC CONVOLUTION KERNEL

Generating dynamic convolution kernels appears in both computer vision and natural language
processing (NLP) tasks.

In computer vision domain, Klein et al. (Klein et al., 2015) and Brabandere et al. (Jia et al., 2016)
directly generate convolution kernels via a linear layer based on the feature maps of previous layers.
Because convolution kernels has a large amount of parameters, the linear layer will be inefficient
on the hardware. Our proposed method solves this problem via merely predicting the coefficients
for linearly combining static kernels and achieve real speed up for CNN on hardware. The idea of
linearly combining static kernels using predicted coefficients has been proposed by Yang et al. (Yang
et al., 2019), but they focus on using more parameters to make models more expressive while we
focus on reducing redundant calculations in convolution. We make theoretical analysis and conduct
correlation experiment to prove that correlations among convolutional kernels can be reduced via
dynamically fusing several kernels.

In NLP domain, some works (Shen et al., 2018; Wu et al., 2019; Gong et al., 2018) incorporate
context information to generate input-aware convolution filters which can be changed according to
input sentences with various lengths. These methods also directly generate convolution kernels via
a linear layer, etc. Because the size of CNN in NLP is smaller and the dimension of convolution
kernel is one, the inefficiency issue for the linear layer is alleviated. Moreover, Wu et al. (Wu et al.,
2019) alleviate this issue utilizing the depthwise convolution and the strategy of sharing weight across
layers. These methods are designed to improve the adaptivity and flexibility of language modeling,
while our method aims to cut down the redundant computation cost.

3 DYNET: DYNAMIC CONVOLUTION IN CNNS

In this section, we first describe the motivation of DyNet. Then we explain the proposed dynamic
convolution in detail. Finally, we illustrate the DyNet based architectures of our proposed Dy-mobile,
Dy-shuffle, Dy-ResNet18, Dy-ResNet50.

Correlation value

SW N W M

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MobileNetV2 AlexNet ResNet50 Vgg

Figure 2: Pearson product-moment correlation coefficient between feature maps. S, M, W, N denote
strong, middle, weak and no correlation respectively.
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3.1 MOTIVATION

As illustrated in previous works (Han et al., 2015a;b; Wen et al., 2016; Liu et al., 2019), convolutional
kernels are naturally correlated in deep models. For some of the well known networks, we plot the
distribution of Pearson product-moment correlation coefficient between feature maps in Figure 2.
Most existing works try to reduce correlations by compressing. However, efficient and small networks
like MobileNets are harder to prune despite the correlation is still significant. We think these
correlations are vital for maintaining the performance because they are cooperated to obtain noise-
irrelevant features. We take face recognition as an example, where the pose or the illumination is
not supposed to change the classification results. Therefore, the feature maps will gradually become
noise-irrelevant when they go deeper. Based on the theoretical analysis in appendix A, we find that
if we dynamically fuse several kernels, we can get noise-irrelevant feature without the cooperation
of redundant kernels. In this paper, we propose dynamic convolution method, which learns the
coefficients to fuse multiple kernels into a dynamic one based on image contents. We give more in
depth analysis about our motivation in appendix A.

3.2 DYNAMIC CONVOLUTION

The goal of dynamic convolution is to learn a group of kernel coefficients, which fuse multiple fixed
kernels to a dynamic one. We demonstrate the overall framework of dynamic convolution in Figure
1. We first utilize a trainable coefficient prediction module to predict coefficients. Then we further
propose a dynamic generation module to fuse fixed kernels to a dynamic one. We will illustrate
the coefficient prediction module and dynamic generation module in detail in the following of this
section.

𝐻

𝑊

𝑪𝒊𝒏

Input feature map

Coefficient prediction

GAP FC

𝟏 × 𝟏 × 𝑪𝒊𝒏 𝟏 × 𝟏 × 𝑪

Figure 3: The coefficient prediction module.

Coefficient prediction module Coefficient
prediction module is proposed to predict coef-
ficients based on image contents. As shown
in Figure 3, the coefficient prediction module
can be composed by a global average pooling
layer and a fully connected layer with Sigmoid
as activation function. Global average pooling
layer aggregates the input feature maps into a
1 × 1 × Cin vector, which serves as a feature
extraction layer. Then the fully connected layer
further maps the feature into a 1× 1×C vector,
which are the coefficients for fixed convolution
kernels of several dynamic convolution layers.

Dynamic generation module For a dynamic
convolution layer with weight [Cout × gt, Cin, k, k], it corresponds with Cout × gt fixed kernels
and Cout dynamic kernels, the shape of each kernel is [Cin, k, k]. gt denotes the group size, it is a
hyperparameter. We denote the fixed kernels as wit, the dynamic kernels as w̃t, the coefficients as ηit,
where t = 0, ..., Cout, i = 0, ..., gt.

After the coefficients are obtained, we generate dynamic kernels as follows:

w̃t =

gt∑
i=1

ηit · wit (1)

Training algorithm For the training of the proposed dynamic convolution, it is not suitable to
use batch based training scheme. It is because the convolution kernel is different for different input
images in the same mini-batch. Therefore, we fuse feature maps based on the coefficients rather than
kernels during training. They are mathematically equivalent as shown in Eq. 2:

Õt = w̃t ⊗ x =

gt∑
i=1

(ηit · wit)⊗ x =

gt∑
i=1

(ηit · wit ⊗ x)

=

gt∑
i=1

(ηit · (wit ⊗ x)) =

gt∑
i=1

(ηit ·Oit),
(2)
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where x denotes the input, Õt denotes the output of dynamic kernel w̃t, Oit denotes the output of
fixed kernel wit.
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Figure 4: Basic building bolcks for Dynamic Network variants of MobileNet (a), shuffleNet
(b)?ResNet18 (c), and ResNet50 (d).

3.3 DYNAMIC CONVOLUTION NEURAL NETWORKS

We equip the MobileNetV2, ShuffleNetV2 and ResNets with our proposed dynamic convolution, and
propose Dy-mobile, Dy-shuffle, Dy-ResNet18 and Dy-ResNet50 respectively. The building blocks of
these 4 network are shown in Figure 4. Based on above dynamic convolution, each dynamic kernel
can get noise-irrelevant feature without the cooperation of other kernels. Therefore we can reduce the
channels for each layer of those base models and remain the performance. We set the hyper-parameter
gt as 6 for all of them, and we give details of these dynamic CNNs below.

Dy-mobile In our proposed Dy-mobile, we replace the original MobileNetV2 block with our dy-
mobile block, which is shown in Figure 4 (a). The input of coefficient prediction module is the input
of block, it produces the coefficients for all three dynamic convolution layers. Moreover, we further
make two adjustments:

• We do not expand the channels in the middle layer like MobileNetV2. If we denote the
output channels of the block as Cout, then the channels of all the three convolution layers
will be Cout.

• Since the depth-wise convolution is efficient, we set groups = Cout

6 for the dynamic depth-
wise convolution. We will enlarge Cout to make it becomes the multiple of 6 if needed.

After the aforementioned adjustments, the first dynamic convolution layer reduce the FLOPs from
6C2HW to C2HW . The second dynamic convolution layer keep the FLOPs as 6CHW × 32

unchanged because we reduce the output channels by 6x while setting the groups of convolution
6x smaller, too. For the third dynamic convolution layer, we reduce the FLOPs from 6C2HW to
C2HW as well. The ratio of FLOPs for the original block and our dy-mobile block is:

6C2HW + 6CHW × 32 + 6C2HW

C2HW + 6CHW × 32 + C2HW
=

6C + 27

C + 27
= 6− 135

C + 27
(3)

Dy-shuffle In the original ShuffleNet V2, channel split operation will split feature maps to right-
branch and left-branch, the right branch will go through one pointwise convolution, one depthwise
convolution and one pointwise convolution sequentially. We replace conventional convolution with
dynamic convolution in the right branch as shown in Figure 4 (b). We feed the input of right branch
into coefficient prediction module to produce the coefficients. In our dy-shuffle block, we split
channels into left-branch and right-branch with ratio 3 : 1, thus we reduce the 75% computation cost
for two dynamic pointwise convolutuon. Similar with dy-mobile, we adjust the parameter ”groups”
in dynamic depthwise convolution to keep the FLOPs unchanged.
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Dy-ResNet18/50 In Dy-ResNet18 and DyResNet50, we simple reduce half of the output channels
for dynamic convolution layers of each residual block. Because the input channels of each block is
large compared with dy-mobile and dy-shuffle, we use two linear layer as shown in Figure 4 (c) and
Figure 4 (d) to reduce the amount of parameters. If the input channel is Cin, the output channels of
the first linear layer will be Cin

4 for Dy-ResNet18/50.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For the training of the proposed dynamic neural networks. Each image has data augmentation of
randomly cropping and flipping, and is optimized with SGD strategy with cosine learning rate decay.
We set batch size, initial learning rate, weight decay and momentum as 2048, 0.8, 5e-5 and 0.9
respectively. We also use the label smoothing with rate 0.1. We evaluate the accuracy on the test
images with center crop.

4.2 EXPERIMENT SETTINGS AND COMPARED METHODS
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Figure 5: Compare with MobileNetV2 under the
similar Flops constraint.

We evaluate DyNet on ImageNet (Russakovsky
et al., 2015), which contains 1.28 million
training images and 50K validation images
collected from 1000 different classes. We
train the proposed networks on the training
set and report the top-1 error on the valida-
tion set. To demonstrate the effectiveness,
we compare the proposed dynamic convolu-
tion with state-of-the-art networks under mo-
bile setting, including MobileNetV1 (Howard
et al., 2017), MobileNetV2 (Sandler et al., 2018),
ShuffleNet (Zhang et al., 2018), ShuffleNet
V2 (Ma et al., 2018), Xception (Chollet, 2017),
DenseNet (Huang et al., 2017), IGCV2 (Xie
et al., 2018) and IGCV3 (Sun et al., 2018).

Table 1: Comparison of different network architectures over classification error and computation cost.
The number in the brackets denotes the channel number controller (Sandler et al., 2018).

Methods MFLOPs Top-1 err. (%)

Dy-shuffle (1.0) 92 29.6
Dy-mobile (1.0) 135 28.27
Dy-ResNet18 567 31.01
Dy-ResNet50 1119 23.75

ShuffleNet v1 (1.0) (Zhang et al., 2018) 140 32.60
MobileNet v2 (0.75) (Sandler et al., 2018) 145 32.10
MobileNet v2 (0.6) (Sandler et al., 2018) 141 33.30
MobileNet v1 (0.5)(Howard et al., 2017) 149 36.30
DenseNet (1.0) (Huang et al., 2017) 142 45.20
Xception (1.0) (Chollet, 2017) 145 34.10
IGCV2 (0.5) (Xie et al., 2018) 156 34.50
IGCV3-D (0.7) (Sun et al., 2018) 210 31.50

ShuffleNet V2 (1.0) (Ma et al., 2018) 146 30.60
MobileNetV2 (1.0) (Sandler et al., 2018) 298 28.00
ResNet18 1730 30.41
ResNet50 3890 23.67
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4.3 EXPERIMENT RESULTS AND ANALYSIS

Analysis of accuracy and computation cost We demonstrate the results in Table 1, where the
number in the brackets indicates the channel number controller (Sandler et al., 2018). We partitioned
the result table into three parts: (1) The proposed dynamic networks; (2) Compared state-of-the-art
networks under mobile settings; (3) The original networks corresponding to the implemented dynamic
networks.

Table 1 provides several valuable observations: (1) Compared with these well known models under
mobile setting, the proposed Dy-mobile and Dy-shuffle achieves the best classification error with
lowest computation cost. This demonstrates that the proposed dynamic convolution is a simple
yet effective way to reduce computation cost. (2) Compared with the corresponding basic neural
structures, the proposed Dy-shuffle (1.0), Dy-mobile (1.0), Dy-ResNet18 and Dy-ResNet50 reduce
37.0%, 54.7%, 67.2% and 71.3% computation cost respectively with little drop on Top-1 accuracy.
This shows that even though the proposed network significantly reduces the convolution computation
cost, the generated dynamic kernel can still capture sufficient information from image contents.
The results also indicate that the proposed dynamic convolution is a powerful plugin, which can be
implemented on convolution layers to reduce computation cost while maintaining the accuracy.

Furthermore, we conduct detailed experiments on MobileNetV2. We replace the conventional
convolution with the proposed dynamic one and get Dy-MobileNetV2. The accuracy of classification
for models with different number of channels are shown in Figure 5. It is observed that Dy-
MobileNetV2 consistently outperforms MobileNetV2 but the ascendancy is weaken with the increase
of number of channels.

Correlation value
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MobileNetV2 Dy-MobileNetV2

SW N W M

Figure 6: The correlation distribution of fixed kernel and the generated dynamic kernel, S, M, W,
N denote strong, middle, weak and no correlation respectively. We can observe that compared with
conventional fixed kernels, the generated dynamic kernels have small correlation values.

Analysis of the dynamic kernel Aside from the quantitative analysis, we also demonstrate the
redundancy of the generated dynamic kernels compared with conventional fixed kernels in Figure 6.
We calculate the correlation between each feature maps output by the second last stage for the original
MobileNetV2(1.0) and Dy-MobileNetV2 (1.0). Note that Dy-MobileNetV2 (1.0) is different with
Dy-mobile(1.0). Dy-MobileNetV2(1.0) keeps the channels of each layer the same as the original one,
while replace the conventional convolution with dynamic convolution. As shown in Figure 6, we can
observe that the correlation distribution of dynamic kernels have more values distributed between
−0.1 and 0.2 compared with fixed convolution kernel, which indicates that the redundancy between
dynamic convolution kernels are much smaller than the fixed convolution kernels.
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Analysis of speed on the hardware We also analysis the inference speed of DyNet. We carry out
experiments on the CPU platform (Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz) with Caffe (Jia
et al., 2014). We set the size of input as 224 and report the average inference time of 50 iterations.
It is reasonable to set mini-batch size as 1, which is consistent with most inference scenarios. The
results are shown in Table 2. Moreover, the latency of fusing fixed kernels is independent with the
input size, thus we expect to achieve bigger acceleration ratio when the input size of networks become
larger. We conduct experiments to verify this assumption, the results are shown in Figure 7. We can
observe that the ratio of reduced latency achieved by DyNet gets bigger as the input size becomes
larger. As shown in (Tan & Le, 2019), a larger input size can make networks perform significantly
better, thus DyNet is more effective in this scenario.

We also analysis the training speed on the GPU platform. The model is trained with 32 NVIDIA
Tesla V100 GPUs and the batch size is 2048. We report the average training time of one iteration in
Table 2. It is observed that the training speed of DyNet is slower, it is reasonable because we fuse
feature maps rather than kernels according to Eq. 2 in the training stage.

Table 2: Speed on the hardware.
Methods Top-1 err. (%) Inference Time Training Time

Dy-mobile(1.0) 28.27 58.3ms 250ms
MobileNetV2(1.0) 28.00 109.1ms 173ms

Dy-ResNet18 31.01 68.7ms 213ms
ResNet18 30.41 90.7ms 170ms

Dy-ResNet50 23.75 135.1ms 510ms
ResNet50 23.67 199.6ms 308ms

4.4 EXPERIMENTS ON SEGMENTATION

To verify the scalability of DyNet on other tasks, we conduct experiments on segmentation. Compared
to the method Dilated FCN with ResNet50 as basenet (Fu et al., 2018), Dilated FCN with Dy-
ResNet50 reduces 69.3% FLOPs while maintaining the MIoU on Cityscapes validation set. The
result are shown in Table 3.
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Table 3: Experiments of segmentation on Cityscapes val set.
Methods BaseNet GFLOPs Mean IoU%

Dilated FCN(Fu et al., 2018) ResNet50 310.8 70.03
Dilated FCN(Fu et al., 2018) Dy-ResNet50 95.6 70.48

4.5 ABLATION STUDY

Comparison between dynamic convolution and static convolution We correspondingly design
two networks without dynamic convolution. Specifically, we remove the correlation prediction
module and use fixed convolution kernel for Dy-mobile (1.0) and Dy-shuffle (1.5), and we keep
the channel number the same as the dynamic convolution neural networks. We denote the baseline
networks as Fix-mobile(1.0) and Fix-shuffle (1.5) respectively. The results are shown in Table 4,
compare with baseline networks Fix-mobile (1.0) and Fix-shuffle (1.5), the proposed Dy-mobile (1.0)
and Dy-shuffle (1.5) achieve absolute classification improvements by 5.19% and 2.82% respectively.
This shows that directly decreasing the channel number to reduce computation cost influences the
classification performance a lot. While the proposed dynamic kernel can retain the representation
ability as mush as possible.

Table 4: Ablation experiments results of dynamic convolution and fixed convolution.
Methods MParams MFLOPs Top-1 err. (%)

Dy-mobile (1.0) 7.36 135 28.27
Dy-shuffle (1.5) 11.0 180 27.48

Fix-mobile (1.0) 2.16 129 33.57
Fix-shuffle (1.5) 2.47 171 30.30

Table 5: Ablation experiments on gt.
Methods MParams MFLOPs Top-1 err. (%)

Fix-mobile(1.0) 2.16 129 33.57
Dy-mobile(1.0, gt = 2) 3.58 131 29.43
Dy-mobile(1.0, gt = 4) 5.47 133 28.69
Dy-mobile(1.0, gt = 6) 7.36 135 28.27

Effectiveness of gt for dynamic kernel The group size gt in Eq. 1 does not change the computation
cost of dynamic convolution, but affects the performance of network. Thus we provide ablative study
on gt. We set gt as 2,4,6 for dy-mobile(1.0) respectively and the results are shown in Table 5. The
performance of dy-mobile(1.0) becomes better when gt gets larger. It is reasonable because larger gt
means the number of kernels cooperated for obtaining one noise-irrelevant feature becomes larger.
When gt = 1, the coefficient prediction module can be regarded as merely learning the attention
for different channels, which can improve the performance of networks as well (Hu et al., 2018).
Therefore we provide ablative study for comparing gt = 1 and gt = 6 on Dy-mobile(1.0) and
Dy-ResNet18. The results are shown in Table 6. From the table we can see that, setting gt = 1 will
reduce the Top-1 accuracy on ImageNet for Dy-mobile(1.0) and Dy-ResNet18 by 2.58% and 2.79%
respectively. It proves that the improvement of our proposed dynamic networks does not only come
from the attention mechanism.
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Table 6: Comparison for gt = 1 and gt = 6.
Methods MParams MFLOPs Top-1 err. (%)

Dy-mobile (1.0, gt = 1) 2.64 131 30.85
Dy-mobile (1.0, gt = 6) 7.36 135 28.27

Dy-ResNet18 (gt = 1) 3.04 553 33.8
Dy-ResNet18 (gt = 6) 16.6 567 31.01

5 CONCLUSION

In this paper, we propose a DyNet method to adaptively generate convolution kernels based on image
content, which reduces the redundant computation cost existed in conventional fixed convolution
kernels. Based on the proposed DyNet, we design several dynamic convolution neural networks
based on well known architectures, i.e., Dy-mobile, Dy-shuffle, Dy-ResNet18, Dy-ResNet50. The
experiment results show that DyNet reduces 37.0%, 54.7%, 67.2% and 71.3% FLOPs respectively,
while maintaining the performance unchanged. As future work, we want to further explore the
redundancy phenomenon existed in convolution kernels, and find other ways to reduce computation
cost, such as dynamically aggregate different kernels for different images other than fixed groups
used in this paper.
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A APPENDIX

A.1 DETAILED ANALYSIS OF OUR MOTIVATION

We illustrate our motivation from a convolution with output f(x), i.e.,

f(x) = x⊗ w, (4)

where ⊗ denotes the convolutional operator, x ∈ Rn is a vectorized input and w ∈ Rn means the
filter. Specifically, the ith element of the convolution output f(x) is calculated as:

fi(x) = 〈x(i), w〉, (5)

where 〈·, ·〉 provides an inner product and x(i) is the circular shift of x by i elements. We define the
index i started from 0.
We denote the noises in x(i) as

∑d−1
j=0 αjyj , where αj ∈ R and {y0, y1, ..., yd−1} are the base vectors

of noise space Ψ. Then the kernels in one convolutional layer can be represented as {w0, w1, ..., wc}.
The space expanded by {w0, w1, ..., wc} is Ω. We can prove if the kernels are trained until Ψ ⊂ Ω,
then for each wk /∈ Ψ, we can get the noise-irrelevant fi(xwhite) = 〈xwhite(i) , wk〉 by the cooperation
of other kernels w0, w1, ....
Firstly x(i) can be decomposed as:

x(i) = x̄(i) + βwk +

d−1∑
j=0

αjyj , (6)

where β ∈ R and x̄ ∈ Rn is vertical to wk and yj .
For concision we assume the norm of wk and yj is 1. Then,

fi(x) = 〈x(i), wk〉 = 〈x̄(i) + βwk +

d−1∑
j=0

αjyj , wk〉 = β〈wk, wk〉+

d−1∑
j=0

αj〈yj , wk〉 (7)

When there is no noise, i.e. αj = 0 for j = 0, 1, ..., d− 1, the white output fi(xwhite) becomes:

fi(x
white) = 〈xwhite(i) , wk〉 = 〈x̄(i) + βwk, wk〉 = β〈wk, wk〉 = β. (8)

It is proved in the Appendix A.2 that:

fi(x
white) = 〈a00wk +

∑
t

βtwt, x(i)〉 = (a00 + βk)〈wk, x(i)〉+
∑
t 6=k

βt〈wt, x(i)〉, (9)

where β0, ..., βc is determined by the input image.
Eq. 9 is fulfilled by linearly combine convolution output 〈wk, x(i)〉 and 〈wt, x(i)〉 for those βt 6= 0 in
the following layers. Thus if there are N coefficients in Eq. 9 that are not 0, then we need to carry out
N times convolution operation to get the noise-irrelevant output of kernel wt, this causes redundant
calculation.
In Eq. 9, we can observe that the computation cost can be reduced to one convolution operation by
linearly fusing those kernels to a dynamic one:

w̃ = (a00 + βk)wk +
∑

t 6=k,βt 6=0

βtwt

fi(x
white) = 〈w̃, x(i)〉.

(10)

In Eq. 10, the coefficients β0, β1, ... is determined by α0, α1, ..., thus they should be generated based
on the input of network. This is the motivation of our proposed dynamic convolution.

A.2 PROVING OF EQ. 9

We denote gij(x) as 〈x(i), yj〉, j = 0, 1, ..., d− 1. Then,

gij(x) = 〈x(i), yj〉 = 〈x̄(i) + βwk +

d−1∑
t=0

αtyt, yj〉 = β〈wk, yj〉+

d−1∑
t=0

αt〈yt, yj〉. (11)
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By summarize Eq. 7 and Eq. 11, we get the following equation:
〈wk, wk〉 〈y0, wk〉 〈y1, wk〉... 〈yd−1, wk〉
〈wk, y0〉 〈y0, y0〉 〈y1, y0〉 ... 〈yd−1, y0〉
〈wk, y1〉 〈y0, y1〉 〈y1, y1〉 ... 〈yd−1, y1〉

...
...

... ...
...

〈wk, yd−1〉〈y0, yd−1〉 . . . ...〈yd−1, yd−1〉




β
α0

α1

...
αd−1

 =


fi(x)
gi0(x)
gi1(x)

...
gi(d−1)(x)

 , (12)

We simplify this equation as:

A~x = ~b. (13)
Because wk /∈ Ψ, we can denote wk as:

wk = γ⊥w⊥ +

d−1∑
j=0

γjyj , (14)

where w⊥ is vertical to y0, ..., yd−1 and γ⊥ 6= 0.
moreover because |wk| = 1 ,thus

|γ⊥|2 +

d−1∑
j=0

|γj |2 = 1. (15)

It can be easily proved that:

A =


1 γ0 γ1 ...γd−1
γ0 1 0 ... 0
γ1 0 1 ... 0
...

...
... ...

...
γd−1 0 . . . ... 1

 . (16)

thus,

|A| =

∣∣∣∣∣∣∣∣∣∣

1 γ0 γ1 ... γd−1
γ0 1 0 ... 0
γ1 0 1 ... 0
...

...
... ...

...
γd−1 0 . . . ... 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1− γ20 0 γ1 ... γd−1
γ0 1 0 ... 0
γ1 0 1 ... 0
...

...
... ...

...
γd−1 0 . . . ... 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1− γ20 − γ21 0 0 ... γd−1
γ0 1 0 ... 0
γ1 0 1 ... 0
...

...
... ...

...
γd−1 0 . . . ... 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1− γ20 − γ21 − ...− γ2d−1 0 0 ... 0
γ0 1 0 ... 0
γ1 0 1 ... 0
...

...
... ...

...
γd−1 0 . . . ... 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

γ2⊥ 0 0 ... 0
γ0 1 0 ... 0
γ1 0 1 ... 0
...

...
... ...

...
γd−1 0 . . . ... 1

∣∣∣∣∣∣∣∣∣∣
=γ2⊥ 6= 0.

(17)
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thus,
~x = A−1~b. (18)

If we denote the elements of the first row of A−1 as a00, a01, ..., a0d, then

fi(x
white) = β = a00fi(x) +

d−1∑
j=0

a0(j+1)gi,j(x)

= a00〈wk, x(i)〉+

d−1∑
j=0

a0(j+1)〈yj , x(i)〉

= 〈a00wk +

d−1∑
j=0

a0(j+1)yj , x(i)〉.

(19)

Because Ψ ⊂ Ω, there exists {βt ∈ R|t = 0, 1, ..., c} that

d−1∑
j=0

a0(j+1)yj =
∑
t

βtwt. (20)

Then,

fi(x
white) = 〈a00wk +

∑
t

βtwt, x(i)〉 = (a00 + βk)〈wk, x(i)〉+
∑
t 6=k

βt〈wt, x(i)〉, (21)
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