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ABSTRACT

Generative Adversarial Networks (GANs) have shown great results in accurately
modeling complex distributions, but their training is known to be difficult due
to instabilities caused by a challenging minimax optimization problem. This is
especially troublesome given the lack of an evaluation metric that can reliably
detect non-convergent behaviors. We leverage the notion of duality gap from game
theory in order to propose a novel convergence metric for GANs that has low
computational cost. We verify the validity of the proposed metric for various test
scenarios commonly used in the literature.

1 INTRODUCTION

In the past few years, generative models have become extremely popular in the machine learn-
ing community. This is largely due to the recent advances in the field of deep learning, which
allowed deep neural generators to produce remarkable results for various tasks, including for ex-
ample image generation (Radford et al., 2015). Two notable approaches in this area are variational
auto-encoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014), and generative adversarial
networks (GAN) (Goodfellow et al., 2014). In this paper, we focus on GANs, which are especially
attractive as they circumvent the notoriously hard optimization of the data likelihood and instead use
an adversarial game approach for training a generator.

Let us denote the data distribution by pdata(x) and the model distribution by pu(x). A probabilistic
discriminator is denoted by Dv : x 7→ [0; 1] and a generator by Gu : z 7→ x. The GAN objective is:

min
u

max
v

M(u,v) =
1

2
Ex∼pdata

logDv(x) +
1

2
Ez∼pz log(1−Dv(Gu(z))) . (1)

Each of the two players (generator/discriminator) tries to optimize their own objective, which is
exactly balanced by the loss of the other player, thus yielding a two-player zero-sum minimax game.
Standard GAN approaches aim at finding a pure Nash Equilibrium by using traditional gradient-
based techniques to minimize each players cost in an alternating fashion. However, the minimax
objective of GANs makes the optimization process challenging. One of the central open issues
is the non-convergence problem, which in practice leads to oscillations between different kinds of
generated samples (Metz et al., 2016). Many different techniques have been proposed to address the
shortcomings of the original technique introduced by Goodfellow et al. (2014).

Given the plethora of GAN-like approaches as well as different training methods, the community is
now facing the problem of determining which approaches produce ”better” generative models. This
is in itself a challenging question as there is no clear evaluation criterion. In a recent large-scale
empirical study, Lucic et al. (2018) showed that using various evaluation measures, many state-of-
the-art models are able to reach similar scores with enough tuning. In a recent survey, Borji (2018)
discussed the merits of various evaluation metrics, pointing out that there is no clear consensus
regarding which metric is the most appropriate to evaluate the quality of a generative model. While
many metrics achieve reasonable discriminability (i.e. ability to distinguish generated samples from
real ones), they also tend to have a high computational complexity. Many existing metrics are also
specific to datasets of natural images, but we are also starting to notice the success of GANs in other
fields such as in cosmology (Rodriguez et al., 2018) or in the medical domain (Schlegl et al., 2017).

Another problem related to the evaluation of samples produced by a GAN is the lack of evalua-
tion procedures to detect convergence. While various approaches have analyzed the convergence
properties of alternating gradient-based techniques, most of them require the objective function to
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be convex-concave (Goodfellow et al., 2014; Nowozin et al., 2016) with the exception of Grnarova
et al. (2018) who prove convergence for semi-concave zero-sum games. In general, alternating gra-
dient descent can fail to converge (Salimans et al., 2016). While this non-convergence behavior can
in practice be visually recognized for some low-dimensional examples (such as a 2D mixture of
Gaussian), this is in general more difficult in high-dimensional spaces due to the lack of a conver-
gence metric. This has been pointed out before (see e.g. Mescheder et al. (2018) and (Fedus et al.,
2018) who examine convergence on 2D problems and problems for which the true data distribution
is known.

One of the common challenges that practitioners are facing is when to stop training. In particular,
it is well known that the curves of the discriminator and generator losses oscillate (see Figures 12
and 13) and are non-informative as to whether the model is improving or not (Arjovsky et al., 2017).
This is especially troublesome when a GAN is trained on non-image data in which case one might
not be able to use visual inspection or FID/Inception score as a proxy.

In this paper, our main contribution is to leverage existing ideas from game theory to propose a novel
and computationally efficient convergence metric for GANs. The principle we follow is based on
the theory of duality that was developed after Von Neumann (1928) derived the minimax theorem
for zero-sum games. From duality, it follows that the minimax and maximin 1 are dual to each
other and strong duality holds for feasible problems. This duality also implicitly gives us a way to
evaluate the deviation between minimax and maximin. As an example, let’s consider a two-player
game between the discriminator D and the generator G. The duality gap measures the difference
between the values of the game under two scenarios: when D first commits to a strategy, and then G
gets to respond; and when G commits first, and then D gets to respond. In this paper, we advocate
the use of the duality gap as a measure of convergence for GANs and demonstrate its effectiveness
for various settings commonly considered in the literature.

As a second contribution, we also demonstrate how to use the minimax loss value in order to detect
mode collapse and measure sample quality. Unlike FID or the Inception score that require labelled
data or a domain dependent classifier, our metric is domain independent and does not require labels.
Our experiments demonstrate that the duality gap and minimax loss are valuable tools to measure
convergence and correlate well with existing evaluation metrics.

2 RELATED WORK

Despite the impressive empirical performance achieved by the latest GAN models (Karras et al.,
2017), they are still subject to many unanswered questions. Among them is the issue of a fair
evaluation procedure. Since the log-likelihood of the data is a common objective function to train
a generative model, it would appear to be a sensible metric for GANs. However, its computation is
often intractable and Theis et al. (2015) also demonstrate that it has severe limitations as it might
yield low visual quality samples despite of a high likelihood. Perhaps the most popular evaluation
metric for GANs is the inception score introduced by Salimans et al. (2016) that measures both
diversity of the generated samples and discriminability. While diversity is measured as the entropy
of the output distribution, the discriminability aspect requires a pretrained neural network to assign
high scores to images close to training images. Various modifications of the inception score have
been suggested. Gurumurthy et al. (2017) adds a term in the cost function to take into account
diversity within samples in a particular class. Heusel et al. (2017) uses features from a hidden
layer of the Inception Net, which are modelled as two multivariate Gaussians for the generated
and true data. They then suggest using the Frechet Inception Distance (FID) between these two
Gaussians to assess the quality of the samples. The authors demonstrate improvements over the
inception score, especially more robustness to noise, as well as being able to detect intra-class mode
dropping. Furthermore, they also demonstrate high degrees of consistency with human judgments.
Although this measure appears to have nice properties from an empirical point of view, the Gaussian
assumption might not hold in practice. Furthermore, FID requires labelled data in order to train a
classifier. Without labels, transfer learning is possible to datasets under limited conditions (i.e. the
source and target distributions should not be too dissimilar).

1In game theory, the maximin value of a player is the highest value that the player is ensured to receive
without knowing the actions of the other player(s) while the minimax value of a player is the smallest value
that the other player(s) can force the player to receive, without knowing the player’s actions.
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Another popular metric introduced by Gretton et al. (2012) is the Maximum Mean Discrepancy
(MMD) which measures the dissimilarity between pdata and pu using independently drawn samples.
It is a specific instance of an integral probability metric. A potential hurdle for MMD is that its
computational complexity is quadratic in the sample size, although some linear approximation do
exist (Gretton et al., 2012). Finally, it also depends on the choice of the kernel.

There are many other metrics that have been suggested over the past few years. We refer the reader
to Borji (2018) for a detailed survey. Perhaps the two approaches that are the most relevant to our
approach are inspired by skill rating systems in games and were both introduced in Olsson et al.
(2018). The first method named tournament win rate considers a single model playing against past
and future versions of itself. This measure is designed to monitor the progress of a single model
as it learns during training. The second method named skill rating measures the aptitude of two
different fully trained models. In some way, skill rating and tournament win rate can be seen as
an approximation of the worst minimax value we advocate in this paper, where instead of doing a
full-on optimization in order to find the best adversary for the fixed generator, the search space is
limited to discriminators that are snapshots from training, or discriminators trained with different
seeds.

We would like to conclude our discussion of related work by pointing out to the vast literature on du-
ality used in the optimization community as a convergence criterion for min-max saddle point prob-
lem, see e.g. Nemirovski et al. (2009); Komodakis & Pesquet (2015). Some recent work by Chen
et al. (2018) also used duality in order to derive a Lagrangian objective to train GANs. Although
we also make use of duality, there are some major differences that are worth pointing out. Unlike
prior work, our contribution does not relate to optimising GANs, but instead in showing that the
duality gap can be empirically used as a proxy to track convergence. We also demonstrate it can be
computed at low cost.

3 DUALITY GAP AS A NATURAL PERFORMANCE MEASURE

Standard learning tasks are often described as (stochastic) optimization problems; this applies to
common Deep Learning scenarios as well as to classical tasks such as logistic and linear regression.
This formulation gives rise to a natural performance measure, namely the test loss2. In contrast,
GANs are formulated as (stochastic) zero-sum games. Unfortunately, this fundamentally different
formulation does not allow us to use the same performance metric. In this section, we describe a
performance measure for GANs, which naturally arises from a game theoretic perspective.

We start this section with a brief overview of zero-sum games, including a description of the Duality
gap metric and some of its properties. Then we illustrate the usefulness of this metric by analyzing
the idealized setting where both G and D have unbounded capacity (this setting was previously
discussed in Goodfellow et al. (2014)).

A zero-sum game is defined by two players P1 and P2 who choose a decision from their respective
decision sets K1 and K2. A game objective M : K1 × K2 7→ R, sets the utilities of the players.
Concretely, upon choosing a pure strategy (u,v) ∈ K1 × K2 the utility of P1 is −M(u,v), while
the utility of P2 is M(u,v). The goal of either P1/P2 is to maximize their worst case utilities; thus,

min
u∈K1

max
v∈K2

M(u,v) (Goal of P1), & max
v∈K2

min
u∈K1

M(u,v) (Goal of P2) (2)

The above formulation raises the question of whether there exists a solution (u∗,v∗) to which both
players may jointly converge. The latter only occurs if there exists (u∗,v∗) such that neither P1 nor
P2 may increase their utility by unilateral deviation. Such a solution is called a pure equilibrium,
and is formally defined as follows,

max
v∈K2

M(u∗,v) = min
u∈K1

M(u,v∗) (Pure Equilibrium).

While a pure equilibrium does not always exist, the seminal work of Nash et al. (1950) shows that
an extended notion of equilibrium always does. Specifically, there always exists a distribution D1

over elements of K1, and a distribution D2 over elements of K2, such that the following holds,
max
v∈K2

Eu∼D1M(u,v) = min
u∈K1

Ev∼D2M(u,v) (Mixed Nash Equilibrium).

2For classification tasks using the zero-one test error is also very natural. Nevertheless, in regression tasks
the test loss is often the only reasonable performance measure.
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Such a solution is called a Mixed Nash Equilibrium (MNE). This notion of equilibrium gives rise to
the following natural performance measure of a given pure/mixed strategy.
Definition 1 (Duality Gap). Let D1 and D2 be fixed distributions over elements from K1 and K2

respectively. Then the duality gap of (D1,D2) is defined as follows,

DualGap := max
v∈K2

Eu∼D1
M(u,v) − min

u∈K1

Ev∼D2
M(u,v) . (3)

Particularly, for a given pure strategy (u,v) ∈ K1 ×K2 we define,

DualGap := max
v∈K2

M(u,v) − min
u∈K1

M(u,v) . (4)

A well-known, straightforward property of the duality gap is that it is always non-negative. More-
over, by definition, the gap is exactly zero in (mixed) Nash Equilibrium solutions. This property
is very appealing from a practical point of view, since it means that the duality gap gives us an
immediate handle for measuring convergence.

Next we illustrate the usefulness of the duality gap metric by analyzing the ideal case where both the
generator and discriminator have unbounded capacity. The latter basically means that the generator
can represent any distribution, and the discriminator can represent any decision rule. The next
proposition shows that in this case, as long as G is not equal to the true distribution then the duality
gap is always positive. In particular we show that duality gap is at least as large as the Jensen-
Shannon divergence between true and fake distributions (which is always non-negative). We also
show that if G outputs the true distribution, then there exists a discriminator such that the duality
gap is zero.
Proposition 1. Consider the GAN game objective appearing in Equation (1), and assume that
the generator and discriminator networks have unbounded capacity. Also, let (G,D) be a fixed
solution. Then the duality gap of (G,D) is larger than the Jensen-Shannon divergence between
the true distribution and the fake distribution generated by G. Moreover, if G outputs the true
distribution, then there exists a discriminator D such that the Duality gap of (G,D) is zero.

4 ESTIMATING THE DUALITY GAP METRIC FOR GANS

In this section we address several aspects of estimating the duality gap metric for GANs. First
we discuss the appropriate way to estimate the metric using samples. We follow with advocating
another metric that enables evaluation of a generator not necessarily trained by a GAN. Finally, we
describe a method for an efficient and practical computation of the duality gap.

Appropriately estimating the duality gap from samples: Standard supervised learning prob-
lems are often formulated as stochastic optimization programs. Thus, we do not have direct access
to the expected loss, but can instead estimate it through samples. In this case, it is well known that
one should split the data into training and test sets 3. The training set is used to find a solution whose
quality of the solution is estimated using a separate test set (which provides an unbiased estimate of
the true expected loss).

Similarly, GANs are formulated as stochastic zero-sum games (Equation (1)). Nevertheless, in
GANs the issue of evaluating the duality gap metric is more delicate. This is because we have
three phases in the evaluation: (i) training a model (u,v), (ii) finding the worst case discrimina-
tor/generator, vworst ← argmaxv∈K2

M(u,v), and uworst ← argminu∈K1
M(u,v), and (iii)

computing the duality gap by estimating: DG := M(u,vworst) −M(uworst,v). Now since we do
not have direct access to the expected game objective, one should use different samples for each of
the three mentioned phases in order to maintain an unbiased estimate of the expected duality gap.
Thus we split our dataset into three disjoint subsets, training set, adversary finding set, and test set
which are respectively used in phases (i), (ii) ,and (iii).

Minimax Loss as a metric for evaluating generators. For all experiments we report both the
duality gap (DG) and the minimax loss defined as M(u,vworst). The minimax loss is the first term
that contributes to the computation of DG and intuitively measures the ’goodness’ of a generator

3Of course, one should also use a validation set, but this is less important for our discussion here.
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Gu. If Gu is optimal and covers pdata, the minimax loss achieves its optimal value as well. This
happens when Dvworst

outputs 0.5 for both the real and generated samples. Whenever the generated
distribution does not cover the entire support of pdata or compromises the sample quality, this is
detected by Dvworst

and hence, the minimax loss increases. This makes it a compelling metric for
detecting mode collapse and evaluating sample quality. Note that in order to compute this metric
one only needs a batch of generated samples, i.e. the generator can be used as a black-box. Hence,
this metric is not limited to generators trained as part of a GAN, but can instead be used for any
generator that can be sampled from.

Practical and efficient estimation of duality gap for GANs. In practice, the metrics are com-
puted by optimizing a separate generator/discriminator using a gradient based algorithm. To speed
up the optimization, we initialize the networks using the parameters of the adversary at the particular
step we are evaluating. Hence, if we are evaluating the GAN at step t, we train vworst for ut and
uworst for vt by using vt as a starting point for vworst and analogously, ut as a starting point for
uworst for a number of fixed steps. 4.

We also explored approximations of DG, where instead of using optimization to find the optimal
vworst and uworst, we limit the search space to a set of discriminators and generators that are stored
as snapshots throughout the training, similarly to (Olsson et al., 2018) (see results in Appendix B.3).

5 EXPERIMENTAL RESULTS

Some notable desirable properties of a metric is that it should be able to efficiently (i) detect con-
vergence and (ii) evaluate the quality of the generated samples. We carefully design a series of
experiments to examine commonly encountered failure modes when training a GAN and analyze
how this is reflected by the two metrics. Specifically, we show the sensitivity of the duality gap
metric to (non-)convergence and the susceptibility of the minimax loss to reflect the sample quality.

Note that our goal here is not to provide a rigorous comparative analysis between different methods,
but to demonstrate that both metrics capture desirable properties useful for training.

5.1 MIXTURE OF GAUSSIANS

We train a vanilla GAN on three toy datasets with increasing difficulty, a) RING: a mixture of 8
Gaussians, b) SPIRAL: a mixture of 20 Gaussians and c) GRID: a mixture of 25 Gaussians. As the
true data distribution is known, this setting allows for tracking of convergence and mode dropping.

Duality gap and convergence. Our first goal is to illustrate the connection between convergence
and the duality gap. To that end, we analyze the progression of the duality gap throughout training
in stable and unstable settings. One common problem of GANs is the unstable mode collapse,
where the generator rotates between generating different modes. We simulate such instabilities and
compare them against successful GANs in Table 1. The gap goes to zero for all stable models after
convergence to the true data distribution. Conversely, unstable training is reflected both in terms
of the large value reached by the duality gap as well as its trend over iterations (e.g. oscillations
indicate an unstable behavior). Thus the duality gap is a powerful tool for monitoring the training
and detecting unstable collapse.

Minimax loss reflects sample quality. As previously argued, the duality gap achieves the lowest
possible value of zero upon convergence to the NE. When DG = 0, the generated distribution, pu,
equals the true data distribution, pdata and there are no generated samples that lie outside of the
support of pdata. Whenever DG is not zero, another useful metric to look at is the minimax loss.
As this measures the loss given by the most adversarial discriminator, any mode collapse or lower
sample quality can be detected by Dvworst and hence lead to a larger minimax loss.

For the toy datasets, we measure the sample quality using (i) the number of covered modes and (ii)
the number of generated samples that fall within 3 standard deviations of the modes. The correlation
of these measures with the duality gap as well as with the minimax loss is reported in Figure 1. We

4The code will be released upon acceptance.
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Table 1: Progression of DG throughout training and heatmaps of the generator distribution
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Figure 1: DG, minimax, number of modes, and generated samples close to modes across epochs

observe significant anti-correlation (especially for minimax loss), which indicates that both metrics
capture changes in the number of modes and generated samples that lie outside of the support of
pdata, and hence the minimax loss can be used as a proxy to determining the overall sample quality.

5.2 DG AND STABLE MODE COLLAPSE

DG Minimax

Modes
-0.63 -0.97 ring
-0.59 -0.93 spiral
-0.71 -0.95 grid

Std
-0.64 -0.94 ring
-0.64 -0.58 spiral
-0.7 -0.93 grid

Table 2: Pearson product-moment cor-
relation coefficients for an average of 10
stable rounds.

The previous experiment shows that unstable mode collapse
is captured by DG. The trend of the curve is unstable and is
typically within a high range. We are now interested in the
case of stable mode collapse, where the model does converge,
but only to a subset of the modes.

We train a GAN on MNIST where the generator collapses to
generating from only one class (see Figure 2) (a-d) and does
not change the mode as the number of training steps increases.
Figure 2 e) shows the DG curve throughout the training. The
trend is flat and stable, but the value of the DG is not zero,
thus showing that looking at the trend and value of the DG is
helpful for detecting stable mode collapse as well.
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Figure 2: a-d: Generated samples at four different steps; e: DG through epochs
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Figure 3: INC, FID and minimax loss for a) mode collapse (x-axis: how many modes out of 10 are gener-
ated); b) mode invention (x-axis: how many invented modes are generated) and c) intra-mode collapse (x-axis:
number of unique images within a class). For INC higher is better; for FID and minimax lower is better.

5.3 PROPERTIES OF THE METRIC

We further analyze the sensitivity of the minimax loss to various changes in the sample quality for
natural images that fall broadly in two categories: (i) mode sensitivity and (ii) visual sample quality.
Using images from Cifar10 we compare against the commonly used Inception Score (INC) and
Frechet Inception Distance (FID). Both metrics use the generator as a black-box through sampling.
We follow the same setup for the evaluation of the minimax loss. For the computation of the minimax
loss we use the standard GAN zero-sum objective. Note that changing the objective to the WGAN
formulation makes the minimax loss related to the Wasserstein critic (Arjovsky et al., 2017).

Sensitivity to modes. The first set of experiments focuses on failures where the generated and
ground truth modes do not fully overlap. As natural images are inherently multimodal, the generated
distribution commonly ignores some of the true modes, which is a phenomenon known as mode
dropping. We simulate mode dropping by using the class labels as modes. The metrics take as input
a set of 5K images containing all 10 classes as ’real’ images, and another set of 5K images composed
of only subset of the modes (subset of 2, 4 and 8 classes) as ’generated’ images (Figure 3 a).

We then turn to mode invention where the generator creates non-existent modes. For this setting, the
set of ’real’ images contains only 5 classes, whereas the sets of ’generated’ images are supersets of
5, 7 and 10 classes (Figure 3 b). Intra-mode collapse is another common issue that occurs when the
generator is generating from all modes, but there is no variety within a mode. The ’generated’ sets
consist of images from all 10 classes, but contain only 1, 50 and 500 unique images within a class.

Figure 3 shows the trends for all three metrics for the various degrees of mode dropping, invention
and intra-class collapse. INC is unable to detect both intra-mode collapse and invented modes. On
the other hand, both FID and minimax loss exhibit desirable sensitivity to various mode changing.
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Figure 5: INC, FID and minimax loss on samples at increasing
intensity of disturbance

Sample quality. We now undertake an analysis of the metrics’ performance on distorted samples.
We distort the real images using Gaussian noise, blur and swirl at an increasing intensity. As shown
in Figure 5, all metrics, including minimax, detect different degrees of visual sample quality.

Efficiency. A metric needs to be computationally efficient in order to be used in practice to both
track the progress during training and as a final metric to rank various models. Figure 4 shows the
wall clock time in terms of seconds for all three metrics. We keep the number of update steps fixed
to 1K which makes the computation of the minimax loss efficient, as are the other two metrics. The
computation of DG takes twice the time of the computation of the minimax loss.

We also test the variance across rounds due to randomness in the seed and how this affects the final
metric and overall ranking, on a simple mode collapse task. Table 3 summarizes the average of 5
rounds showing that the variance is negligible and does not affect the effectiveness of the metric.

5.4 GENERALIZATION TO OTHER DOMAINS AND GAN LOSSES

This experiment tests the ability of the two metrics to adapt to a different GAN loss formulation
using the WGAN-GP objective (Gulrajani et al., 2017), as well as other domains. In particular, we
consider the field of observational cosmology that relies on computationally expensive simulations
that produce images with very different statistics from natural images. In an attempt to reduce this
burden, Rodriguez et al. (2018) trained a GAN to replace the traditional N-body simulators, relying
on three statistics to assess the quality of the generated samples: the mass histrogram, the peak
count and the power spectral density. As explained in Rodriguez et al. (2018), these statistics are
commonly used in cosmology to assess the quality of samples generated by N-body simulations.
A random selection of real and generated samples shown in Figure 6 demonstrate the high visual
quality achieved by the generator.

We evaluate the agreement between the statistics of the real and generated samples using the squared
norm of the statistics differences (lower scores are therefore better). In Figure 7, we show the
evolution of the scores corresponding to the three statistics as well as the duality gap. We observe
a strong correlation, especially between the peaks. Furthermore, it seems that the duality gap takes
all the statistics into account. In Figure 8, we plot the Pearson correlation between the duality gap,
the minimax value and the scores. As explained in Rodriguez et al. (2018), the distribution of the
raw data is long-tail and has a very high dynamic range. Hence to simplify the learning process,
the data is first mapped to [−1, 1] using a non-linear function. As a result, we additionally plot the
same correlations for the raw data. From this experiment, we observe a strong empirical correlation
between the duality gap, the minimax value and the cosmological scores.
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classes INC FID Minimax
2 classes 4.94±0.13 63 -1.69±0.06
4 classes 7.84±0.3 25.85 -2.53±0.04
6 classes 9.88±0.18 18.39 -3.14±0.03

Table 3: Metrics on a simple mode dropping task
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Figure 7: DG and cosmo-score evolution
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6 CONCLUSION

The two proposed metrics complement other existing metrics and can be used by practitioners for
monitoring progress towards convergence. While the minimax loss focuses on the performance of
the generator (and the quality of its samples), the duality gap takes into account both the generator
and discriminator. These metrics address two problems commonly faced by practitioners: 1) when
should one stop training? and 2) if the training procedure has converged, have we reached the
optimum or are we stuck in mode collapse? A significant advantage of the metrics is that, unlike
many existing approaches, they require no labelled data and no domain specific classifier. Therefore,
they are well-suited for applications of GANs other than the traditional generation task for images.

Of course, a downside is that - as most loss functions - the values obtained from these metrics are
architecture and objective dependent, and can therefore not directly be compared. Yet, a practitioner
can still rely on the overall trend throughout training for detecting non-convergent behaviors. Fi-
nally, one might want to use the generator as a black-box through its samples (this extends to other
generative models too), in which case the minimax loss can be used as an evaluation metric directly.
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A PROOF OF PROPOSITION 1

Proof. To simplify notation, let us denote by p(x) the distribution over true samples and by q(x) the
distribution over fake samples generated by G. Let us also denote the output of the discriminator
by D(x). For simplicity, we will also slightly abuse notation and denote the GAN objective by
M(q,D). Thus, the GAN objective reads as follows,

M(q,D) :=
1

2

∫
p(x) logD(x)dx+

1

2

∫
q(x) log(1−D(x))dx . (5)

First we prove the first part of the proposition: Let us first recall the definition of the Jensen-
Shannon divergence of two distributions p(·), q(·),

JSD(p || q) := 1

2
KL

(
p || p + q

2

)
+

1

2
KL

(
q || p + q

2

)
. (6)

where the KL divergence is defined as,

KL(p || q) :=
∫
p(x) log (p(x)/q(x)) dx .

Now given a fixed solution (q,D) we will show that the duality gap of this pair is bounded by the
Jensen-Shannon divergence. It is well known that this divergence equals zero if both distributions
are equal5, and is otherwise strictly positive. To do so, we will first bound the minimax/maximin
values for q/D.

(a) Upper Bounding Minimax Value: Given q(x), the worst case discriminator is obtained by taking
the derivative of the objective in Equation (5) with respect to D(x) separately for every x (this can
be done since we assume the capacity of D to be unbounded). This gives the following worst case
discriminator (see similar derivation in Goodfellow et al. (2014)),

Dworst(x) :=
p(x)

p(x) + q(x)
.

Plugging the above value into Equation (5) gives the following minimax value,

max
D

M(q,D) =M(q,Dworst)

=
1

2

∫
p(x)

(
p(x)

q(x) + p(x)

)
dx+

1

2

∫
q(x)

(
q(x)

q(x) + p(x)

)
dx

= − log 2 + JSD(p || q) (7)

(b) Lower Bounding Maximin Value: Here we lower bound the maximin value for a given q(x),

min
q
M(q,D) ≤M(p,D) =

1

2

∫
p(x) logD(x)dx+

1

2

∫
p(x) log(1−D(x))dx . (8)

Maximizing the last expression separately for every x gives

max
D(x)∈[0,1]

1

2
p(x) logD(x)dx+

1

2
p(x) log(1−D(x))dx = − log 2

And plugging the above into Equation (8) gives,

min
q
M(q,D) ≤ − log 2 . (9)

(c) Upper bound on Duality Gap: Recall the definition of Duality gap,

DualGap(q,D) := max
D

M(q,D)−min
q

M(q,D) .

Using Equation (7) together with Equation (9) immediately shows that the duality gap is lower
bounded by the Jensen-Shannon divergence between true and fake distributions. This concludes the
first part of the proof.

5We mean equal up to sets of measure zero.
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Next we prove the second part of the proposition: Recall that we assume q(x) = p(x). And let
us take,

D(x) = 1/2, ∀x

Next we show that the Duality gap of (G,D) is zero.

(a) Let us first compute the minimax value: Similarly to Equation (7) the following can be shown,

max
D

M(q,D) =
1

2

∫
p(x)

(
p(x)

q(x) + p(x)

)
dx+

1

2

∫
q(x)

(
q(x)

q(x) + p(x)

)
dx

= − log 2 · 1
2

∫
(q(x) + p(x))dx

= − log 2 . (10)

where we used p(x)/(p(x) + q(x)) = 1/2.

(b) Let us now compute the maximin value. Since D(x) = 1/2 the following holds for any q0(x),

M(q0, D) =
1

2

∫
p(x) logD(x)dx+

1

2

∫
q0(x) log(1−D(x))dx = − log 2 ,

which immediately implies,

min
q
M(q,D) = − log 2 . (11)

Combining Equation (10) with Equation (11), with the definition of the Duality gap implies,

DualGap(q,D) = 0 .

which concludes the second part of the proof.

B EXPERIMENTS

B.1 TOY DATASET: MIXTURE OF GAUSSIANS

The toy datasets consist of a mixture of 8, 20 and 25 Gaussians for each of the models (RING,
SPIRAL, GRID), respectfully. The standard deviation is set to 0.05 for all models except for the
RING where the std is 0.01. Depending on the dataset, the means are spaced equally around a unit
circle, a spiral or a grid.

The architecture of the generator consists of two fully connected layers (of size 128) and a linear
projection to the dimensionality of the data (i.e. 2). The activation functions for the fully connected
layers are relu. The discriminator is symmetric and hence, composed of two fully connected layers
(of size 128) followed by a linear layer of size 1. The activation functions for the fully connected
layers are relu, whereas the final layer uses sigmoid as an activation function.

Adam was used as an optimizer for both the discriminator and the generator with beta1 = 0.5 and a
batch size of 100. The latent dimensionality z is 100. The learning rates for the reported models are
given as follows in Table 4. The optimizer used for training the worst D/G is Adam and is set to the
default parameters.

Plots of DG during training are given in Table 1. Table 5 lists the obtained results for the methods
in terms of their final duality gap, number of modes they have covered and the number of generated
points that fall within three standard deviations of one of the means. The heatmaps of the final
generated distributions are given in Figure 9.

We also plot generated samples from the worst case generator in Figure 10.

Progress during training for Figure 1 is given in Figure 11.
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Figure 9: Heatmaps of the generated distributions at the final steps. On top: trained model (stable
or unstable), on bottom: pdata
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Figure 10: Generated samples (in blue) from the worst generator for the discriminator for both the
stable and unstable models. (ground truth in green color).
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stable unstable
lr G lr D lr G lr D

RING 1e-3 1e-4 1e-4 2e-4
SPIRAL 1e-3 2e-3 1e-4 2e-3
GRID 1e-3 2e-3 1e-4 2e-3

Table 4: Learning rates used for the toy experiments.

Duality Gap Modes Std

stable
RING 0.04 8 2375
SPIRAL 0.14 20 1999
GRID 0.03 25 2370

unstable
RING 13 2 152
SPIRAL 1.22 1 1724
GRID 12.09 3 37

Table 5: Final results for DG, number of covered modes and number of generated samples (out of
2400) that fall within 3 standard deviations of the means.

B.1.1 LOSS CURVES

A common problem practitioners face is when to stop training, i.e. understanding whether the model
is still improving or not. See for example Figure 12, which shows the discriminator and generator
losses during training of a DCGAN model on CIFAR10 (dcg). The training curves are oscillating
and hence are very non-intuitive. A practitioner needs to most often rely on visual inspection or
some performance metric as a proxy as a stopping criteria.

The generator and discriminator losses for our 2D ring problem are shown in Figure 13. Based on
the curves it is hard to determine when the model stops improving. As this is a 2D problem one can
visually observe when the model has converged through the heatmaps of the generated samples (see
Table 1). However in higher-dimensional problems (like the one discussed above on CIFAR10) one
cannot do the same. Figure 14 showcases the progression of the duality gap throughout the training.
Contrary to the discriminator/generator losses, this curve is meaningful and clearly shows the model
has converged and when one can stop training, which coincides with what is shown on the heatmaps.

B.2 OTHER HYPERPARAMETERS

B.2.1 STABLE MODE COLLAPSE

The architecture of the generator consists of 5 fully connected layers of size 128 with leaky relu as
an activation unit, followed by a projection layer with tanh activation. The discriminator consists of
2 dense layers of size 128 and a projection layer. The activation function used for the dense layers
of the discriminator is leaky relu as well, while the final layer uses a sigmoid. The value α for leaky
relu is set to 0.3.

The optimizer we use is Adam with default parameters for both the generator, discriminator, as well
as the optimizers for training the worst generator and discriminator. The dimensionality of the latent
space z is set to 100 and we use a batch size of 100 as well. We train for 10K steps. The number of
steps for training the worst case generator/discriminator is 400.

We use the training, validation and test split of MNIST (Deng, 2012) for training the GAN, training
the worst case generator/discriminator, and estimating the duality gap (as discussed in Section 4).

(a) Step0 (b) Step5 (c) Step10 (d) Step15 (e) Step20 (f) Step25

Figure 11: Generated samples (blue) and real samples (green) throughout training steps
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Figure 12: Discriminator and generator loss curves for a DCGAN model trained on CIFAR10. The
curves are oscillating and it is hard to determine when to stop the training.

(a) Generator loss (b) Discriminator loss

Figure 13: Discriminator and generator loss curves for the 2D ring problems. The curves are
oscillating and it is hard to determine when to stop the training and when the model stops improving.
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Figure 14: Curve of the progression of the duality gap during training.
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B.2.2 MINIMAX EXPERIMENT ON CIFAR10

Here we describe hyperaparameters for the experiment on Cifar10 (Krizhevsky et al., 2014). The
worst case discriminator we train is using the commonly used DCGAN architecture (Radford et al.,
2015). We again use Adam with the default parameters as the optimizer and the batch size is 100.
We update the worst case classifier for 1K steps.

The hyperparameters used for the distortion in the experiment for visual sample quality are:

1. Gaussian noise

(a) level 1: sigma = 5

(b) level 2: sigma = 10

(c) level 3: sigma = 20

2. Gaussian blur

(a) level 1: ksize = 2

(b) level 2: ksize = 5

(c) level 3: ksize = 7

3. Gaussian swirl with strength 5

(a) level 1: radius = 1

(b) level 2: radius = 2

(c) level 3: radius = 20

B.2.3 EXPERIMENT ON COSMOLOGY DATASET

Following the approach of Gulrajani et al. (2017), we used a Wasserstein loss with a gradient penalty
of 10. Both the generator and the discriminator were optimized with an ”RMSprop” optimizer and
a learning rate of 3 · 10−5. The discriminator was optimized 5 times more often than the generator.

B.3 APPROXIMATING THE DUALITY GAP

We explored variants in which we are circumventing the optimization in order to find the worst case
generator/discriminator by using a set of discriminators/generators out of which we choose the most
adversarial one. The sets are created by saving snapshots of the parameters of the two networks
during training. We explored variants where the snapshots come a) only from past models and b) a
mix of previous and future models, and generally found b) to perform better. This setting is similar
to the models proposed in (Olsson et al., 2018), except they use skill rating systems to infer a latent
variable for the successfulness of a generator. On the other hand, we compute the duality gap and
the minimax loss to infer the successfulness of the entire GAN and of the generator, respectfully.

Table 6 gives the progression of the approximated duality gap for four various scenarios: stable
model, unstable mode collapse and stable mode collapse. The duality gap was approximated using
10 models that spanned accross 2 epochs.

C ANALYSIS OF THE QUALITY OF THE EMPIRICAL DG

The theoretical assumption appearing in the proof in Appendix A is that the discriminator and gener-
ator have unbounded capacity and we can obtain the true minimizer and maximizer when computing
uworst and vworst, respectively. This, however, is not tractable in practice. Furthermore, it is well
known that one common problem in GANs is mode collapse. This raises the question of how the
duality gap metric would be affected if the worst generator that we compute is collapsed itself. In
the following we address this both empirically and from a theoretical perspective.

We use the same experimental setup as described in Appendix B.1. We focus on a GAN that has
converged such that the generator covers all modes uniformly i.e. pg = pdata (Figure 15 a)). The
discriminator outputs 0.5 for real and fake samples (Figure 15 b)). This means that the model has
reached the equilibrium and the duality gap -in theory- is zero.
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Table 6: Progression of DG throughout training and heatmaps of the generator distribution. A1: stable ring,
A2: unstable ring, B1: mode collapse, B2: stable mode collapse

1 2

A

step 0 step 1000 step 2000 step 3000 step 4000 step 5000 step 6000 step 7000 step 8000

B

step 0 step 1000 step 2000 step 3000 step 4000 step 5000 step 6000 step 7000 step 8000 step 0 step 1000 step 2000 step 3000 step 4000 step 5000 step 6000 step 7000 step 8000

Collapsed worst case generator. Now we focus on the calculation of the duality gap. Let us con-
sider the case of a mode collapsed worst case generator. In particular, when computing the maximin
part of the duality gap i.e. M(uworst,v), let us assume the solution was such thatGuworst

only covers
one mode of the true distribution (Figure 15 d)). Then M(uworst,v) = log(0.5)+ log(1− 0.5). The
minmax calculation is: M(u,vworst) = log(0.5) + log(1 − 0.5). Hence, the value of DG is zero,
despite the collapse in the calculation for the uworst. The generator has no incentive to spread its
mass due to the objective. While this is a problem for the original GAN that is being trained, it is
not an issue for the calculation of the duality gap metric.

Figure 16 b) shows samples generated from Guworst
when the experiment is performed in practice.

We do observe that in this case, there is indeed a collapse that happened in the worst generator for
the fixed GAN discriminator. Yet, D(Guworst

) = 0.489 and DG = 0.002 confirming the previous
thought experiment. A heatmap with generated samples from the GAN generator are given in
Figure 16.

Hence, mode collapse for the computation of DG is not an issue. Note though that when there is
mode collapse in the GAN itself that is being evaluated, the DG detects this. In particular, this is
supported by the high anti-correlation between DG and the number of covered modes and sample
quality as shown in Table 2.

Suboptimal solutions due to the optimization. We now investigate the effect of the number of
optimization steps used for the calculation of the duality gap on the quality of the solution. We run 5
different models with different hyperparameters with the goal to find the best setting. As suggested,
we want to use the duality gap as the metric for this. Table 7 gives the results. The ranking of
the models is the same for various numbers of optimization steps and corresponds to the ranking
obtained by taking into consideration the number of covered modes and the number of generated
samples that fall within 3 standard deviations of one of the modes.
This suggests that as long as one uses the same number of optimization steps when comparing
different models, the suboptimality of the solution is empirically not an issue.
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(a) GAN generator (b) GAN discriminator

(c) DG: vworst (d) DG: uworst

Figure 15: Analysis of a GAN that has reached the equilibrium for the mixture of 8 Gaussians prob-
lem. a) Samples generated from the GAN generator cover all 8 modes uniformly; b) Probabilities
for a sample being real. The GAN discriminator assigns 0.5 probability to data points from the 8
modes and 0 everywhere else; c) For the computation of the duality gap, the theoretical vworst as-
signs 0.5 to fake/real samples for the fixed GAN generator; d) We assume there was mode collapse
when computing uworst for the fixed GAN discriminator and samples from Guworst lie only on a
single mode.
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Figure 16: a) A heatmap of generated samples from the GAN generator (up) and the true data
distribution (below). The generator is able to cover the true data distribution; b) Generated samples
from Guworst

.
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hyperparameters quality of GAN DG for # optimization steps

lr D lr G #modes
(out of 8)

# quality samples
(out of 2500) 500 1000 1500 2000

2e-3 1e-4 8 2414 0.014 0.03 0.04 0.06
1e-4 1e-4 1 1119 10.02 11.3 12.23 12.3
1e-3 1e-4 8 2440 0.009 0.01 0.006 0.02
5e-3 1e-4 8 2478 0.008 0.002 0.002 0.001
1e-4 1e-5 1 501 10.84 12.37 13.25 13.7

Table 7: DG for various number of optimization steps and GAN hyperparameters. The set of
the best hyperparameters is the same no matter the number of optimization steps are used for the
calculation of the duality gap.
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