
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Evaluating the distribution learning capabilities of GANs

Anonymous Authors1

Abstract
We evaluate the distribution learning capabilities
of generative adversarial networks by testing them
on synthetic datasets. The datasets include com-
mon distributions of points in Rn space and im-
ages containing polygons of various shapes and
sizes. We find that by and large GANs fail to faith-
fully recreate point datasets which contain discon-
tinous support or sharp bends with noise. Addi-
tionally, on image datasets, we find that GANs do
not seem to learn to count the number of objects
of the same kind in an image. We also highlight
the apparent tension between generalization and
learning in GANs.

1. Introduction
Generative Adversarial Models (GANs)(Goodfellow et al.,
2014) have been found to produce images of very high qual-
ity on some datasets (Karras et al., 2018a;b). However, their
results on other datasets, while impressive, still lag behind
(Brock et al., 2018). This raises the question whether GANs
are indeed the right choice to model some distributions. This
paper aims to test the distribution learning ability of GANs
by evaluating them on synthetic datasets.

1.1. Related works and Contributions

It has been proposed in recent work that “a high number
of classes is what makes ImageNet (Deng et al., 2009) syn-
thesis difficult for GANs” (Odena et al., 2017). Indeed,
GANs have been able to produce very high quality images
on CelebA (Karras et al., 2018b;a) while results on Imagenet
are not so impressive (Brock et al., 2018). Because distribu-
tions of natural images are complex, in this work, we focus
our attention on synthetically generated datasets. We study
the learnability of commonly encountered distributions in
low dimensional space and the impact of discontinuity. Ad-
ditionally, we evaluate a specific aspect of learning high
dimensional image distributions, counting similar objects in
a scene. This constitutes an important part of learning latent
space representations of images since for an image to be
semantically well-formed, certain objects must obey certain
numerical constraints (for example, number of heads on an
animal).

Our evaluation is performed on synthetic point and image
datasets. To our knowledge, the only instance of synthetic
image datasets used for GAN evaluation have been to learn
manifolds of convex polygons (specifically triangles) (Lucic
et al., 2018). Although, we also use polygons as a testbed
for our experiments, we focus on learning a manifold with
multiple polygons where their number is fixed.

Our contributions are as follows:

1. We show via experiments on synthetic datasets that
commonly found distributions are learnable by GANs.
We also highlight that distributions with gaps in support
may be difficult to learn without using a mixture of
generators.

2. We empirically evaluate whether GANs can learn se-
mantic constraints on objects in images in high dimen-
sional space. Specifically, we test a GAN’s ability to
count an object that is repeated in an image.

3. We underline a possible tension between generalization
ability of GANs and their learning capabilities.

2. Experimental Setup
In this section, we describe the setup of our experiments
which include details about the datasets generated, architec-
tures used and the reasoning behind them.

2.1. Datasets

We generate two kinds of datasets (each with 5000 exam-
ples) for our evaluation : point datasets, where each sample
is a point in Rn and image datasets with each image contain-
ing a fixed number of polygons. We use 4 point datasets in
our evaluation : Mixtures of Gaussians, Concentric Circles,
S-shape curves and Swiss rolls. The first two are 2D while
the latter two are in 3D space. This choice was made to
enable us to visualize the learned distribution. For each of
these four settings, we experimented with three variants,
each containing a different amount of noise.

To evaluate high dimensional learning, we generate image
datasets which are mixtures of polygons. We created three
datasets with each image containing: 1 square of size 4x4
(called Squares 1-4), 3 squares of size 4x4 (called Squares
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Figure 1. S-Curve Distribu-
tion

Figure 2. Swiss Roll Distribu-
tion

Figure 3. Image
from the
Squares 1-4
dataset

Figure 4. Image
from the
Squares 3-4
dataset

Figure 5. Image
from the CT2
dataset

3-4) and a mixture of two triangles and two circles (called
CT2). All the datasets contain images of size 28x28 with the
third one containing 3 channels. Additionally, for the first
two datasets, all squares are non-overlapping and have edges
which are axis-aligned. CT2, on the other hand, contains
overlapping polygons. In each dataset, the number of objects
is fixed and the only varying quantity is their position (which
varies with a Gaussian distribution). For the square datasets,
even the rotation and shape of the objects is held constant.
Hence, the only source of variation is their position. Some
examples are shown in Figures 3, 4, 5.

The main objective behind creating images with a fixed
number of objects was to test whether GANs can learn to
count the number of objects in a scene. More specifically,
since GANs have shown impressive image generation ca-
pabilities on centered image datasets(Karras et al., 2018a),
we want to measure whether that performance can transfer
to datasets with objects occuring at varying locations in the
scene. Since the only varying quantity in the square datasets
is the position, we would expect GANs with true distribu-
tion learning abilities to be able to produce images with the
exact numbers of squares at different positions in the image.

Additional details about our data generation process can be
found in the Appendix.

2.2. Architectures

We use two sets of architectures to train our models. For
point datasets, we use a Vanilla GAN with a 3 layer MLP
for both the generator and discriminator and another model
with the same architecture with Wasserstein loss (enforced

Figure 6. Original distribu-
tion of Concentric circles

Figure 7. Learned Distri-
bution after 150k steps.
Note: this distribution
gets better after more itera-
tions but we show the one
after 150k for homogene-
ity

Figure 8. Original distribu-
tion of 3 blobs

Figure 9. Learned Distri-
bution after 150k steps

via gradient penalty) (Gulrajani et al., 2017).

For image datasets, we use one model with a DCGAN-
inspired (Radford et al., 2016) architecture and another
model with the same architecture with Wasserstein loss
(enforced via gradient penalty). We do not evaluate Vanilla
GANs on our image datasets because they do not seem to
be competitive with the other models in our experiments.
Further architectural details (including choice of hyperpa-
rameters) are described in the Appendix.

2.3. Experimental Details

We used the Google Colaboratory environment (12GB RAM
Nvidia Tesla K80) for all our experiments in this paper. All
models with Wasserstein loss are trained with RMSProp
(Tieleman & Hinton, 2012) with a learning rate of 0.00005.
All others are trained with the ADAM (Kingma & Ba, 2015)
optimizer with a learning rate of 0.0002. We train models
for up to 150k training steps and stop earlier if the model
reaches convergence earlier. Increasing training steps be-
yond 150k were not found to significantly improve sample
quality. For each generator update, we update the discrimi-
nator 5 times for WGAN-GP inspired architectures. Addi-
tional details about our experiments and architectures can
be found in the Appendix.
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Figure 10. Original distri-
bution of the shape S (min-
imal noise)

Figure 11. Learned Distri-
bution after 140k steps
(minimal noise)

Figure 12. Original distri-
bution of the Swiss roll
(minimal noise)

Figure 13. Learned Distri-
bution after 150k steps
(minimal noise)

3. Results and Analysis
3.1. Point Data

On mixtures of Gaussians and concentric circles, we find
that both architectures seem to perform equally well. They
seem to approach approximate convergence as both their
discriminator’s accuracy oscillates around 50%. Since both
datasets contain disconnected components, we find that both
models are not able to model this discontinuity and as a re-
sult still produce samples which lie in between clusters of
data. This may explain the oscillatory behaviour observed.
Examples of 1000 samples from the real and fake distribu-
tions are shown in Figures 7, 9.

The inability to model discontinuity is understandable since
the latent space is continuous and the neural network can be
considered to be a continuous function approximator so the
output has to be continuous as well. This virtually guaran-
tees that some samples from the model will be necessarily
”bad”.

Next, we evaluate the S-curve and Swiss roll distributions.
Traditionally, mixtures of Gaussians have been the toy distri-
bution of choice for GAN evaluation. However, we find that
both distributions are learned fairly faithfully but increasing
noise can cause separate surfaces in the distribution to be
merged. For example, with increased noise, the S shape in
the S-curve can become an 8 or the Swiss roll may look like
a circle (samples in Appendix).

This phenomenon, in our experiments, seems to be worse
(in terms of losing shape) for Swiss rolls than S-curves. We
hypothesize this may be due to overlapping surfaces being

Figure 14. Samples after 150k steps from DCGAN (converged)

Figure 15. Samples after 150k steps from WGAN-GP

closer in the Swiss roll distribution making it more sensi-
tive to noise. This dependence of sensitivity to noise on
the underlying distribution suggests that GANs may not be
suitable to modelling certain distributions in noisy environ-
ments and alternative generative models may need to be
explored.

3.2. Image Datasets

During training, the first model (without Wasserstein loss)
seems to converge after about 74k steps while the other one
doesn’t seem to converge. Inspite of this difference, we do
not find a major difference in image quality from the two
models after 150k steps.

We find that both models fail to learn to count on the Squares
3-4 dataset. Our models can potentially produce anything
between 0 and 5 squares. Some random samples can be
seen in 14, 15.

This raises an important question about the learning capa-
bility of GANs. Is what we are seeing just poor learning or
should it be instead viewed as generalization? For example,
in natural image datasets, say faces, we might see GANs
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produce images with completely new hair placement. When
these images look ”natural” to the observer, they might see it
as generalization. However, when that image does not look
plausible, we would call it poor learning. As it stands, there
seems to be no clear demarcation between poor learning
outcomes and generalization.

Since the only source of variation in our image datasets is
location, we would like to see the GAN learn that there are
3 squares in each image and then generalize their position.
However, currently, we have no way of enforcing this con-
straint on the number or shape of objects. Quantifying this
apparent tradeoff between learning and generalization is an
interesting avenue for further work. In fact, there might not
even be tradeoff and GANs may fundamentally be unable to
learn distributions of such a nature. We leave the evaluation
of these hypotheses as future work.

We do not focus our discussion excessively on shape because
for more natural datasets, shape is more variable and is not
rigid, like in our case. For example, we know that cats have
4 legs, but, the legs may not look the same in every image. A
natural objection would be that a similar reasoning would be
applicable to the count of objects i.e. some of these legs may
be occluded in the image and, therefore, it may appear to a
GAN that a cat could have 3 legs. Thus, GANs producing
cats with less than 4 legs could be justified.

That is precisely why we have chosen non-overlapping
squares for our experiment. Since there are no occlusions,
the GAN should learn that in every image, there are sup-
posed to be exactly 3 squares. Even in real world datasets,
it may not be possible to collect a dataset which has cats
whose legs have the same shape. However, it is possible to
collect a dataset with cats having four legs in all images (no
occlusions).

Interestingly, both models seem to learn that there is only
one square in the 1-4 dataset i.e. when trained on the Squares
1-4 dataset, most samples seem to include just 1 square of
size which visually looks close to 4x4. Admittedly, this
visual test of similarity may not be enough to ascertain
whether the shape and size of the square corresponds exactly
to a 4x4 square. However, during training with images of
1 square, we observed that if we increase the size of the
square i.e. instead of using 4x4 use 16x16 (Squares 1-
16), the likelihood of having multiple squares in the image
reduces.

We also observe that all squares generated seem to be axis
aligned. Therefore, GANs seem to have no problem learning
orientation but cannot seem to enforce counting constraints.

We also investigated whether a GAN can leverage the fact
that it has learnt what a square looks like on Squares 1-4. In
this experiment, we transferred the weights from that trained
model and fine-tuned it on the Squares 3-4 dataset. We did

not observe a noticeable improvement in image quality. If
anything, image quality tends to get worse.

Samples from models trained on CT2 and additional sam-
ples from our models are included in the Appendix. We
observed that the GANs did not sufficiently reproduce cir-
cles and triangles when trained on CT2. Since CT2 contains
overlaps and multiple types of polygons, we consider this
to be a more challenging dataset to model.

4. Conclusion
In this paper, we present the phenomenon of GANs being un-
able to count. We support this hypothesis with experiments
on synthetic datasets where the count of similar objects in a
scene is kept constant while their location is varied. We find
that in their current form GANs are unable to learn seman-
tic constraints even in the absence of noise introduced by
natural image datasets. We also emphasize the fine line be-
tween generalization and good learning outcomes in GANs.
Additionally, we conduct experiments on non-image data
where we conclude that GANs tend to have difficulty learn-
ing discontinuous distributions which might necessitate the
usage of mixtures of generators. A thorough evaluation of
such an approach is left as future work.
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A. Data Generation
Here we describe the algorithms used for dataset creation.

A.1. Point Datasets

We used scikit-learn’s (Pedregosa et al., 2011)
sklearn.datasets module for dataset creation. Each
dataset has 5000 examples and consists of points in R2 or
R3 for easier visualization.

Dataset Function used Dimension
Circles make circles 2

Mix of Gaussians make blobs 2
S Curve make s curve 3

Swiss Roll make swiss roll 3

Table 1. Point Dataset summary

Each dataset has associated noise parameters corresponding
to the noise parameters in the scikit-learn API. We experi-
ment with varying noise but we find that it does not affect
learning outcomes too much.

A.2. Image Datasets

The Squares datasets consist of non overlapping squares to
test whether GANs can learn to count and to avoid introduc-
ing noise in the learning stage. To create images, we sample
3 random points in the image, which will serve as the top
left point of the square. Then, we check whether squares
drawn at these point overlap or not. If they do, then we
again sample 3 new points otherwise we draw the squares
to the image and add it to the dataset.

For the CT2 dataset, we use OpenCV’s (Bradski, 2000)
draw.ellipse() and draw.polygon() functions to draw figures
at random point in the image. Note circles and traingles can
overlap in this dataset, therefore, we consider this to be a
more challenging dataset for a GAN to model.

B. Architectural Details
The architectures used in our experiments are given in the
Tables 2, 3, 4 and 5. We chose our architectures in ac-
cordance with common guidelines in GAN architectures
(Radford et al., 2016; Gulrajani et al., 2017; Chintala, 2016).
Minor changes in the architecture (e.g changing ReLUs to
Leaky ReLUs in the generator, adding or removing a few
layers) did not seem to matter in terms of image quality in
our experiments.

The size of the latent space for the image datasets was
chosen to be 100 and for point datasets, it was chosen to be
2 for points in R2 and 3 for points in R3.

C. Additional Samples
Additional Samples from our models are shown in Figures
16, 17, 18, 19, 20, 21, 22, 23, 24.
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Figure 16. Original distri-
bution of the S Curve (ex-
tra noise)

Figure 17. Learned Distri-
bution after 150k steps (ex-
tra noise)

Figure 18. Original distri-
bution of the Swiss Roll
(extra noise)

Figure 19. Learned Distri-
bution after 150k steps (ex-
tra noise)

Figure 20. Samples from model trained on Squares 1-4

Figure 21. Samples from models with transfer from Squares 1-4 to
Squares 3-4

Figure 22. Additional samples from DCGAN

Figure 23. Additional samples from WGAN-GP

Figure 24. Samples from model trained on CT-2 after 150k iters
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Generator Discriminator
Dense Dense

Leaky ReLU Leaky ReLU
Dense Dense

Leaky ReLU Leaky ReLU
Dense Dense

Leaky ReLU Leaky ReLU
Dense Dense
Tanh Sigmoid

Table 2. Vanilla GAN Architecture for Points

Generator Discriminator
Dense Dense

Leaky ReLU Leaky ReLU
Dense Dense

Leaky ReLU Leaky ReLU
Dense Dense

Leaky ReLU Leaky ReLU
Dense Dense
Tanh -

Table 3. WGAN-GP Architecture for Points

Generator Discriminator
Dense Conv2D

Leaky ReLU Leaky ReLU
Reshape Dropout

Transposed Conv2D Conv2D
Batch Norm Batch Norm
Leaky ReLU Leaky ReLU

Transposed Conv2D Dropout
Batch Norm Conv2D
Leaky ReLU Batch Norm

Transposed Conv2D Leaky ReLU
Tanh Dropout

- Conv2D
- Batch Norm
- Leaky ReLU
- Dropout
- Sigmoid

Table 4. DCGAN Architecture for Images

Generator Critic
Dense Conv2D
ReLU Leaky ReLU

Reshape Dropout
Transposed Conv2D Conv2D

Batch Norm Batch Norm
ReLU Leaky ReLU

Transposed Conv2D Dropout
Batch Norm Conv2D
Leaky ReLU Batch Norm

Transposed Conv2D Leaky ReLU
Tanh Dropout

- Conv2D
- Batch Norm
- Leaky ReLU
- Dropout
- Dense

Table 5. WGAN-GP Architecture for Images


