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ABSTRACT

The problem of learning from label proportions (LLP) involves training classifiers
with weak labels on bags of instances, rather than strong labels on individual in-
stances. The weak labels only contain the label proportion of each bag. The LLP
problem is important for many practical applications that only allow label propor-
tions to be collected because of data privacy or annotation cost, and has recently
received lots of research attention. Most existing works focus on extending su-
pervised learning models to solve the LLP problem, but the weak learning nature
makes it hard to further improve LLP performance with a supervised angle. In
this paper, we take a different angle from semi-supervised learning. In particu-
lar, we propose a novel model inspired by consistency regularization, a popular
concept in semi-supervised learning that encourages the model to produce a de-
cision boundary that better describes the data manifold. With the introduction
of consistency regularization, we further extend our study to non-uniform bag-
generation and validation-based parameter-selection procedures that better match
practical needs. Experiments not only justify that LLP with consistency regular-
ization achieves superior performance, but also demonstrate the practical usability
of the proposed procedures.

1 INTRODUCTION

In traditional supervised learning, a classifier is trained on a dataset where each instance is associated
with a class label. However, label annotation can be expensive or difficult to obtain for some appli-
cations. Take the embryo selection as an example (Hernández-González et al., 2018). To increase
the pregnancy rate, clinicians would transfer multiple embryos to a mother at the same time. How-
ever, clinicians are unable to know the outcome of a particular embryo due to limitations of current
medical techniques. The only thing we know is the proportion of embryos that implant successfully.
To increase the success rate of embryo implantation, clinicians aim to select high-quality embryos
through the aggregated results. In this case, only label proportions about groups of instances are
provided to train the classifier, a problem setting known as learning from label proportions (LLP).

In LLP, each group of instances is called a bag, which is associated with a proportion label of
different classes. A classifier is then trained on several bags and their associated proportion labels
in order to predict the class of each unseen instance. Recently, LLP has attracted much attention
among researchers because its problem setting occurs in many real-life scenarios. For example, the
census data and medical databases are all provided in the form of label proportion data due to privacy
issues (Patrini et al., 2014; Hernández-González et al., 2018). Other LLP applications include fraud
detection (Rueping, 2010), object recognition (Kuck & de Freitas, 2012), video event detection (Lai
et al., 2014), and ice-water classification (Li & Taylor, 2015).

The challenge in LLP is to train models without direct instance-level label supervision. To overcome
this issue, prior work seeks to estimate either the individual label (Yu et al., 2013; Dulac-Arnold
et al., 2019) or the mean of each class by the label proportions (Quadrianto et al., 2009; Patrini et al.,
2014). However, the methodology behind developing these models do not portray LLP situations
that occur in real life. First, these models can be improved by considering methods that can better
leverage unlabeled data. Second, these models assume that bags of data are randomly generated,
which is not the case for many applications. For example, the data of population census are collected
on region, age, or occupation with varying group sizes. Third, training these models requires a
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Figure 1: An illustration of multi-class learning from label proportions. Before training, the data are
grouped according to a bag generation procedure. During the training stage, we are given bags of
unlabeled data and their corresponding proportion labels. The goal of LLP is to learn an individual-
level classifier.

validation set with labeled data. It would be more practical if the process of model selection relies
only on the label proportions.

This paper aims to resolve the previous problems. Our main contributions are listed as follows:

• We first apply a semi-supervised learning technique, consistency regularization, to the
multi-class LLP problem. Consistency regularization considers an auxiliary loss term to
enforce network predictions to be consistent when its input is perturbed. By exploiting the
unlabeled instances, our method captures the latent structure of data and obtains the SOTA
performance on three benchmark datasets.

• We develop a new bag generation algorithm – the K-means bag generation, where training
data are grouped by attribute similarity. Using this setup can help train models that are
more applicable to actual LLP scenarios.

• We show that it is possible to select models with a validation set consisting of only bags
and associated label proportions. The experiments demonstrate correlation between bag-
level validation error and instance-level test error. This potentially reduces the need of a
validation set with instance-level labels.

2 PRELIMINARY

2.1 LEARNING FROM LABEL PROPORTIONS

We consider the multi-class classification problem in the LLP setting in this paper. Let xi ∈ RD be
a feature vector of i-th example and yi ∈ {1, . . . , L} be a class label of i-th example, where L is
the number of different classes. We define e(j) to be a standard basis vector [0, . . . , 1, . . . , 0] with
1 at j-th position and ∆L = {p ∈ RL+ :

∑L
i pi = 1} to be a probability simplex. In the setting of

LLP, each individual label yi is hidden from the training data. On the other hand, the training data
are aggregated by a bag generation procedure. We are given M bags B1, . . . , BM , where each bag
Bm contains a set Xm of instances and a proportion label pm, defined by

pm =
1

|Xm|
∑

i:xi∈Xm

e(yi),

M⋃
m=1

Xm = {x1, . . . ,xN}.

We do not require each subset to be disjoint. Also, each bag may have different size. The task
of LLP is to learn an individual-level classifier fθ : RD → ∆L to predict the correct label
y = arg maxi fθ(x)i for a new instance x. Figure 1 illustrates the setting of learning from label
proportions in the multi-class classification (Dulac-Arnold et al., 2019).

2.2 PROPORTION LOSS

The feasibility of the binary LLP setting has been theoretically justified by Yu et al. (2014). Specif-
ically, Yu et al. (2014) propose the framework of Empirical Proportion Risk Minimization (EPRM),
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proving that the LLP problem is PAC-learnable under the assumption that bags are i.i.d sampled
from an unknown probability distribution. The EPRM framework provides a generalization bound
on the expected proportion error and guarantees to learn a probably approximately correct propor-
tion predictor when the number of bags is large enough. Furthermore, the authors prove that the
instance label error can be bounded by the bag proportion error. That is, a decent bag proportion
predictor guarantees a decent instance label predictor.

Based on the profound theoretical analysis, a vast number of LLP approaches learn an instance-level
classifier by directly minimizing the proportion loss without acquiring the individual labels. To be
more precise, given a bag B = (X,p), an instance-level classifier fθ and a divergence function
dprop : RL × RL → R, the proportion loss penalizes the difference between the real proportion

label pm and the estimated proportion label p̂ =
1

|X|
∑
x∈X

fθ(x), which is an average of the instance

predictions within a bag. Thus, the proportion loss Lprop can be defined as follows:

Lprop(θ) = dprop(p, p̂).

The commonly used divergence functions are L1 and L2 function in prior work (Musicant et al.,
2007; Yu et al., 2013). Ardehaly & Culotta (2017) and Dulac-Arnold et al. (2019), on the other
hand, consider the cross-entropy function for the multi-class LLP problem.

2.3 CONSISTENCY REGULARIZATION

Since collecting labeled data is expensive and time-consuming, the semi-supervised learning ap-
proaches aim to leverage a large amount of unlabeled data to mitigate the need for labeled data.
There are many semi-supervised learning methods, such as pseudo-labeling (Lee, 2013), genera-
tive approaches (Kingma et al., 2014), and consistency-based methods (Laine & Aila, 2016; Miy-
ato et al., 2018; Tarvainen & Valpola, 2017). Consistency-based approaches encourage the net-
work to produce consistent output probabilities between unlabeled data and the perturbed examples.
These methods rely on the smoothness assumption (Chapelle et al., 2009): if two data points xi
and xj are close, then so should be the corresponding output distributions yi and yj . Then, the
consistency-based approaches can enforce the decision boundary to traverse through the low-density
region. More precisely, given a perturbed input x̂ taken from the input x, consistency regulariza-
tion penalizes the distinction of model predictions between fθ(x) and fθ(x̂) by a distance function
dcons : RL × RL → R. The consistency loss can be written as follows:

Lcons(θ) = dcons(fθ(x), fθ(x̂)).

Modern consistency-based methods (Laine & Aila, 2016; Tarvainen & Valpola, 2017; Miyato et al.,
2018; Verma et al., 2019; Berthelot et al., 2019) differ in how perturbed examples are generated for
the unlabeled data. Laine & Aila (2016) introduce the Π-Model approach, which uses the additive
Gaussian noise for perturbed examples and chooses the L2 error as the distance function. However,
a drawback to Π-Model is that the consistency target fθ(x̂) obtained from the stochastic network
is unstable since the network changes rapidly during training. To address this problem, Temporal
Ensembling (Laine & Aila, 2016) takes the exponential moving average of the network predictions
as the consistency target. Mean Teacher (Tarvainen & Valpola, 2017), on the other hand, proposes
averaging the model parametes instead of network predictions. Overall, the Mean Teacher approach
significantly improves the quality of consistency targets and the empirical results on semi-supervised
benchmarks.

Instead of applying stochastic perturbations to the inputs, Virtual Adversarial Training or VAT (Miy-
ato et al., 2018) computes the perturbed examples x̂ = x + radv, where

radv = arg max
r:||r||2≤ε

DKL(fθ(x)‖fθ(x + r)). (1)

That is, the VAT approach attempts to generate a perturbation which most likely causes the model to
misclassify the input in an adversarial direction. Finally, the VAT approach adopts Kullback-Leibler
(KL) divergence to compute the consistency loss. In comparison to the stochastic perturbation, the
VAT approach demonstrates the greater effectiveness in the semi-supervised learning problem.
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Figure 2: In this toy example, we generate 5 bags, each of which contains 20 data points uniformly
sampled from the “two moons” dataset without replacement. The vanilla approach, which simply
optimizes the proportion loss, suffers from poor performance as the label information is insufficient.
In contrast, the “two moons” can be effectively separated into two clusters by LLP with consis-
tency regularization. Our method enforces the network to produce consistent outputs for perturbed
examples, and thus help capture the underlying structure of the data.

3 LLP WITH CONSISTENCY REGULARIZATION

With regards to weak supervision, the LLP scenario is similar to the semi-supervised learning prob-
lem. In the semi-supervised learning setting, only a small portion of training examples is labeled.
On the other hand, in the LLP scenario, we are given the weak supervision of label proportions
instead of the strong label on individual instances. Both settings are challenging since most training
examples do not have individual labels. To address this challenge, semi-supervised approaches seek
to exploit the unlabeled examples to further capture the latent structure of data.

Motivated by these semi-supervised approaches, we combine the idea of leveraging the unlabeled
data into the LLP problem. We make the same smoothness assumption and introduce a new
concept incorporating consistency regularization with LLP. In particular, we consider the typical
cross-entropy function between real label proportions and estimated label proportions. Given a bag
B = (X,p), we define the proportion loss Lprop as follows:

Lprop(θ) = −
L∑
i=1

pi log
1

|X|
∑
x∈X

fθ(x)i.

Interestingly, the proportion loss Lprop boils down to standard cross-entropy loss for fully-
supervised learning when the bag size is one. To learn a decision boundary that better reflects
the data manifold, we add an auxiliary consistency loss that leverages the unlabeled data. More
formally, we compute the average consistency loss across all instances within the bag. Given a bag
B = (X,p), the consistency loss Lcons can be written as follows:

Lcons(θ) =
1

|X|
∑
x∈X

dcons(fθ(x), fθ(x̂)),

where dcons is a distance function, and x̂ is a perturbed input of x. We can use any consistency-
based approach to generate the perturbed examples and compute the consistency loss. Finally, we
mix the two loss functions Lprop and Lcons with a hyperparameter α > 0, yielding the combined
loss L for LLP:

L(θ) = Lprop(θ) + αLcons(θ),

where α controls the balance between the bag-level estimation of proportion labels and instance-
level consistency regularization.

To understand the intuition behind combining consistency regularization into LLP, we follow the
Π-Model approach (Laine & Aila, 2016) to adopt the stochastic Gaussian noise as the perturbation
and to use L2 as the distance function dcons in a toy example. Figure 2 illustrates how our method
is able to produce a decision boundary that passes through the low-density region and captures the
data manifold. On the other hand, the vanilla approach, which simply optimizes the proportion loss,
gets easily stuck at a poor solution due to the lack of label information. This toy example shows the
advantage of applying consistency regularization into LLP.

According to Miyato et al. (2018), VAT is more effective and stable than Π-Model due to the way
it generates the perturbed examples. For each data example, the Π-Model approach stochastically

4



Under review as a conference paper at ICLR 2020

Algorithm 1 LLP-VAT algorithm

Require: D = {(Xm,pm)}Mm=1: collection of bags
Require: fθ(x): instance-level classifier with trainable parameters θ
Require: g(x; θ) = x + radv: VAT augmentation function according to Equation 1
Require: w(t): ramp-up function for increasing the weight of consistency regularization
Require: T : total number of iterations

for t = 1, . . . , T do
for each bag (X,p) ∈ D do

p̂← 1
|X|

∑
x∈X fθ(x) . Estimated proportion label

Lprop = −
∑L
j=1 pi log p̂i . Proportion loss

Lcons = 1
|X|

∑
x∈XDKL(fθ(x)‖fθ(g(x; θ))) . Consistency loss

L = Lprop + w(t) · Lcons . Total loss
update θ by gradient∇θL . e.g. SGD, Adam

end for
end for
return θ

perturbs inputs and trains the model to assign the same class distributions to all neighbors. In
contrast, the VAT approach focuses on neighbors that are sensitive to the model. That is, VAT aims
to generate a perturbed input whose prediction is the most different from the model prediction of
its original input. The learning of VAT approach tends to be more effective in improving model
generalization. Therefore, we adopt the VAT approach to compute the consistency loss for each
instance in the bag. Additionally, to prevent the model from getting stuck at a local optimum in the
early stage, we use the exponential ramp-up scheduling function (Laine & Aila, 2016) to increase
the consistency weight gradually to the maximum value α. The full algorithm of LLP with VAT
(LLP-VAT) is described in Algorithm 1.

4 EXPERIMENTS

We evaluate our LLP-VAT on three benchmarks, including SVHN, CIFAR10, and CIFAR100. For
model selection, we choose hyperparameters using a validation set without individual labels. Lastly,
we report the test instance accuracy averaged over the last 10 epochs. The full experiment details
are provided in the supplementary material.

4.1 UNIFORM BAG GENERATION

For convenience, most LLP works validate their proposed methods with the uniform bag generation
where the training data are randomly partitioned into bags of the same size. We evaluate our method
using this bag generation procedure with the bag size n ∈ {16, 32, 64, 128, 256}. We drop the last
incomplete bag if the number of training data is indivisible by the bag size. Table 1 shows the
experimental results for the LLP scenario with a uniform bag generation.

In comparison to the vanilla approach, our LLP-VAT significantly improves the performance on
CIFAR10 and CIFAR100. This indicates that applying consistency regularization into LLP does
help learn a better classifier. As for SVHN, since the test accuracy is close to the fully-supervised
performance when the bag size is small, there is no clear difference among three methods. In
addition, the results also show that the performance of ROT is unstable and lead us to conclude that
the unhelpful pseudo-labels would easily result in a worse classifier. Conversely, our LLP-VAT is
more stable and obtains better test accuracy in most cases.

4.2 K-MEANS BAG GENERATION

In this section, we further investigate our LLP-VAT in a more practical scenario. We observe that the
uniform bag generation barely fits the real-world LLP situation because of following two reasons.
First, the real-life data are usually grouped by attribute similarity instead of uniformly sampled. Sec-
ond, each bag may have different bag sizes, i.e., the distribution of bag sizes is diverse. Consider the
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Table 1: Test accuracy with the uniform bag generation. The performance of the vanilla approach
with a bag size of one corresponds to the fully-supervised setting.

Bag Size

Dataset Method 1 16 32 64 128 256

SVHN vanilla 95.52 95.28 95.20 94.41 88.93 12.64
ROT - 95.35 94.84 93.74 92.29 13.14
LLP-VAT - 95.66 95.73 94.60 91.24 11.18

CIFAR10 vanilla 90.64 88.77 85.02 70.68 47.48 38.69
ROT - 86.97 77.01 62.93 48.95 40.16
LLP-VAT - 89.30 85.41 72.49 50.78 41.62

CIFAR100 vanilla 59.79 58.58 48.09 20.66 5.82 2.82
ROT - 54.16 47.75 29.38 7.95 2.63
LLP-VAT - 59.47 48.98 22.84 9.40 3.29

Figure 3: The distribution of bag sizes from the K-means procedure on three benchmarks. When the
number of clusters increases, the distribution of bag sizes becomes various.

US presidential election results (Sun et al., 2017), where the statistics of voting results are collected
by geological regions (e.g., states). Also, each state have varying number of voters. Therefore, we
introduce a new bag generation procedure—the K-means bag generation, where we cluster examples
into bags by the K-means algorithm. Although those bags generated from the K-means bag genera-
tion are dependent on each other, violating the i.i.d. assumption, this setting is both challenging and
worth-studying.

Since we perform experiments on image datasets, it is meaningless to cluster data examples based
on RGB pixels. We first adopt the principle component analysis algorithm, which is an unsupervised
dimension reduction technique, to project the data into a low-dimensional representation space. This
space may capture more important patterns in an images. Then we group the low-dimensional repre-
sentations of the images following the K-means bag generation procedure. We conduct experiments
with the number of clusters K ∈ {3120, 1560, 780, 390, 195} on CIFAR10 and CIFAR100, and
K ∈ {4576, 2288, 1144, 572, 286} on SVHN. These numbers are selected to match the number of
proportion labels in the uniform bag generation procedure. The distribution of bag sizes generated
from the K-means procedure are shown in Figure 3.

For experiments, we do not compare our proposed method to the ROT loss, which needs to estimate
individual labels iteratively for each bag. The procedure of the ROT algorithm is time-consuming
and cannot be accelerated if bags are of varying sizes. Besides, for the K-means bag generation,
there may be some large bags when the value of K is small. Because of the limited computational
resource, we take a subsample in each bag if the bag size is larger than the threshold of 256. Partic-
ularly, when a large bag is sampled, we randomly sample 256 instances and assign the original label
proportions to the reduced bag.

The experimental results of the K-means bag generation are shown in Table 2 and Table 3. Although
this scenario violates the i.i.d. assumption, the results demonstrate that it is feasible to learn an
instance-level classifier by simply minimizing the proportion loss. Also, our LLP-VAT significantly
brings benefits for the k-means bag generation scenario on SVHN and CIFAR10, while showing
comparable performance on CIFAR100. Interestingly, the performance of a model is not well-
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Table 2: Test accuracy with the K-means bag generation on SVHN.

K

Dataset Method 4576 2288 1144 572 286

SVHN vanilla 92.07 91.16 92.00 78.70 47.16
LLP-VAT 93.11 91.69 93.21 82.05 46.38

Table 3: Test accuracy with the K-means bag generation on CIFAR10 and CIFAR100.

K

Dataset Method 3120 1560 780 390 195

CIFAR10 vanilla 73.93 66.54 44.12 49.85 39.86
LLP-VAT 77.43 68.01 51.04 50.22 38.27

CIFAR100 vanilla 38.65 22.16 16.07 15.47 7.82
LLP-VAT 37.98 21.90 15.61 15.31 8.13

correlated with the value of K. One possible reason is that we might drop informative bags as we
randomly split bags into validation and training.

4.3 VALIDATION METRICS

Many modern machine learning models require a wide range of hyperparameter selections about
the architecture, optimizer and regularization. However, for the realistic LLP scenario, we have
no access to labeled instances during training. It is crucial to choose appropriate hyperparameters
based on the bag-level validation error that is computed with only proportion labels. To evaluate
the performance at the bag level, we consider four validation metrics: soft L1 error, hard L1 error,
soft KL divergence, and hard KL divergence. Their definitions are given as follows. First, we
define the output probabilities of an instance as the soft prediction and its one-hot encoding as the
hard prediction. For each bag, we then compute the estimated label proportions by averaging these
soft or hard predictions. Finally, we use the L1 error or KL divergence to measure the bag-level
prediction error.

To investigate the relationship between the instance-level test error and the bag-level validation er-
ror, we compute the Pearson correlation coefficient between them on models trained for 400 epochs.
The results are shown in Table 4. Surprisingly, we find that the hard L1 error has a strong positive
correlation to test error rate on all benchmarks. This implies that it is feasible to select hyperparam-
eters with only label proportions in realistic LLP scenarios. Interestingly, our finding is coherent to
Yu et al. (2013). Although their and our works both adopt the hard L1 error for model selection, we
focus on the multi-class LLP scenario instead of the binary classification problem they considered.
Therefore, we suggest future multi-class LLP works could adopt the hard L1 validation metric for
model selection.1

5 RELATED WORK

Kuck & de Freitas (2012) first introduce the LLP scenario and formulate the probabilistic model
with the MCMC algorithm to generate consistent label proportions. Several following works (Chen
et al., 2006; Musicant et al., 2007) extend the LLP setting to a variety of standard supervised learning
algorithms. Without directly inferring instance labels, Quadrianto et al. (2009) propose a Mean
Map algorithm with exponential-family parametric models. The algorithm uses empirical mean
operators of each bag to solve a convex optimization problem. However, the success of the Mean
Map algorithm is based on a strong assumption that the class-conditional distribution of data is

1Nevertheless, we do not suggest using our validation metric for early stopping since the correlation is
computed after the model converges.
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Table 4: The Pearson correlation coefficient between the test error rate and the following validation
metrics on benchmarks.

Uniform K-means

SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

Hard L1 0.97 0.81 0.81 0.99 0.75 0.67
Soft L1 0.83 0.33 -0.50 0.90 0.61 0.26
Hard KL 0.69 -0.18 0.64 0.81 0.10 0.40
Soft KL 0.69 0.89 -0.16 0.71 0.62 0.57

independent of bags. To loosen the restriction, Patrini et al. (2014) propose a Laplacian Mean
Map algorithm imposing an additional Laplacian regularization. Nevertheless, these Mean Map
algorithms suffer from a fundamental drawback: they require the classifier to be a linear model.

Several works tackle the LLP problem from Bayesian perspectives. For example, Fan et al. (2014)
propose an RBM-based generative model to estimate the group-conditional likelihood of data.
Hernández-González et al. (2013), on the other hand, develop a Bayesian classifier with an EM
algorithm. Recently, Sun et al. (2017) propose a graphical model using counting potential to pre-
dict instance labels for the US presidential election. Furthermore, other works (Chen et al., 2009;
Stolpe & Morik, 2011) adopt a k-means approach to cluster training data by label proportions. While
some works (Fan et al., 2014; Sun et al., 2017) claim that they are suitable for large-scale settings,
both Bayesian methods and clustering-based algorithms are rather inefficient and computationally
expensive when applied to large image datasets.

Another line of work adopts a large-margin framework for the problem of LLP. Stolpe & Morik
(2011) propose a variant of support vector regression using the inverse calibration method to es-
timate the class-conditional probability for bags. On the other hand, Yu et al. (2013) propose a
procedure that alternates between assigning a label to each instance, also known as pseudo-labeling
in the literature, and fitting an SVM classifier. Motivated by this idea, a number of works (Wang
et al., 2015; Qi et al., 2016; Chen et al., 2017) infer individual labels and updated model parame-
ters alternately. One major drawback of SVM-based approaches is that they are tailored for binary
classification; they cannot extend to the multi-class classification setting efficiently.

As deep learning has garnered huge success in a number of areas, such as natural language process-
ing, speech recognition, and computer vision, many works leverage the power of neural networks
for the LLP problem. Ardehaly & Culotta (2017) are the first to apply deep models to the multi-
class LLP setting. Also, Bortsova et al. (2018) propose a deep LLP method learning the extent of
emphysema from the proportions of disease tissues. Concurrent to our work, Dulac-Arnold et al.
(2019) also considers the multi-class LLP setting with bag-level cross-entropy loss. They introduce
a ROT loss that combines two goals: jointly maximizing the probability of instance predictions and
minimizing the bag proportion loss.

6 CONCLUSION

In this paper, we first apply a novel semi-supervised learning technique, consistency regularization,
to the multi-class LLP problem. Our proposed approach leverages the unlabeled data to learn a deci-
sion boundary that better depicts the data manifold. The empirical results validate that our approach
obtains better performance than that achieved by existing LLP works. Furthermore, we introduce a
non-uniform bag scenario - the K-means bag generation, where training instances are clustered by
attribute relationships. This setting simulates more practical LLP situations than the uniform bag
generation setting, which is often used in previous works. Lastly, we introduce a bag-level valida-
tion metrics, hard L1 error, for model selection with only label proportions. We empirically show
that the bag-level hard L1 error has a strong correlation to the test classification error. For real-world
applicability, we suggest that multi-class LLP methods relying on hyper-parameter tuning could
evaluate their methodology based on the bag-level hard L1 error. One interesting future direction
is combining the Mixup. In a nutshell, we hope that future LLP work can further explore the ideas
presented in this paper.
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A EXPERIMENT DETAILS

A.1 DATASETS

To evaluate the effectiveness of our proposed method, we conduct experiments on three benchmark
datasets, including SVHN (Netzer et al., 2011), CIFAR10, and CIFAR100 (Krizhevsky & Hinton,
2009). The SVHN dataset consists of 32x32 RGB digit images with 73,257 examples for training,
26,032 examples for testing, and 531,131 extra training examples that are not used in our experi-
ments. The CIFAR10 and CIFAR100 datasets both consist of 50,000 training examples and 10,000
test examples. Each example is a 32x32 colored natural image, drawn from 10 classes and 100
classes respectively.

A.2 EXPERIMENT SETUP

Implementation details. For all experiments in this section, we adopt the Wide Residual Network
with depth 28 and width 2 (WRN-28-2) following the standard specification in the paper (Zagoruyko
& Komodakis, 2016).We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
0.0003. Additionally, we train models for a maximum of 400 epochs with a scheduler that scales the
learning rate by 0.2 once the model finishes 320 epochs. To simulate the LLP setting, we split the
training data by two bag generation algorithms described in Section 4.1 and 4.2. Once completing
the bag generation, we then compute the proportion labels by averaging the class labels over each
bag. To avoid over-fitting, we follow the common practice of data augmentation (He et al., 2016; Lin
et al., 2013) padding an image by 4 pixels on each side, taking a random 32x32 crop and randomly
flipping the image horizontally with the probability of 0.5 for all benchmarks.
Hyperparameters. We compare our method, LLP-VAT, to ROT (Dulac-Arnold et al., 2019) and the
vanilla approach, which simply minimizes the proportion loss. For ROT, we conduct experiments
with a hyperparameter of α ∈ {0.1, 0.4, 0.7, 0.9} to compute the ROT loss. Following Oliver et al.
(2018), we adopt the VAT approach to generate perturbed examples with a perturbation weight ε of
1 and 6 for SVHN and CIFAR10 (or CIFAR100) respectively. We measure the consistency loss with
the KL divergence and a consistency weight of α ∈ {0.5, 0.1, 0.05, 0.01}.
Model selection. For a fair comparison, we randomly sample 90% of bags for training and reserve
the rest for validation. In the LLP setting, since there are no individual labels available in the
validation set, we select hyperparameters based on the hard L1 error which is computed with only
proportion labels. To be more specific, the hard L1 error for a bag B = (X,p) is defined by

Err = ||p− p̂||1, p̂ =
1

|X|
∑
x∈X

e(i
∗),

where i∗ = arg maxi fθ(x)i and e(i
∗) is the one-hot encoding of the prediction. Lastly, we report

the test instance accuracy averaged over the last 10 epochs.
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B CONVERGENCE ANALYSIS OF LLP-VAT

To analyze the convergence performance of LLP-VAT, we plot the instance accuracy on the test
set over training epochs. Figure 4 and 5 show the accuracy curve on the test set with the uniform
bag generation and the K-means bag generation respectively. As shown in Figure 4 and 5, the
experimental results demonstrate the stability of our LLP-VAT. When the training epoch gradually
increases, the test instance accuracy goes up quickly and converges in the end.

B.1 UNIFORM BAG GENERATION

(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 4: Evolution of the test accuracy on benchmarks with the uniform bag generation of varying
bag sizes.

B.2 K-MEANS BAG GENERATION

(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 5: Evolution of the test accuracy on benchmarks with the K-means bag generation of varying
number of clusters.
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