
Under review as a conference paper at ICLR 2020

RELATIVE PIXEL PREDICTION FOR AUTOREGRESSIVE
IMAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In natural images, transitions between adjacent pixels tend to be smooth and gradual,
a fact that has long been exploited in image compression models based on predictive
coding. In contrast, existing neural autoregressive image generation models predict
the absolute pixel intensities at each position, which is a more challenging problem.
In this paper, we propose to predict pixels relatively, by predicting new pixels
relative to previously generated pixels (or pixels from the conditioning context,
when available). We show that this form of prediction fare favorably to its absolute
counterpart when used independently, but their coordination under an unified
probabilistic model yields optimal performance, as the model learns to predict sharp
transitions using the absolute predictor, while generating smooth transitions using
the relative predictor. Experiments on multiple benchmarks for unconditional image
generation, image colorization, and super-resolution indicate that our presented
mechanism leads to improvements in terms of likelihood compared to the absolute
prediction counterparts.

1 INTRODUCTION

It is has long been appreciated in the field of image compression (Harrison, 1952; Haskell &
Netravali, 1997) that adjacent pixels in natural images tend to share similar colors and intensities.
This is evidenced in Figure 1, where we plot the marginal distribution of absolute sub-pixel (i.e.,
color channel) intensities and the difference between the sub-pixel intensities to the corresponding
sub-pixel immediately to its left. While the absolute pixel values tend to be distributed non-trivially
across the whole range of possible sub-pixel values [0, 255] with peaks around the values of 100 and
255, the relative sub-pixel values closely resembles a Laplacian distribution with the mean at 0 as
most pixels do not differ greatly from their neighbouring pixels (Takamura, 1996). This suggests that
image generation process could mostly be done by predicting the relative distance between existing
and new pixels, and absolute pixel prediction is only needed to generate more abrupt transitions, such
as boundaries between two different objects. In predictive coding compression models, this fact is
leveraged to achieve increased compression rates by learning to predict pixels as a delta between
pixels rather than predicting their absolute values (al Mahmood & Al-Rubaye, 2014).

Autoregressive models are one of the main forces driving research in image generation van den
Oord et al. (2016a); Salimans et al. (2017); Parmar et al. (2018); Chen et al. (2018); Child et al.
(2019). In contrast to other popular image models based on adversarial methods (Goodfellow et al.,
2014; Radford et al., 2015) or that use latent variables (van den Oord et al., 2017), autoregressive
models have a tractable likelihood function that decomposes image generation into a sequence of
conditionally dependent pixel predictions. This is a desirable property that provides the grounds for
applying the same principles of predictive coding in the image generation process.

In this paper, we propose an image generation model where new pixels are generated by modeling the
differences between new pixels and pre-existing ones. In contrast with existing approaches that tackle
the challenging problem of learning to generate each pixel in terms of their absolute values (van den
Oord et al., 2016b), we model gradually shifting pixel intensities in relative terms. From the modeling
perspective, we propose a copy and adjustment mechanism, where new pixels are predicted by
selecting an existing pixel, and adjusting its sub-pixel values to generate a new pixel. We show
that new generation methodology generalizes better for multiple datasets in unconditional image
generation and image translation tasks, namely colorization (Cheng et al., 2016; Zhang et al., 2016;

1



Under review as a conference paper at ICLR 2020

0 63 127 191 255
0

1

2
·106

−255 −127 0 127 255
0

1

2

4

8
·106

Figure 1: Marginal distribution of absolute and relative (to the left pixel) pixel intensities in the
training set of CIFAR-10.

Guadarrama et al., 2017; Iizuka et al., 2016; Guadarrama et al., 2017) and super-resolution (Parmar
et al., 2018). Additionally, we show that our mechanism can be adapted to copy and adjust pixels from
the input image in image-to-image translation tasks. Finally, we show that the different generation
mechanisms can be unified into a single loss function with tractable likelihood computation.

The paper is organized as follows: Firstly, we describe our copy and adjustment model (§2). Then,
we describe its application in image-to-image translation tasks (§3). Afterwards, we describe a
mixture model that combines different forms of pixel prediction (§4). Then, we provide experimental
results that support our claims (§5). Finally, we describe the positioning of our work with respect the
previous research (§6) and proceed to the conclusions (§7).

2 RELATIVE PIXEL PREDICTION

PixelCNN (van den Oord et al., 2016a) models the generation of an image x = (x1,x2, . . . ,xn2)
with width and height n as a probability density function p(x) that is factorized into an autoregressive
prediction of pixels as follows1:

p(x) =

n2∏
i=1

p(xi | xk<i), (1)

where xi, which consists of C subpixel channels (xi,1, xi,2, . . . , xi,C), is conditioned on k previously
generated pixels. Each pixel prediction p(xi | xk<i) is further factorized by the prediction of its C
subpixel channels,

p(xi | xk<i) =

C∏
c=1

p(xi,c | xi,m<c,xk<i). (2)

Similarly, each new sub-pixel is conditioned on the previously k generated pixels and them generated
sub-pixels. The probability density function of each sub-pixel xi,c is modelled by bucketing the
range of continuous values in the range [0, 1] into 256 evenly distributed classes (van den Oord et al.,
2016a), which is modeled as a categorical distribution over Va = [0, 255]. More formally, given a
hidden state hi,c−1, obtained by composing the history of generated sub-pixels, the following pixel is
generated as follows:

p(xi,c | xi,m<c,xk<i) = softmaxVa(Wshi,c−1). (3)

Our work changes the probability density function in Equation 2, which computes the subpixel values
directly, with one that computes these values relative to previously generated pixels. More formally,
rather than predicting xi,c, we compute the distance ∆

xi,c
xr,c = xi,c − xr,c, where xr denotes the

previously generated pixel at position r. Under this formulation, we rewrite Equation 2 as follows:

1Sequences of pixels representing either an image of part of an image are written as x, a vector representing
a multi-channel pixel is written x, and scalars are written x. The ith scalar element of vector x is xi, and the jth
vector element of a sequence x is xj .
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p(xi | xk<i) = p(xr,∆
xi,∗
xr,c
| xk<i) = p(xr | xk<i)

C∏
c=1

p(∆xi,c
xr,c
| xr,xi,m<c,xk<i). (4)

Illustrated in Figure 2, our relative pixel prediction can be interpreted as selecting a pixel to copy
under the probability mass function p(xr | xk<i) and then predicting the adjustment needed to add
to that pixel to obtain xi modelled by p(∆xi,c

xr,c | xr,xi,m<c,xk<i). We name the former the copy
mechanism and the latter the adjustment mechanism.

Figure 2: Illustration of the copy and adjustment mechanism. The copy mechanism selects a
previously generated pixel and the adjustment mechanism modifies the pixel to generate the next
pixel.

2.1 COPY MECHANISM

The concept of learning to reference a pre-existing pixel under a given distribution p(xr | xki
) is

closely related to the copy mechanism frequently used in natural language generation models (Ling
et al., 2016; Gu et al., 2016; Merity et al., 2016), where observed words, either from the input or
previously generated output, can be copied to generate new outputs using a pointer network (Vinyals
et al., 2015). Pointer networks define a probability distribution over a discrete space of units, in our
case previously generated pixels, and compute p(xr | xk<i) as follows:

ur′ = vT tanh(Wa
shi,0 + Wa

rhr′+1,0 + Wa
xxr′) (5)

p(xr | xk<i) = softmaxUi(u), (6)

where ur′ (for each r′ in Ui) computes the affinity between current state hi,0 before any sub-pixels at
position i are generated and state of a previously generated pixel hr′+1,0 after all pixels in candidate
source position r′ have been generated with sub-pixel values xr. Parameters Wa

s , Wa
r , Wa

x and v
are used to model this function.

The probability of choosing a given pixel xr is computed as a softmax over the affinities of all pixels
that can be selected Ui. While applications of pointer networks in natural language processing can
be applied to whole sentences, which contain perhaps 40–200 words, the large number of pixels in
images (e.g. 4096 in 64×64 images) makes this practice prohibitive. Following (Parmar et al., 2018),
we restrict this choice to a predefined set of neighbouring pixels.
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Finally, near the edges of images, some positions in Ui will lie outside of the image. To address this
case, we always can copy the pixel with value xnull = [0, 0, 0] and learn a special state hnull. This is
needed for the top and left edges of the image, where no pixels have been previously generated.

2.2 ADJUSTMENT MECHANISM

The adjustment mechanism aims to learn a continuous variable ∆b
a which measures the absolute

distance between two sub-pixels a and b. In order to keep log-likelihood computations consistent
with the buckets defined in previous work (van den Oord et al., 2016a), we compute the distances
over the discretized pixel values. Thus, we model the distance function as a categorical distribution
over integers in the range Vr = [−255, 255]. This quantifies the number of buckets that need to
be adjusted with relation to the pixel to be copied. The computation of the distance distribution is
performed as follows:

a = Wp
shi,c−1 + Wp

rhr,C + Wp
xxr (7)

p(∆xi,c
xr,c
| xr,xi,m<c,xk<i) = softmaxVr

(a). (8)

Thus, the softmax that computes the required adjustment depends on the current hidden state hi,c−1,
and the state and the pixel to copy from hr,C and its values xr. It is worth mentioning that this
softmax can be replaced by any mechanism that defines a categorical distribution, such as that
described in (Salimans et al., 2017).

While the outcome of the relative predictor consists of a value in the interval [−255, 255], for a
given copied pixel, the number of valid adjustment values that situate the intensity within the valid
range [0, 255] remains as 256. For instance, if the copied pixel’s value is 100, the range of possible
adjustment values is [−100, 155]. While the model can learn to avoid such mistakes from the data, any
probability mass assigned to invalid adjustment values is penalized in terms of perplexity. Thereby,
we ensure that the model avoids such errors by limiting softmax defined in Equation 7 to the range of
valid values.

2.3 MARGINALIZATION OVER RELATIVE PIXELS

For likelihood computation, the choice of the relative pixel xr is unobserved and must be inferred
during training. As we define a small range of possible pixels for xr, limited to neighbouring pixels,
the marginal likelihood over the latent domain Ui is tractable and can be defined as follows:

p(xi | xk<i) =
∑

xr∈Ui

p(xr,∆
xi,1
xr,c

, . . . ,∆xi,C
xr,c
| xk<i)

∑
xr∈Ui

p(xr | xk<i)

C∏
c=1

p(∆xi,c
xr,c
| xr,xi,m<c,xk<i)

For generation, we first sample the pixel to copy xr from the distribution p(xr | xk<i), then we
sample an adjustment from the distributions p(∆xi,c

xr,c | xr,xi,m<c,xk<i) for each sub-pixel value c,
thereby generating xi.

3 IMAGE-TO-IMAGE TRANSLATION

If the image generation process is conditioned on an input image y, the copy mechanism can also be
applied to copy pixels from the input image. This is desirable in tasks, such as image colorization and
super-resolution, where the input image is structurally similar to the output image and we hypothesize
that learning the adjustment in such tasks generalizes better than learning to generate from scratch.

PixelCNN can be adjusted for image translation by conditioning on a fully visible input image y.
More formally, each pixel p(xi | xk<i,y) is now generated as follows:

p(xi | xk<i,y) = softmaxVa
(Wshi,c−1 + Wmgi)
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where gi is the hidden state of the input image y at pixel i. This differs from the output image hidden
states hi,m in that gi has visibility of the whole input image.

Relative pixel prediction over the input image can be embedded by reformulating Equations 5 and 7
as follows:

ur′ = vT tanh(Wa
shi,0 + Wa

mgr′ + Wa
yyr′) (9)

p(xr | xk<i,y) = softmaxBi
(u) (10)

a = Wp
shi,c−1 + Wp

rgr + Wp
yyr (11)

p(∆xi,c
yr,c
| xr,xi,m<c,xk<i,y) = softmaxVr

(a), (12)

where we replace the output pixels and their hidden states of the output pixels with those of the input,
namely y and g. Secondly, we define Bi as the set of pixels in the input image y that are available to
be copied from position i. For simplicity, we also assume that y and x have the same dimensions. For
image colorization, where the input image has only one channel, we simply copy the same channel
three times. For super-resolution, we ensure this by first increasing to the desired dimensions using
a heuristic method (e.g. bilinear interpolation). These do not correspond to optimal architecture
choices for these tasks, but still allow the fair evaluation between the absolute and relative predictors.

4 UNIFIED PREDICTOR

The copy and adjust mechanism is self-sufficient for generating any image, and benefits from a denser
distribution when neighbouring pixels share similar sub-pixel values. However, when large color
perturbations are observed and no correlations between neighbouring pixels can be found, using
this mechanism is intuitively disadvantageous, since the range of differences between two sub-pixel
values is larger than the range of sub-pixel values (511 vs. 256). Furthermore, in image-to-image
tasks it would also be desirable to combine both forms of relative prediction (e.g. copying from the
input and output). Our solution to supporting both absolute and relative generation mechanisms is
using latent predictors (Ling et al., 2016). We define our set of predictors as P = [Pabs, Pi-rel, Po-rel],
where Pabs denotes the absolute pixel predictor computed according to Equation 2 and Pi-rel and Po-rel
denote the relative pixel predictors defined in Equation 4 and 11. At each generation step i, we define
the predictor probability p(π | xk<i) as follows:

p(π | xk<i) = softmax[Pabs,Prel-i,Prel-o](Wlhi), (13)
where Wl defines the parameters used by the gating system that switches between the absolute and
relative predictors.

It is also beneficial to prune marginally less frequent adjustment values in the relative predictor by
removing them from the softmax in Equations 7, as these generally correspond to sharp transitions
between pixels, which are better handled by the absolute predictor. We do this by pruning the domain
of the softmax over the interval [−255, 255] to the set of the k most frequently observed adjustment
values in the training data, where k is a hyperparameter tuned on the validation set. This means that
for pruned adjustment values, the relative predictor will predict the pixel with probability 0, which
is acceptable in the unified predictor, as the absolute predictor would present a valid probabilistic
interpretation for such pixels.

5 EXPERIMENTS

5.1 SETUP

Our experiments were performed on existing benchmarks for image generation, namely, CIFAR-
10 (Krizhevsky, 2009) and downsampled ImageNet (Deng et al., 2009; Chrabaszcz et al., 2017).

For unconditional image generation, hidden states h are obtained using gated convolutional lay-
ers (van den Oord et al., 2016a). More concretely, after discrediting the input image x, we apply a
convolutional layer with kernel size 7 and hidden size H1. Then, we apply an additional D layers
with kernel size 5 and hidden size H1, with the exception of the final layer which has the hidden size
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Table 1: Quantitative results using relative pixel prediction. Each cell reports the negative log-
likelihoods in bits/dim on CIFAR-10’s test set and ImageNet’s validation set for unconditional image
generation (U), colorization (C) and super-resolution (S). Row 0 is the baseline. Rows 1 and 2
describe the results obtained using only the input and output predictors, respectively. Rows 3 and 4
combines them with the absolute predictor. Row 5 denotes the combination of the input and output
predictors.

CIFAR-10 32×32 IMAGENET 32×32 IMAGENET 64×64

U C S U C S U C S
0 ABSOLUTE 3.02 1.25 2.87 3.83 2.17 3.74 3.55 2.02 3.49
1 RELATIVE(O) 2.99 0.99 2.82 3.80 2.08 3.71 3.53 1.63 3.41
2 RELATIVE(I) - 1.21 2.85 - 2.16 3.73 - 1.99 3.46
3 ABSOLUTE + RELATIVE(O) 3.00 1.03 2.83 3.79 2.11 3.69 3.52 1.69 3.40
4 ABSOLUTE + RELATIVE(I) - 1.20 2.84 - 2.14 3.72 - 1.98 3.46
5 RELATIVE(I+O) - 0.97 2.81 - 2.06 3.70 - 1.63 3.38

of H2. Furthermore, we add a skip connection (Ronneberger et al., 2015), between each intermediate
layer to the final layer. This final layer corresponds to the hidden states h. For CIFAR-10, we set
D = 15, H1 = 64 and H2 = 512, and train with a batch size of 32. For ImageNet, we set D = 20,
H1 = 256 and H2 = 2048 and train with a batch size of 128.

For image-to-image translation, we apply the operations to both x and y to obtain h and g, re-
spectively. However, as y is fully observed, no mask is applied in the convolutions to obtain g.
For CIFAR-10, we set D = 15, H1 = 128 and H2 = 512, and train with a batch size of 32. For
ImageNet, we set D = 20, H1 = 256 and H2 = 2048 and train with a batch size of 64. For
colorization, we remove the colorization of the original image. For super-resolution, we follow the
approach applied in (Dahl et al., 2017), and reduce resolution of the image to 8×8. Evaluation is
performed in terms of negative log-likelihood measured in bits/dim2.

As for the prediction mechanisms, we compare the baseline that relies solely on absolute predictors
against the best setups found on CIFAR-10 from our ablation study (Appendix A), which is carried
out on the validation set. For unconditional image generation, we use a relative predictor that can
copy from the pixel to the left and top of the generated pixel. We report results, when only relative
prediction is used and when both absolute and relative predictors are used. Here, the pruning threshold
is set to 20%, which is also chosen based on the results of the ablation test. For image-to-image
translation, the same setup is used when only relative predictors that copy from the output is used.
When we consider the input image as another source that can be copied from, we define a 3× 3 grid
around the position of the output pixel, and any corresponding pixel in the input image that falls
within that grid can be selected as a target to be copied from.

5.2 QUANTITATIVE RESULTS

Table 1 reports the results on the test set of CIFAR-10 and validation sets of ImageNet. Our baseline
implementation of PixelCNN (row 0) achieves a negative log-likelihood of 3.02 bits/dim. From
rows 1 and 2, we observe that both relative predictors yield improvements over the baseline. Overall,
combining each relative form of prediction with the absolute predictor (rows 3 and 4) tends to
work well for all tasks except for colorization, where combining the output relative predictor and
absolute predictors tend to yield lower results. Finally, combining the input and output relative
predictors yields the optimal overall results (row 5). We do not illustrate results when all predictors
are combined, as the presence of the input predictor and the absolute predictor causes the latent
predictor network (Ling et al., 2016) to ignore the absolute predictor, and thereby, results are identical
to that in row 5.

2We acknowledge that extensive work has been conducted in the tasks of super-resolution (Ledig et al.,
2016) and colorization (Nazeri & Ng, 2018), which are evaluated on different metrics, we refrain from directly
comparing our model to the aforementioned work as our main motivation is to measure the effectiveness of the
relative pixel prediction mechanism with respect to copying pixels from the input.
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Figure 3: 32×32 images generated by our model on CIFAR-10. Columns correspond to the input of
the model, the sample obtained from the model, the sampled latent variables and the reference. Three
colors are used for the latent variables: White→ absolute predictor; Blue→ relative predictor from
the left pixel and Green→ relative predictor from the top pixel.

INPUT SAMPLE LATENT ORIGINAL

C

S

U

5.3 LATENT VARIABLE ANALYSIS

For a more in-depth understanding of the relative and absolute prediction choices, we provide samples
and latent variable choices for CIFAR-10 validation set in Table 3. Columns “Input”, “Sample” and
“Reference” denote the input observed by the model, the sample that it generates, and the expected
result, respectively. In the column denoted as “latent”, we illustrate the latent choices made by the
model during the sampling process, where white pixels correspond to the absolute predictor, and
blue and green pixels correspond to the relative predictor that copies from the left and top pixels,
respectively.

We observe that the majority of the images are generated using the relative prediction mechanism
from the left pixel, with top pixels only used when the left pixel is unavailable (e.g. left edge of
the image) or vertically oriented objects (e.g. legs of the cat). However, there are some instances
where images are predominantly predicted by copying from the top pixel. In simpler tasks, such
as colorization, the model seems to rarely use the absolute predictors applying it only to generate
the transitions between objects. In more advanced tasks, such as super-resolution and unconditional
image generation, relative predictors are often applied to generate continuous textures (e.g. sky and
glass) whereas more complex objects such as houses and trees are generated by combining both
absolute and relative predictors.

5.4 IMPACT ON STATE-OF-THE-ART MODELS

While we show that relative pixel prediction can improve the quality of the predictions of the model
presented in (van den Oord et al., 2016a), state-of-the-art models can achieve significantly better
results by incorporating multiple modeling innovations (Salimans et al., 2017; Parmar et al., 2018;
Chen et al., 2018). Thus, to investigate if the work proposed can be used to further augment state-of-
the-art models. We build upon the model described in (Razavi et al., 2019), which defines a 30-layer
neural network with transformer layers. We replace the discretized logistic mixture of components
with 32 components with a relative pixel prediction that copies from the left and top of the desired
pixel with, whose output is pruned with a 20% threshold. Finally, we also use outcome masking.
Results are illustrated in Table 2, where we can see that our model fares favourably with state-of-the-
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Table 2: Comparison between state-of-the-art models in unconditional image generation on CIFAR-10.
Cells report log-likelihood scores measured in bits/dim.

CIFAR-10

DRAW (GREGOR ET AL., 2015) 4.10
GROW (KINGMA & DHARIWAL, 2018) 3.35
MINTNET (SONG ET AL., 2019) 3.32
PIXELCNN (VAN DEN OORD ET AL., 2016A) 3.03
PIXELCNN++ (SALIMANS ET AL., 2017) 2.92
TRANSFORMER (PARMAR ET AL., 2018) 2.90
PIXEL-SNAIL (CHEN ET AL., 2018) 2.85
DELTA VAE (RAZAVI ET AL., 2019) 2.83
RELATIVE PIXELCNN (THIS WORK) 2.82
SPARSE TRANSFORMER (CHILD ET AL., 2019) 2.80

art models in this task. Improvements are more marginal (from 2.83 to 2.82) but supplements the
upward trend from experiments using the vanilla PixelCNN.

6 RELATED WORK

Copy mechanisms have been widely used in sequence-to-sequence models (Sutskever et al., 2014) in
order to copy tokens from the input sequence (Ling et al., 2016; Gu et al., 2016), previously generated
tokens (Merity et al., 2016), or from structured data, such as databases (Yang et al., 2016; Ahn et al.,
2016). The basic copy mechanism recalls pointer networks (Vinyals et al., 2015) but extends it by
allowing the copied element to be modified. A similar approach can be found in (Ling et al., 2017),
where copied tokens can be modified with multiple operations before generation. Image compression
techniques encode deltas between pixels rather than absolute intensities (Harrison, 1952), and even
natural visual systems code deltas rather than absolute magnitudes Rao & Ballard (1999).

A major force driving progress on auto-regressive image generation models is the advancements of
self-attention mechanisms (Parmar et al., 2018; Child et al., 2019), which allows better modeling of
long range dependencies within images. However, improving generalization by incorporating better
prediction mechinism has also been explored in the past. The usage of discretized logistic mixture
likelihoods (Salimans et al., 2017), where the independence between consecutive pixel intensities is
alleviated here, which leads to be better generalization is an example of such exploits. Our work is
another instance of such lines of research, where we incorporate a mechanism that exploits the fact
that consecutive pixels tend to share similar values.

Another major driver of progress in image generation is the trend of adversarial image genera-
tion (Goodfellow et al., 2014; Isola et al., 2016; Karras et al., 2017; Brock et al., 2018; Rivière et al.,
2019; Wang & Huan, 2019). While our model is not directly applicable to this set of models, as our
proposed work operates on explicit probability estimates of pixel distributions rather than implicit
ones, the concept of relative pixel prediction is likely to be beneficial to these models.

7 CONCLUSION

We presented an alternative parameterization for autoregressive models for image generation, where
pixels are generated relative to pre-existing pixels. This is achieved by learning two probability mass
functions over what pixel to copy and how the copied pixel must be adjusted to obtain the new pixel.
We show that generating new pixels as deltas from previously generated neighbouring pixels has
better generalization properties compared to existing methods that generate pixels in absolute terms.
Finally, we propose a mechanism that combines the multiple types of predictions into mixture model,
which allows exact inference at training and decoding time. Experimental results show that our
proposed models achieve improvements to their absolute counterparts, and can achieve competitive
results compared to state-of-the-art models in unconditional image generation.
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Table 3: Ablation study over different predictors. Each cell reports the negative log-likelihoods
in bits/dim on the CIFAR-10 for unconditional image generation (U), colorization (C) and super-
resolution (S). Row 0 is the baseline. Rows 1–3 denote results using only relative predictors from
the left pixel, top pixel and both, respectively. Rows 3 and 4 allow the usage of a 2×2 and 3×3
grid centered around the predicted pixel. Rows 6–8 combine the absolute predictor with the relative
one, and rows 9–11 use a pruned distance list for the relative predictors. Rows 12–14 use only the
relative predictor that copies from the input pixel in the same position as the predicted pixel, and in a
2×2 and 3×3 grids around that position. Rows 15–17 denote the combinations between the absolute
and relative predictor from the input. Finally, we combine all the aforementioned predictors in rows
18–19.

U C S
0 ABSOLUTE 3.02 1.23 2.86

RELATIVE(O)
1 LEFT PIXEL 3.00 0.96 2.84
2 TOP PIXEL 3.00 0.98 2.83
3 LEFT+TOP PIXEL 2.99 1.00 2.80
4 2×2 3.00 1.06 2.82
5 3×3 3.01 1.05 2.83
6 (3) + (0) 3.01 1.22 2.85
7 (4) + (0) 3.02 1.26 2.86
8 (5) + (0) 3.02 1.29 2.86
9 (3P) + (0) 3.00 1.01 2.80
10 (4P) + (0) 3.00 1.00 2.81
11 (5P) + (0) 3.00 1.00 2.81

RELATIVE(I)
12 CENTER PIXEL - 1.20 2.91
13 2×2 - 1.19 2.85
14 3×3 - 1.19 2.84
15 (12) + (0) - 1.21 2.86
16 (13) + (0) - 1.18 2.86
17 (14) + (0) - 1.17 2.85

RELATIVE(I+O)
18 (3P) + (14) - 0.94 2.78
19 (3P) + (14) + (0) - 0.98 2.79

MASKED RELATIVE(O)
20 (3PM) 2.98 0.95 2.79

MASKED RELATIVE(I+O)
21 (3PM) + (14) - 0.93 2.78
22 (3PM) + (14) + (0) - 0.96 2.79

A ABLATION STUDY

To test the effect of different components described in our work, we start by performing an ablation
test over different setups on CIFAR-10, and select the setups that are most promising to be applied to
the larger datasets. This study is reported on Table 3. Columns U, C and S report the negative log-
likelihood scores in bits/dim for unconditional image generation, colorization and super-resolution,
respectively. Each numbered row uses a different set of predictors starting from our baseline
implementation of PixelCNN (van den Oord et al., 2016a) in row 0.

Output Relative Prediction Rows 1 and 2 show the results obtained by computing the adjustment
score in Equation 7 with respect to the left or top pixels, respectively. As the choice of which pixel
to select as the reference for the adjustment is predetermined, the copy mechanism is not required.
Surprisingly, this simple change yields improvements in multiple datasets compared to absolute
predictors. On average, adjusting from the left pixel yields more improvement compared to adjusting
the top pixel, yet differences seem to be minor. Combining both predictors tends to improve the
scores of the model, as observed in row 3, with the exception of the colorization task. In row 4, we
also observe that adding all pixels within an 2×2 grid apart from the generated pixel (top, left and
diagonals) does not yield additional improvements. The same occurs if we extend this grid to two

12



Under review as a conference paper at ICLR 2020

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1
% relative
% improvement

Figure 4: Effects of the pruning threshold when both absolute and relative predictors are used. The
X-axis denotes the percentage of values that kept in the relative predictor’s softmax.
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Figure 5: Effects of changing the number of parameters in the model using the absolute (red line)
and relative predictors (blue line). The x-axis denotes the fraction of the parameters used in the
hidden layers, and the y-axis reports the log-likelihood obtained on the CIFAR-10 validation set for
unconditional image generation.

positions, as shown in row 5. We believe this is because neighbouring pixels tend to share similar
colors, so more additional pixels are unlikely to add any additional information than the left and top
pixels.

Rows 6, 7 and 8 illustrate the results obtained by combining the absolute predictor from row 0 with
each of the relative predictors in rows 3, 4, and 5. Such setups cause the latent predictor networks to
assign most probability mass to the absolute predictor. This suggests that the model is over-fitting to
the absolute predictor, which has a faster convergence rate due to its smaller softmax (256 vs. 511).

Thresholding Relative Prediction To effectively combine the absolute and relative predictors we
pruned the softmax of the adjustment mechanism to the k most observed values in the training set (as
discussed in §4). Rows 9, 10 and 11 report the results obtained when we set the pruning threshold to
20%, keeping only the 20% most frequent adjustment values in the training set. In CIFAR-10, we
obtain results that are close to the best performing setups. In Figure 4, we study the results obtained
using different threshold values in CIFAR-10. The red line represents the relative improvement
obtained for unconditional image generation in the validation set using the model setup corresponding
to row 9, and we can observe the highest improvement at 20%. We also report the percentage of pixels
generated using the relative prediction mechanism when generating 100 samples with the blue line.
We observe that while at lower thresholds the relative prediction mechanism is used approximately
for the generation of 70% of images, when this value approaches 100%, this relative prediction is
rarely used, explaining the lack of improvements without pruning.

Parameter Efficiency Figure 5 illustrates the log-likelihood scores for unconditioned image gener-
ation for different hyper-parameters for the hidden layer sizes, namely H1 and H2. We can observe
that both absolute (red line) and relative (blue line) loss functions start under-performing as we
increase the size of the model. Yet, the relative improvement of our loss function is maintained.
However, the relative predictor requires more parameters to start performing effectively, if we drop
the number of parameters to half, the absolute predictor exhibits a superior performance. We believe
that this is because the relative predictor requires more parameters to learn the harsher transitions
between pixels. Finally, if we combine the absolute and pruned relative predictors, the model achieves
lower overall log-likelihood scores across different parametrizations.
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Figure 6: Predictor usage in different setups for colorization in CIFAR-10. Each bar denotes the
percentage of usages after sampling once for each image in the validation set.

Input Relative Prediction For relative pixel prediction from the input, we tested models that copy
from the center pixel, then in a 2×2 grid and 3×3 grid centered at the position of the pixel to be
predicted. Results are reported in rows 12, 13 and 14. Here, we observe that a large patch of pixels
to copy from benefits the model. Interestingly, we did not encounter any problems combining the
absolute and relative predictors when copying from the input in these tasks. We believe this is because
the transitions between the input and output pixels in these tasks is more straight-forward, whereas
the transition between neighbouring pixels can contain harsh transitions (e.g. edges between objects),
which take longer to learn. Results that combine the input relative predictor and absolute predictor
are shown in rows 15, 16 and 17. Here, we observe that combining predictors yields in marginally
better scores on average.

Predictor Combination Rows 18 and 19 show the improvements obtained by combining both input
and output predictors, where we observe that optimal results exclude the usage of an absolute predictor.
This suggests that the information that the two forms of relative prediction are complementary for
the tasks that are tested. That is, the output relative prediction learns the softer transitions between
continuous surfaces, whereas input relative prediction learns the harsher transitions between objects.
Figure 6 illustrates the percentage to usages of the absolute predictor, input relative predictor and
output relative predictor for the colorization task. We observe that the absolute predictor is applied
considerably when used individually with either of the relative predictors (A+Ro and A+Ri), while
rarely used with both predictors (A+Ri+Ro).

Outcome Masking Rows 20, 21 and 22 show the improvements that can be obtained by masking
invalid entries in the relative predictors. While improvements are marginal, we can observe that
perplexities are consistently better using masking, as we are removing invalid outcomes that are
certainly leading to losses in probability mass.

B SAMPLED IMAGES

Examples of sampled images are illustrated in Figure 7. Columns “Absolute” “Left Pixel Only” and
“Absolute + Relative” refer to the models trained using setups 0, 1 and 9 in Table 3. Here, we can
observe that the proposed models can capture the richness of the image distribution from the data.
Interestingly, sharp transitions are also captured when all pixels are predicted relatively from the pixel
to the left (Column “Left Pixel”).
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Figure 7: 32×32 images generated by models trained on CIFAR-10 with using the absolute predictor
(Column “Absolute”), a relative predictor that always copies from the left pixel (Column “Left Pixel
Only”) and the combination of the absolute predictor and a relative predictor that copies from the top
and left pixels (Column “Absolute+Relative”).

ABSOLUTE LEFT PIXEL ONLY ABSOLUTE + RELATIVE

15


	Introduction
	Relative Pixel Prediction
	Copy Mechanism
	Adjustment Mechanism
	Marginalization over Relative Pixels

	Image-To-Image Translation
	Unified Predictor
	Experiments
	Setup
	Quantitative Results
	Latent Variable Analysis
	Impact on State-of-the-art Models

	Related Work
	Conclusion
	Ablation Study
	Sampled Images

