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ABSTRACT

We propose a simple approach for adversarial training. The proposed approach
utilizes an adversarial interpolation scheme for generating adversarial images and
accompanying adversarial labels, which are then used in place of the original data
for model training. The proposed approach is intuitive to understand, simple to
implement and achieves state-of-the-art performance. We evaluate the proposed
approach on a number of datasets including CIFAR10, CIFAR100 and SVHN.
Extensive empirical results compared with several state-of-the-art methods against
different attacks verify the effectiveness of the proposed approach.

1 INTRODUCTION

Deep learning-based techniques have achieved outstanding performance in many tasks such as im-
age classification (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012) and video game
playing (Mnih et al., 2015). Despite of these encouraging progress, it has been shown that these
models could be easily attacked by adversarial examples (Szegedy et al., 2014; Biggio et al., 2013;
Carlini & Wagner, 2018; Lin et al., 2017). The ubiquitous of adversarial examples across many
tasks (Szegedy et al., 2014; Lin et al., 2017; Eykholt et al., 2018; Carlini & Wagner, 2018) and
the fact that they are transferable between different models (Tramèr et al., 2017; Charles et al.,
2019; Moosavi-Dezfooli et al., 2017) raise great concerns on security of such models and hinder
their actual deployment in real world applications. Researchers have been actively working on un-
derstanding the cause of adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015) and
approaches for improving model robustness against them (Madry et al., 2018; Tramèr et al., 2018;
Liao et al., 2018; Yan et al., 2018). A number of theories have been developed for explaining the ex-
istence of adversarial examples. Szegedy et al. (2014) explain that adversarial examples are possible
because the image space is densely filled with low probability adversarial pockets. Goodfellow et al.
(2015) argue that the adversarial examples are caused by the linear nature of deep networks. Tanay
& Griffin (2016) provide the perspective that adversarial examples exist because the class boundary
extends beyond the data sub-manifold and can be lying close to it in some cases. It has been further
shown in some recent work that adversarial examples can be decomposed into categories with dif-
ferent causes including off-manifold ones (Stutz et al., 2019; Jacobsen et al., 2019) and those due to
natural test error (Stutz et al., 2019; Jacobsen et al., 2019; Ford et al., 2019).

Recently, Ilyas et al. (2019) provide a perspective that adversarial vulnerability is caused by non-
robust features. The reasoning is that there are abundant of useful correlations that exist in natural
data, thus it is natural to expect the models could learn to exploit any of them if no preference is
given (c.f. Table 7). However, models relying on superficial statistics (non-robust features) can
be brittle and generalize poorly, thus suffering from adversarial attacks (Ilyas et al., 2019). The
natural idea is therefore using only robust features for learning. However robust features are not
easy to construct directly (Madaan & Hwang, 2019). In contrast, non-robust features are much
easier to construct, using the standard adversarial example generation procedure (Szegedy et al.,
2014; Goodfellow et al., 2015; Madry et al., 2018). Therefore, we can leverage non-robust features
instead for robust learning. This is typically achieved by constructing a robustified dataset where the
new (perturbed) images are constructed by adding non-robust features to the clean images, and then
performing model training using the perturbed images in place of the original ones. This procedure is
essentially the standard adversarial training approach (Goodfellow et al., 2015; Madry et al., 2018),
which has been shown to be effective for defending against adversarial attacks (Athalye et al., 2018).
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In this paper, we present a simple approach for improving model robustness under the framework
of adversarial training. We craft adversarial examples by performing a so-called adversarial inter-
polation operation (Section 3) between samples, and we expect the model should perform robustly
against adversarial interpolation-induced perturbations within a constrained neighborhood.

The contribution of this work can be summarized as follows:
• we propose an adversarial interpolation approach for generating adversarial samples, which is

simple, intuitive and effective;
• we analyze the proposed approach and its connections with previous methods;
• we leverage adversarial interpolation for adversarial training and verify its effectiveness in im-

proving model robustness compared with a number of strong baselines across several datasets.

2 PRELIMINARIES

2.1 ADVERSARIAL ATTACK AND DEFENSE

Adversarial examples have been investigated in the seminal work of Biggio et al. (2013); Szegedy
et al. (2014) and have attracted increasing attention recently (Biggio et al., 2013; Goodfellow et al.,
2015; Tramèr et al., 2018; Madry et al., 2018; Athalye et al., 2018; Biggio & Roli, 2017; Wang
et al., 2019). Szegedy et al. (2014) investigated the vulnerabilities of CNNs to adversarial examples
and proposed an L-BFGS-based approach for attack generation. Goodfellow et al. (2015) developed
a fast gradient sign method (FGSM) for generating adversarial images. After that, many types of
attacks have been developed in the past few years (Moosavi-Dezfooli et al., 2016; Carlini & Wagner,
2017; Su et al., 2017; Xiao et al., 2018; Brown et al., 2017; Brendel et al., 2018). On the defense
side, many researchers are actively working on improving model robustness against adversarial at-
tacks Meng & Chen (2017); Xie et al. (2018); Metzen et al. (2017); Liu et al. (2018); Song et al.
(2017); Liao et al. (2018); Samangouei et al. (2018); Prakash et al. (2018); Wang & Zhang (2019).
Recently, Athalye et al. (2018) pointed out a phenomenon called gradient masking and showed that
many existing defence methods did not actually improve model robustness thus giving a false sense
of robustness because of it. According to Athalye et al. (2018) , adversarial training (Goodfellow
et al., 2015; Madry et al., 2018) is one of the effective defense method against adversarial attacks. It
improves model robustness by solving a minimax problem (Goodfellow et al., 2015; Madry et al.,
2018) as minθ

[
maxx̃∈B(x,ε) L(x̃, y; θ)

]
, where the inner maximization is responsible for provid-

ing the most challenging example for the current model while the outer optimization loop improves
the model performance on these adversarial examples (Madry et al., 2018). The inner optimization
can be solved approximately by a one-step approach such as FGSM (Goodfellow et al., 2015), or a
multi-step projected gradient descent (PGD) method (Madry et al., 2018).

2.2 INCORPORATING REGULARIZATION IN MODEL TRAINING

Regularization is important for deep learning models with a large number of parameters, as there are
multiple possible solutions that perform equally well on clean data (Garipov et al., 2018; Draxler
et al., 2018; Athiwaratkun et al., 2019), the model by default has no particular preference over any of
them if no preferences are given. In the case of model robustness, we need to have a way to convey
our preference on robustness to the learning process. This can be viewed as a form of regulariza-
tion. Conventional regularization techniques include weight decay or other forms of constraints on
component function (Arjovsky et al., 2017). Data augmentation is another way to regularization
by manipulating the input. The idea is that an nuisance factor can be de-emphasized by generating
training data that incorporates variations of the factor, leading to invariance w.r.t.this factor. Follow-
ing this idea, conventional data augmentation transforms the training images using label preserving
transformations (Krizhevsky et al., 2012). Zhang et al. (2018) proposed a mixup approach which
jointly transforms images and labels. It generates training examples (both image and label) by lin-
ear interpolation between pairs of natural examples, thus introducing a linear inductive bias in the
vicinity of training samples. Similar to standard data augmentation, adversarial training incorporates
implicit regularization by perturbing the training data using non-robust features of other classes thus
reducing the sensitivity of the model w.r.t.non-robust features (c.f. Table 7). It has been shown
that adversarial training is equivalent to regularized training with a data dependent regularization
term (Ororbia et al., 2017). Since adversarial training incorporates preference to robustness against
perceptual insensitive perturbations, the models trained this way have been shown to have better
interpretability (Engstrom et al., 2019; Stutz et al., 2019).
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Figure 1: Adversarial Interpolation for adversarial image generation. It takes a clean image x to
be perturbed, and another distinct image x′, performs feature extraction using the feature extractor
fθ(·) and then measures the distance in the feature space using a distance measureD. The perturbed
image is generated by minimizing the feature space distance with respect to x′.

3 ADVERSARIAL INTERPOLATION TRAINING

We present the adversarial interpolation training method in this section. The intuition is that the
semantic meaning of the image is unchanged under mild perturbations, thus the network should be
robust against them as well. On the one hand, it is well-known that adding random perturbations
to the input is ineffective for improving model robustness. On the other hand, adversarial training
using classification loss generated perturbations suffers from label leaking (Kurakin et al., 2017).
These motivate the development of the proposed method as detailed in the sequel.

3.1 ADVERSARIAL INTERPOLATION

We first review several existing types of perturbations in the sequel and then introduce our proposed
approach. We will use x̃ to denote the perturbed version of x.
Definition 1 Random Perturbation. Given a sample x, the randomly perturbed sample x̃ is gener-
ated by sampling from the neighborhood ball B(x, ε) centered at x with radius ε as x̃ ∼ B(x, ε).
It is clear that the random perturbations are data-agnostic and isotropic in each direction. It has been
shown that this types of perturbation is equivalent to Tikhonov regularization (Bishop, 1995) and is
less effective in improving model robustness due to its data and model agnostic nature. Note that we
have omitted the pixel value range constraint to avoid notation clutter. Instead of randomly sampling,
(discriminative) adversarial perturbations are generated with the guidance of a classification loss.
Definition 2 Discriminative Perturbation. Given a sample x and its label y, we define the discrim-
inative perturbation as: x̃∗ , arg minx̃∈B(x,ε)−CE(x̃, y),
where CE(·) denotes the network taking x̃ as input and computes the cross-entropy (CE) loss be-
tween the predicted class probabilities and the input label y. Discriminative perturbation is data-
dependent and model/task-aware (i.e. white-box), representing a form of strong attacks for a given
model. Naturally, it has been used in adversarial training for online generation of training data that
is adversarial to the current model. It is known that the discriminative perturbations are highly cor-
related with the decision boundary. The high correlation between the perturbation and class label
poses the training to the danger of label leaking (Kurakin et al., 2017).
Definition 3 Adversarial Interpolation. Given two images x, x′, we define the adversarial interpo-
lation of x (towards x′) as the solution to the following optimization problem

x̃∗ , adv interp(x, x′) = arg min
x̃∈B(x,ε)

D(x̃, x′), (1)

where x′ is another instance that is different from x. In practice, x′ can be set as another instance
from the current batch, thus introducing a negligible computational overhead. D is a distance mea-
sure in a feature space. As minimization of D(x̃, x′) w.r.t.x̃ has the effect of “interpolating” x to-
wards x′, we therefore term the proposed approach for generating adversarial attacks as adversarial
interpolation. The adversarial interpolation procedure is illustrated in Figure 1. It leverages the cur-
rently learned model for feature extraction and distance computation. It then generates the adverse
examples by back-propagating the distance induced gradient (feature space difference) through the
network back to pixels. It is more effective than random perturbation as it leverages structures be-
tween data points. And it is potentially more flexible than discriminative perturbations as adversarial
interpolation is used for generating perturbations which is untied from the classification loss. For
a particular sample, when viewed collectively over time, adversarial interpolation essentially con-
structs a randomly connected graph (Hein et al., 2007) and performs interpolation along different
edge each time randomly. More on understanding of the proposed approach is in Section 3.3.
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Algorithm 1 Adversarial Interpolation Training
Input: training epochs K, learning rate α, budget ε, εy , attack iterations L, number of classes C
for k = 1 to K do

for random batch {xi, yi}ni=1 ∼dataset do
x̃i∼B(xi, ε), ỹi = yi, x′i = xn−i+1, ȳ′i = 1

C−1 (1−yn−i+1)

P(x̃i)= minzi∈S ‖zi − x̃i‖, S=B(xi, ε) ∩ [0, 255]#pixel

adversarial interpolation:
for l = 1 to L do
· x̃i ← P

(
x̃i − ε · sign

(
∇x̃i
D(x̃i, x

′
i)
))

. generating adversarial images
· ỹi ← ỹi − εy · (ỹi − ȳ′i) . generating adversarial labels

end for
adversarial training: θ ← θ−α · 1n

∑n
i=1∇θL(x̃i, ỹi; θ) . updating model parameters

end for
end for
Output: model parameter θ.

3.2 ADVERSARIAL INTERPOLATION TRAINING

We utilize adversarial interpolation for robust model training. Given a set of data, S = {(xi, yi)},
we first generate perturbed examples S̃ = {(x̃i, ỹi)} using adversarial interpolation, and then use
the generated examples for model training (Goodfellow et al., 2015; Madry et al., 2018). Formally,
we perform robust model training by solving the following problem:

θ∗ = arg min
θ

E(x,y)∼S
[
Lθ(x̃, ỹ)

]
, (2)

where the loss is the standard cross-entropy-based loss as Lθ(x, y) , CE(g ◦ f(x̃), ỹ), with f the
feature extraction network shared with the adversarial interpolation process and g denotes some
additional layers following f (e.g., FC layer followed by softmax layer). Here we overload θ to rep-
resent the union of parameters for g and f . The training samples (x̃, ỹ) are generated via adversarial
interpolation as follows:

x̃∗ = arg min
x̃∈B(x,ε)

D(x̃, x′), (3)

ỹ∗ = arg max
ỹ∈B(y,εy)

Dy(ỹ, y′) (4)

which perturbs image x and y towards different (or reverse) directions within a permissible neigh-
borhood. D andDy are proper distance measures for image and label respectively. By perturbing the
image and label in directions reverse to each other, the new image-label pair (x̃, ỹ) will potentially
induce a higher classification loss when evaluated together and represent a strong adversarial sample
to the model (Wang & Zhang, 2019). Here εy denotes the maximum of the allowed perturbation for
the label and it will be properly set to ensure the entry corresponding to the ground-truth label will
remain to be the largest one after perturbation. All the samples in B(y, εy) are assumed to have
non-negative elements and the entries of each sample sum to one. We reformulate Eqn.(4) using the
following approximate instantiation

ỹ∗ = arg min
ỹ∈B(y,εy)

‖ỹ − ȳ′‖22 (5)

where Euclidean distance is used and ȳ′ = 1−y′
C−1 with y′ the label of x′, with C the total number of

classes. Note that labels are in vector form thus y and y′ are one-hot vectors. More interpretations
on Eqn.(5) are provided in Section 3.3. Based on Eqn.(3) and Eqn.(5), we can derive the updates as
follows. For two points (x, y) and (x′, y′), we generate the perturbed training sample as follows

x̃ = x− ε · ∂D(x, x′)
∂x

(6)

ỹ = y − εy ·
∂‖y − ȳ′‖22

∂y
= (1− εy)y + εy ȳ

′. (7)

Eqn.(6) can be interpreted as interpolating point x towards x′ for the data, while interpolating the la-
bel y away from y′. The training procedure is summarized in Algorithm 1 and the implementation is
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in Section A.1. In practice,D(x, x′) is implemented using deepnet-based feature extractor combined
with a standard distance measure such as Euclidean (or other metrics such as Cosine distance),

Dθ(x, x′) = ‖fθ(x)− fθ(x′)‖22. (8)

We have usedD as a shorthand forDθ in the above but without explicitly specifying the dependency
on θ. Minimizing this term makes the feature thus the perturbed input image incorporate some fea-
tures from the other sample, while retaining visually similar to the original image, thus acting as an
effective form of adversarial perturbation. More importantly, we perturb the image towards a target
instance, while perturb the label against this instance (to all other classes but this target one). When
the target instance is of different class with the current instance, the label interpolation operation
essentially reinforces that the perturbed image is not from the target class (c.f. Table 7), which helps
to further break the correlation between δ and y′, beyond decreasing the correlation between δ and
y. When the target instance is of the same class with the current instance, the label interpolation
operation is equivalent to conventional label smoothing (proof is deferred to Appendix A.3).

3.3 INTERPRETING AND UNDERSTANDING OF THE PROPOSED APPROACH

From the perspective of robust and non-robust features, the key to robust model training is to ef-
fectively prevent the classifier from learning useful but non-robust features (Ilyas et al., 2019). In
order to achieve this, we need a way to convey this preference to the learning algorithm. Currently,
one of the most straightforward way to communicate this is by manipulating the data. In fact, by
manipulate the data in different ways, we can convey different preferences thus receiving different
results from the machine learning algorithm (c.f. Table 7). As our major objective is to obtain a
robust model, this can be achieved by breaking the correlation between the adversarial perturbation
δ and label. Conventionally, it is achieved by constructing δ∼∆, where ∆ is the set of non-robust
features of all the other classes. In this way, by training the model using the original label y and
perturbation δ from all other classes, the correlation between δ and y is reduced. Conversely, if we
construct δ as from one class (y′) and use y′ as the label for training, then we essentially imply that
δ represents useful feature for the prediction of y′. Therefore the model will learn to use these non-
robust features for prediction, which has been exploited by Ilyas et al. (2019) recently. The proposed
approach can be interpreted from two complementary perspectives. Firstly, we also de-emphasize δ
as a family by constructing it from different classes while retaining the original target specified by y,
thus reducing the correlation between δ and y. Secondly, we further de-emphasize each individual
δ by reinforcing that δ is not useful features for y′, as represented by (1−y′), (“not y′”), thus further
breaking the correlations between δ and y′. While we present one concrete instantiation in this work,
the reasoning is general and can be implemented with other configurations as well.

3.4 CONNECTIONS WITH PREVIOUS WORKS

A feature-scattering approach for generating adversarial perturbations for training has been proposed
recently (Zhang & Wang, 2019), advocating the usage of unsupervised adversarial generation to
avoid label leaking. Intuitively, it generates perturbations by moving away from a set of similar
samples, discovered through an additional matching process. Differently, adversarial-interpolation
generates adversarial examples by moving towards a distinct sample, which does not require the
expensive matching step and is complementary to feature-scattering (Zhang & Wang, 2019).
There is also an interesting connection with Mixup (Zhang et al., 2018). Specifically, in the case of
fθ(x)=x with Euclidean distance, adversarial interpolation for images (Eqn.(6)) is equivalent to the
operation applied to image in Mixup (Zhang et al., 2018) (proof deferred to Section A.4). Therefore
our approach can be interpreted as feature space induced adverse image generation instead of linearly
mixing the raw pixels directly. Manifold-mixup (Verma et al., 2019) has been proposed recently by
generalizing the mixup operation from input to latent features. While it also has an interpolation
step in feature space, its motivation is different from ours and it is used differently. Manifold-mixup
performs feature interpolation to generate the mixed feature, which is then passed to the subsequent
layers till the cross-entropy loss. The cross-entropy loss-induced gradients backpropagate through
the interpolation for model training. Manifold-mixup plays the role of a regularizer in order to ob-
tain neural networks with smoother decision boundaries at multiple levels of representation, which
helps but does not significantly improve robustness against multi-step PGD attacks (Verma et al.,
2019) simiar to the original Mixup (Zhang et al., 2018). The authors of Verma et al. (2019) have
further integrated Manifold-mixup with adversarial training to mitigate this issue in another recent
work (Lamb et al., 2019). Different from these works, the proposed method uses features interpo-
lation for inducing input perturbation, which is done by backpropogating the gradient from feature

5



Under review as a conference paper at ICLR 2020

space distance Eqn.(8) to the input (Figure 1). The perturbed inputs are then used as new inputs in
place of the original ones for model training. Furthermore, empirically different from Mixup (Zhang
et al., 2018) and Manifold-mixup (Verma et al., 2019), the proposed adversarial image interpolation
scheme clearly helps to improve model robustness as shown in Table 5. Another crucial difference
with Mixup (Zhang et al., 2018) and Manifold-mixup (Verma et al., 2019) is that the label in the pro-
posed approach is interpolated in a direction “reverse” to that of the image interpolation to further
reinforce robustness. This difference can be explained by the fact that mixup focuses more on the
on-manifold generalization while adversarial robustness further extends the focus to off-manifold
robustness (Stutz et al., 2019). Anonymous (2020) presents an interesting interpretation of Mixup
as belonging to a class highly analogous to adversarial training. Without evaluation of adversarial
robustness provided in the paper, Anonymous (2020) is mainly on interpreting and understanding
of Mixup, which is different from our goal of improving model robustness. Christopher Beckham
(2019) generalizes Manifold-mixup (Verma et al., 2019) for image generation, where feature inter-
polation is used to train a model that is able to combine the attributes of multiple inputs in a resyn-
thesised image. The purpose of feature interpolation in (Christopher Beckham, 2019) is to introduce
human sensible visual attributes in the generated image, and the image is generated by forwarding
the mixed feature through a decoder in the auto-encoding framework. Differently, the purpose of
feature interpolation in the proposed method is to introduce human imperceptible, non-robust fea-
tures in the generated image, which is generated by back-propagating the feature difference through
the feature extractor (c.f. Figure 1). A number of recent works that exploit interpolation from a
different angle have also been presented by Wang et al. (2018b;a); Wang & Osher (2019), with the
interpolation operates at the output layer and no adversarial label interpolation.
The recent Bilateral method (Wang & Zhang, 2019) also jointly perturbs image and label, but uses
the classification loss directly. Our approach is very different in that the classification loss is not used
in generating perturbed image or label. Instead, it uses an adversarial interpolation scheme which
is not directly connected with the classification loss thus mitigating the problem of label leaking or
data manifold tilting and shrinking (Tanay & Griffin, 2016; Zhang & Wang, 2019).
We have used an unsupervised approach to generate adversarial perturbations. As another form of
utilizing unsupervised learning, Uesato et al. (2019) improves adversarial generalization by using
additional unlabeled data, which is orthogonal to our work and could potentially be used together.

4 EXPERIMENTS

The PyTorch implementation of the proposed Adv-Interp approach is provided in Section A.1.
We conduct extensive experiments to verify the effectiveness of the proposed approach. We compare
the performance of the proposed method with a number of baseline methods:

• Natural: the model trained with standard approach using natural images (Krizhevsky, 2009);
• Madry: the PGD-based approach from Madry et al. (2018), which is one of the most effective and

representative defense method;
• Bilateral: a method that performs adversarial training with both image and label adversarial

perturbations generated using the classification loss (Wang & Zhang, 2019);
• Feature-Scatter: a recent method which generates adversarial perturbations using an unsu-

pervised feature-scattering scheme for attack generation (Zhang & Wang, 2019).

Following (Madry et al., 2018), the full network (image to logits) is implemented as the Wide ResNet
(WRN-28-10) (Zagoruyko & Komodakis, 2016) and fθ(·) (feature extractor) is implemented by
excluding the last layer for the logits. D is implemented as the Cosine distance, which is free-from
additional tuning parameter. For training, the initial learning rate α is 0.1 for CIFAR and 0.01 for
SVHN. We set the number of epochs for Natural and Madry methods as 100 with transition epochs
set as {60, 90} following Madry et al. (2018); Wang & Zhang (2019). The training scheduling of
200 epochs with the same transition epochs is used similar to Wang & Zhang (2019). Standard
data augmentation is used during training, i.e., random crops with 4 pixels of padding and random
horizontal flips (Krizhevsky, 2009). We use a perturbation budget of ε=8 (Madry et al., 2018), εy=
0.5, and L=1 in training. The trained models are evaluated by measuring the accuracy performance
against different adversarial attacks. For white-box attacks, we use:
• FGSM: the Fast Gradient Sign Method (Goodfellow et al., 2015), which is a one-step gradient-

based approach for generating adversarial attacks;
• PGD: Projected Gradient Descent Method (Madry et al., 2018), which is a multi-step gradient-

based approach for generating adversarial attacks (PGDT denotes PGD attack with T iterations);
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Models Clean Performance under White-box Attack (ε = 8) Worst
FGSM PGD20 PGD100 CW20 CW100

Natural 95.6 37.0 0.0 0.0 0.0 0.0 0.0
Madry 86.7 54.9 45.0 44.5 45.7 45.3 44.5

Bilateral 91.2 70.7 57.5 55.2 56.2 53.8 53.8
Feature-Scatter 90.0 78.4 70.5 68.6 62.4 60.6 60.6

Adv-Interp 90.3 78.0 73.5 73.0 69.7 68.7 68.7

Table 1: CIFAR10 results. Comparison of performance (classification accuracy) for Natural,
Madry (Madry et al., 2018), Bilateral (Wang & Zhang, 2019), Feature-Scatter (Zhang &
Wang, 2019) and the proposed Adv-Interp method under different attacks.

Models Performance under increasing ε (8→20) with PGD Performance under increasing ε (8→20) with CW
8 10 12 14 16 18 20 8 10 12 14 16 18 20

Natural 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Madry 45.0 34.9 27.0 20.8 16.8 13.1 10.1 45.7 35.6 27.6 21.4 16.9 12.9 9.9

Adv-Interp 73.5 72.9 71.9 71.3 70.2 68.6 67.4 69.7 68.2 66.6 65.2 63.8 62.4 60.5

Table 2: Performance against stronger white-box attacks with increasing attack budgets. The
models are trained with the attack budget ε=8, and are evaluated against attacks with larger budgets.

• CW: Carlini-Wagner loss based attack (Carlini & Wagner, 2017), which is also a multi-step
gradient-based approach for generating adversarial attacks. It is implemented using the CW-
loss (Carlini & Wagner, 2017) within the PGD framework following Madry et al. (2018).

For black-box attacks, we use both gradient-based and gradient-free ones as detailed in Section 4.4.

4.1 EVALUATION AGAINST WHITE-BOX ATTACKS ON CIFAR10

We conduct experiments on CIFAR10 (Krizhevsky, 2009) in this section. CIFAR10 is a dataset with
10 classes, 5K training images per class and 10K test images. It has been widely use in adversarial
training literature (Madry et al., 2018; Wang & Zhang, 2019).
Evaluation under Standard Setting. We report the accuracy on the original test images (Clean)
as well as under standard adversarial settings (Madry et al., 2018; Carlini & Wagner, 2017; Carlini
et al., 2019) and the results are summarized in Table 1. From Table 1, we have several observations:

• it is observed that model trained with natural images (Natural) fails drastically under different
white-box attacks. Madry method improves the model robustness significantly over the Natural
model and achieves about 45.0% accuracy under the standard PGD20 attack. The Bilateral
approach outperforms Madry and achieves a performance of 57.5% under PGD20 attack. The
recent Feature-Scatter method further boost the performance to 70.5% under PGD20 attack.
The proposed approach achieves 73.5% accuracy under the standard 20 steps PGD attack, outper-
forming all the compared methods;

• it is also noted that while the Feature-Scatter method achieves competitive performance
under PGD20 attack, its performance has a noticeable drop when the strength of the attack is
increased (e.g. PGD20→PGD100). The proposed Adv-Interp approach, on the other hand,
maintains its performance when the strength of the attack is increased (PGD20→PGD100) and
outperforms Feature-Scatter with a even large gap under PGD100 attack;

• it is interesting to observe that under the CW metric, the performances of Madry and Bilateral
are similar to their respective performances under PGD attack. For Feature-Scatter, there is
a large drop for the performance under CW attack compared with that under PGD attack. The
proposed Adv-Interp approach, on the other hand, has a smaller performance gap between PGD
and CW metric and outperforms Feature-Scatter and all other methods with a large margin;

• in terms of the worst case performance among all evaluation criteria, the proposed Adv-Interp
method improves over Madry by 24.2%, Bilateral by 14.9% and Feature-Scatter by 8.1%.

Models Performance under increasing T (20→1000) with PGD Performance under increasing T (20→1000) with CW
20 50 100 200 300 500 1000 20 50 100 200 300 500 1000

Natural 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Madry 45.0 44.6 44.5 44.5 44.5 44.5 44.4 45.7 45.7 45.4 45.3 45.3 45.3 45.2

Adv-Interp 73.5 73.0 73.0 73.0 72.9 72.8 72.8 69.7 69.0 68.7 68.4 68.3 68.3 68.3

Table 3: Performance against stronger white-box attacks with increasing attack iterations. The
models are trained with the attack budget ε=8.
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Models Clean Performance under White-box Attack Worst
FGSM PGD20 PGD100 CW20 CW100

Natural 78.6 9.7 0.0 0.0 0.0 0.0 0.0
Madry 59.9 28.5 22.6 22.2 23.2 23.1 22.2

Bilateral 68.2 60.8 26.7 25.3 – 22.1 22.1
Feature-Scatter 73.9 61.0 47.2 46.2 34.6 30.6 30.6

Adv-Interp 73.6 58.3 41.0 40.2 32.4 31.2 31.2

Models Clean Performance under White-box Attack Worst
FGSM PGD20 PGD100 CW20 CW100

Natural 96.6 36.0 0.3 0.2 0.3 0.0 0.0
Madry 93.9 68.4 47.9 46.0 48.7 47.5 46.0

Bilateral 94.1 69.8 53.9 50.3 – 48.9 48.9
Feature-Scatter 96.2 83.5 62.9 52.0 61.3 50.8 50.8

Adv-Interp 94.1 75.6 65.8 64.0 63.4 60.4 60.4

Table 4: More evaluation results. Performance comparisons on (a) CIFAR100 and (b) SVHN.

Models Clean Performance under White-box Attack Worst
FGSM PGD20 PGD100 CW20 CW100

image-org 95.7 62.4 11.3 2.3 16.7 8.7 2.3
image-mixup 95.4 79.9 32.4 19.4 31.8 23.1 19.4
image-cls 90.3 71.2 60.0 57.7 56.3 54.1 54.1
Adv-Interp 90.3 78.0 73.5 73.0 69.7 68.7 68.7

Models Clean Performance under White-box Attack Worst
FGSM PGD20 PGD100 CW20 CW100

label-org 91.6 57.3 38.1 36.5 39.3 38.0 36.5
label-mixup 93.3 65.5 19.4 13.4 18.8 14.1 13.4
label-smooth 91.1 77.0 68.4 66.2 62.9 61.3 61.3
Adv-Interp 90.3 78.0 73.5 73.0 69.7 68.7 68.7

Table 5: Ablation studies on different perturbation schemes for (a) image and (b) label.

Evaluation against Stronger White-box Attacks. All the robust models are trained under the stan-
dard setting with a maximum attack budget ε = 8. While it is standard to restrict the maximum
budget at test-time to be ε= 8 as well, it is also illuminating to conduct evaluations beyond it for
a comprehensive understanding of the model robustness. We therefore evaluate model robustness
against PGD20 and CW20 attacks with increasing attack budgets and the results are summarized
in Table 2. Unsurprisingly, the performance of Natural model remains at 0. Madry improves
the model robustness significantly over Natural across a wide range of attack budgets beyond 8,
demonstrating the effectiveness of the standard adversarial training on improving model robustness.
The proposed Adv-Interp approach further improves the performance over Madry by a large mar-
gin for all the evaluated attack budgets. It is interesting to note that Adv-Interp maintains a high
level of robustness even beyond the regime it is trained on. Note that if the attack budget is further
increased to ε=255, the performance of all methods will be eventually approaching 0.
We further conduct another set of experiments towards evaluation against stronger attacks, by in-
creasing the number of attack iterations with a fixed attack budget of 8. The results are summarized
in Table 3. As can be observed from Table 3, Madry method performs stable when the number of
attack iterations is increased. The proposed Adv-Interp method can also maintain a fairly stable
performance across number of attack iterations is increased. It is interesting to note that the perfor-
mance of Adv-Interp under PGD1000 still outperforms the performance of all other approaches
under PGD20 by a large margin (c.f. Table 1). We will use a PGD/CW attackers with ε=8 and attack
step 20 and 100 in the sequel as the standard setting for evaluating model robustness.

4.2 WHITE-BOX ATTACK EVALUATION ON MORE DATASETS

CIFAR100. We also experiment with CIFAR100 dataset, with 100 classes, 50K training and 10K
test images (Krizhevsky, 2009). This data set is more challenging as the number of training images
per class is much smaller (Zhang & Wang, 2019). We set training epoch as 300 and εy=0.9. As
shown by the results in Table 4(a), the proposed approach outperforms Madry and Bilateral by
a large margin under both PGD and CW attacks. Furthermore, it achieves performance on-par with
Feature-Scatter under the strongest attack (CW100) on this challenging dataset.
SVHN. We further report results on the SVHN dataset (Netzer et al., 2011), which is a 10-way house
number classification dataset, with 73257 training images and 26032 test images. The additional
training images are not used in experiment. The results are summarized in Table 4(b). Experimental
results show that the proposed method outperforms other baseline methods with a clear margin under
both PGD and CW attacks. Notably, it outperforms Feature-Scatter by about 10% under the
worst case metric, further demonstrating the effectiveness of the proposed approach.

4.3 ABLATION STUDIES: THE IMPACTS OF ADVERSARIAL INTERPOLATION

We conduct a number of ablation studies to investigate the impacts of the components in the ad-
versarial interpolation scheme. We replace a single component while keeping all others the same.
Impacts of Adversarial Image Interpolation. We investigate the impacts of image adversar-
ial interpolation by comparing with the following: i) image-org: use the original image for
training; ii) image-mixup: use the mixup operation for generating perturbed images (Eqn.(19));
iii) image-cls: use classification loss for generating perturbed image; The results are presented in
Table 5(a). It is observed that there is a significant performance drop when removing image adver-
sarial interpolation (image-org). image-mixup performs better than image-org with improved
robustness. image-cls is more effective due to the usage of classification loss in generating adver-
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Attack Gradient Performance under Black-box Attack
Generation Models PGD20 PGD100 CW20 CW100

Natural 89.3 89.1 89.4 89.2
Adv-Interp’ 82.9 82.5 81.8 82.0

Gradient-Free Performance under
Attack Methods Black-box Attack

SPSA 89.2
Local-Search 90.1

Table 6: Black-box attack evaluations. Performance of the model trained with the Adv-Interp
method under (a) gradient-based and (b) gradient-free black-box attacks.

sarial images. The proposed method, which uses adversarial interpolation for generating perturbed
images, achieves the best performance, implying the importance of adversarial image interpolation.
Impacts of Adversarial Label Interpolation. Similarly, we replace the adversarial label inter-
polation part with different approaches: i) label-org: the original label is used for training;
ii) label-mixup: a mixup operation is applied to the label (Eqn.(20)); iii) label-smooth: la-
bel smoothing is applied to the label (Eqn.(16)); The results are summarized in Table 5(b). It is
observed that, without adversarial interpolation for label (label-org), the performance drops sig-
nificantly. label-mixup improves performance under weak attacks (FGSM), but the performance
under stronger attacks is decreased, possibility due to its inability in de-emphasizing the correla-
tions between the perturbation and y′. label-smooth achieves a much better performance than
label-org and label-mixup. The Adv-Interp method further boosts the performance over
label-smooth, demonstrating the importance and effectiveness of adversarial label interpolation.
4.4 PERFORMANCE UNDER BLACK-BOX ATTACKS

To further verify that the improvement is due to inherent improvement in model robustness instead
of a degenerate solution, we evaluate the robustness of the model trained with the proposed approach
w.r.t.black-box attacks following previous evaluation setup (Tramèr et al., 2018; Uesato et al., 2018).
Gradient-based Black-box Attack. We first use gradient-based approach for generating the attacks,
but using models that are different from the one to be evaluated. Specifically, we use the Natural
model and Adv-Interp’, which is another model trained with the proposed method in a different
training session. The results are summarized in Table 6 (a). It is observed that the model trained
with the proposed approach is robust against different types of gradient-based black-box attacks.
Gradient-free Black-box Attack. We further conducted evaluation using two gradient-free black-
box attacks. SPSA is a technique developed for high-dimensional optimization problem (Spall, 1992)
and is used in Uesato et al. (2018) for gradient-free attack-based evaluations. Local-Search is a
local search-based black-box attack method (Narodytska & Kasiviswanathan, 2017). The evaluation
results of the proposed model against gradient-free attacks are summarized in Table 6 (b). All these
results together with the white-box attack results in Table 1 verify that the improvements are indeed
due to the improved model robustness, not because of gradient-masking caused by a degenerate
solution (Tramèr et al., 2018).

5 CONCLUSION AND FUTURE WORK

An adversarial interpolation training method is presented in this paper. This approach is intuitive to
understand and simple to implement, yet achieving state-of-the-art performance. Extensive exper-
iments on several standard datasets have been done to evaluate and understand the performance of
the proposed method. Empirical results demonstrate that the proposed approach compares favorably
with existing methods in the literature. There are some limitations of the proposed approach due
to the usage of an unsupervised surrogate function for generating image perturbations. While this
offers the potential of mitigating some issues of the discriminative perturnation, the perturbations
generated this way are not necessarily the most effective ones due to potential mis-alignment with
the downstream task. Also, as there is no explicit force for further encouraging the clustering of
features and the increasing of the separation margins between them, the feature points are typically
more scattered (c.f. Figure 3), offering more opportunity to feature space attacks. Nevertheless,
the fact that such a simple approach can achieve encouraging performance suggests that this is a
valuable direction to explore further and the observation that it behaves differently with existing
methods against different attacks suggests the potential to combine their complementary strength
for further improvements (Pang et al., 2019). The proposed method is generally applicable can
potentially be extended to applications beyond image classification. Furthermore, as the proposed
adversarial interpolation-based attack generation does not require label information, it would be in-
teresting to extend this approach to other types of learning tasks such as unsupervised learning and
reinforcement learning. We leave the exploration of these interesting directions as future work.
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A APPENDIX

A.1 ADVERSARIAL INTERPOLATION TRAINING CODE

Here we provide the code snippet for one epoch of adversarial interpolation training in PyTorch:

1 for x, y in data_loader:
2 x_tilde, y_tilde = adv_interp(x, y, net, num_classes)
3 logits_tilde = net(x_tilde, mode="logits")
4 loss = soft_ce_loss(logits_tilde, y_tilde)
5 optimizer.zero_grad()
6 loss.backward()
7 optimizer.step()
8
9 def adv_interp(x, y, net, num_classes,

10 epsilon=8, epsilon_y=0.5, v_min=0, v_max=255):
11 # x: image batch with shape [batch_size, c, h, w]
12 # y: one-hot label batch with shape [batch_size, num_classes]

13
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13 inv_index = torch.arange(x.size(0)-1, -1, -1).long()
14 x_prime = x[inv_index, :, :, :].detach()
15 y_prime = y[inv_index, :]
16 x_init = x.detach()+torch.zeros_like(x).uniform_(-epsilon, epsilon)
17 x_init.requires_grad_()
18 _net = copy.deepcopy(net)
19 _net.eval()
20 loss_adv = cos_dist(_net(x_init, mode="feature"),
21 _net(x_prime, mode="feature"))
22 _net.zero_grad()
23 loss_adv.backward()
24 x_tilde = x_init.data - epsilon * torch.sign(x_init.grad.data)
25 x_tilde = torch.min(torch.max(x_tilde, x - epsilon), x + epsilon)
26 x_tilde = torch.clamp(x_tilde, v_min, v_max)
27 y_bar_prime = (1 - y_prime) / (num_classes - 1)
28 y_tilde = (1 - epsilon_y) * y + epsilon_y * y_bar_prime
29 return x_tilde.detach(), y_tilde.detach()

A.2 DERIVATION OF THE EQUIVALENT LOSS FOR ADVERSARIAL LABEL INTERPOLATION

Our label interpolation procedure is implemented as

ỹ∗ = arg min
ỹ∈B(y,εy)

‖ỹ − ȳ′‖22, (9)

which leads to the following update equation for label

ỹ = y − εy
∂‖y − ȳ′‖22

∂y
= (1− εy)y + εy ȳ

′ (10)

where the label target ȳ′ is constructed as ȳ′ = 1−y′
C−1 with C the total number of classes. Here we

show that this can be derived from a complementary perspective as follows.

Given a training sample (x, y), the original way for model training is as follows:

min
θ

CE(x, y) = min
θ

∑
i

yihθ(x)i, (11)

where z = h(x) = g ◦ f(x).

By adding a perturbation δ which fools the predictor towards label y′, we have x̃ = x + δ, which
semantically still belongs to the original class. Therefore, we can use the following formulation to
dis-emphasize δ

min
θ

CE(x̃, y) = min
θ

∑
i

yihθ(x̃)i. (12)

Secondly, while the perturbed sample x̃ fools the predictor towards label y′, x̃ is not a valid sample
of class y′, which is represented as

min
θ

CE(x̃, ȳ′) = min
θ

∑
i

ȳihθ(x̃)i. (13)

By combining Eqn.(12) with Eqn.(14), we have

min
θ

(1− εy)CE(x̃, y) + εyCE(x̃, ȳ′) = min
θ

CE(x̃, (1− εy)y + εy ȳ
′), (14)

which leads to the same update equation for label as in Eqn.(10).

A.3 CONNECTION OF ADVERSARIAL LABEL INTERPOLATION WITH LABEL SMOOTHING

Here we provide the proof that when the target instance is of the same class with the current instance,
i.e., y = y′, the label interpolation operation is equivalent to conventional label smoothing.
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Recall that for adversarial interpolation of label, we have

ỹ = (1− εy)y + εy ȳ
′, (15)

where ȳ′ = 1−y′
C−1 . C is the number of classes. In the case that y′ = y, we have

ỹ = (1− εy)y + εy ȳ
′

= (1− εy)y +
εy

C − 1
(1− y′)

= (1− C

C − 1
εy)y +

εy
C − 1

,

(16)

which is equivalent to label-smoothing with the strength of C
C−1εy (Szegedy et al., 2016).

A.4 CONNECTION OF ADVERSARIAL IMAGE INTERPOLATION WITH MIXUP

There is a connection between the proposed method and mixup (Zhang et al., 2018) as mentioned
in the main paper. Specifically, in the case of fθ(x)=x with Euclidean distance, the adversarial
interpolation for images (Eqn.(6)) is equivalent to mixup (Zhang et al., 2018). Concretely, for

D(x, x′) = ‖x− x′‖22 (17)

we have its gradient as
∂D
∂x

= x− x′. (18)

Plugging it into adversarial interpolation update Eqn.(6), we have

x̃ = x− ε(x− x′) = (1− ε)x+ εx′. (19)

This shows that for image manipulation, when the proposed approach is performed at pixel level we
recover mixup (Zhang et al., 2018). In this case, the new image x̃ is obtained as a linear combination
of the data points x and x′ in the original data space, which are pixels for images. This formally
shows that the image manipulation in mixup can be interpreted as one gradient step for minimizing
the pixel value distance between two samples. As for labels, mixup (Zhang et al., 2018) shares a
similar update form as Eqn.(7) but with ȳ′ = y′, i.e.

ỹ = (1− εy)y + εyy
′. (20)

A.5 CATEGORIZATION OF DIFFERENT TRAINING METHODS

Here we provide a categorization of different training methods as in Table 7. By manipulating
image and label in different ways, we can convey different messages to the learning algorithm and
obtain the corresponding results. The proposed approach can be intuitively understood as leveraging
two complementary aspects for improving model robustness, i.e., by reducing the the correlations
between δ and y as well as the correlations between δ and y′.

Methods Training sample Message Resultimage x̃ label ỹ
standard training

x y
no preference learning non-robust model

(Krizhevsky et al., 2012) over different features with high probability
adversarial training

x+ δ y
prefer robust features by reducing learning robust model

(Goodfellow et al., 2015) the correlations between δ-y
non-robust fea. learning

x+ δ y′
prefer non-robust features by leveraging learning non-robust model

(Ilyas et al., 2019) the correlations between δ-y′

this work x+ δ (1−εy)y + ε′y(1−y′) prefer robust features by reducing learning robust modelthe correlations between δ-y and δ-y′

Table 7: Categorization and analysis of different model training methods. x denotes the original
image and y denotes the original label. δ is the perturbation added to the image x, constructed by
altering the prediction towards y′. ε′y = εy/(C − 1) where C is the total number of classes. Note
that different approaches can use different methods for generating δ.
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A.6 LABEL ADV-INTERPOLATION PARAMETER εy Clean Performance under White-box Attack (ε = 8)
FGSM PGD20 PGD100 CW20 CW100

0 91.6 57.3 38.1 36.5 39.3 38.0
0.1 90.9 73.3 57.3 52.9 57.2 54.2
0.2 90.5 74.9 61.6 58.5 63.4 61.5
0.3 90.6 78.2 73.5 72.6 68.7 68.0
0.4 90.8 77.8 73.7 73.0 67.7 66.6
0.5 90.3 78.0 73.5 73.0 69.7 68.7
0.6 90.5 74.9 61.6 58.4 63.5 61.5
0.7 90.2 73.5 59.8 48.7 59.2 50.8

We investigate the impacts of the adversarial label in-
terpolation parameter εy and the results are summa-
rized in the table on the right. It is observed from the
results that the proposed approach performs well for a
range of values of εy .

A.7 INVESTIGATION OF THE ADVERSARIAL LOSSES

Following Madry et al. (2018), we investigate and visualize the variations of the losses caused by
the adversary (adversarial losses). We run PGD adversary with random starts for 10 times, against
Natural model as well as the proposed Adv-Interp model. The results are presented in Figure 2.
It can be observed that the loss achieved with PGD adversary against our model increases in a fairly
consistent way and plateaus rapidly for 10 different runs with random starts, with relatively smaller
variance and final loss value, compared with those of Natural model. These observations are
consistent with properties of robust models observed in Madry et al. (2018), further verifying the
inherent robustness improvement of the proposed model.
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Figure 2: Adversarial loss curves of different models on different images under PGD attack with
increasing iterations (1→100). Each column corresponds to the loss curves generated using the same
input image on the Natural model (top) and the Adv-Interp model (bottom).

A.8 FEATURE DISTRIBUTION VISUALIZATION

We visualize the distribution of features extracted using Natural and Adv-Interp models with
the t-SNE visualization technique and the results are shown in Figure 3. Specifically, we show
the feature distributions for Clean image as well as perturbed images generated using PGD and
adversarial interpolation. It is observed that the Natural model changes drastically in the presence
of attacks. The proposed Adv-Interp model, on the other hand, can better preserve the feature
distribution against adversarial attacks.

A.9 ADVERSARIAL INTERPOLATION IMAGE VISUALIZATION

We provide the visualization of original natural images and the perturbed images generated by ad-
versarial interpolation using the proposed model in Figure A.9. Here we conduct the visualization
with different number of attack steps L = 1, 3, · · · . Note that in model training, we have used L=1.

A.10 MORE RESULTS AND COMPARISONS

We have discussed the connection of the proposed approach with a number of related recent works
in Section 3.4. Here we provide more comparison with them in Table 8. Specifically, we compared
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Figure 3: Feature distribution visualization of Natural and Adv-Interp models on (top) clean
images, (middle) PGD attack perturbed images, and (bottom) adversarial interpolation perturbed
images. It is observed that the distribution of features extracted using the Natural model changes
drastically in the presence of attacks. On the other hand, the Adv-Interp model can better preserve
the feature distribution against attacks.

with Mixup (Zhang et al., 2018), Manifold-mixup (Verma et al., 2019) as well as their adversarial
extensions IAT-Mixup and IAT-Manifold-mixup (Lamb et al., 2019), and UAT (Uesato et al.,
2019), which is an adversarial training method augmented with an unsupervised loss computed on
additional unlabeled data. The results in Table 8 for UAT is obtained using 20k additional images
per class for training (Uesato et al., 2019).

Attack Methods Models
Mixup Manifold-mixup IAT-Mixup IAT-Manifold-mixup UAT Adv-Interp

Natural 96.8 96.9 93.6 93.5 85.9 90.3
FGSM 67.4 61.6 66.2 64.8 - 78.0
PGD20 0.7 1.7 50.1 44.8 62.2 73.5

Table 8: More results and comparisons with several recent methods on CIFAR10.

A.11 EVALUATIONS AGAINST ADAPTIVE ATTACKS

Here we provide more evaluations against adaptive attacks following reviewer’s suggestions as well
as Carlini et al. (2019). We include the following aspects of “adaptiveness” in our evaluations:
1) we assume the full knowledge of the model as well as other necessary information and perfrom
evaluations with multiple runs; 2) we include feature-based attack, which has the full knowledge of
the model as well as the defense method. Specifically, we use the following attacks for evaluation:

• PGD-min: we run the evaluation agasint PGD20 attack 10 times with different random starts for
the same test sample and record the worst performance for each sample; the average performance
over the whole test set is reported as the final result.
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Figure 4: Visualization of original natural images and the perturbed images generated by ad-
versarial interpolation with different number of attack steps (L) for the perturbation budget of ε=8.

• CW-min: we run the evaluation agasint CW20 attack 10 times with different random starts for
the same test sample and record the worst performance for each sample;
• Feature-min attack: we run feature attack 10 times by using different random starts, different

target images and 20 attack steps, and record the worst performance for each sample.
We have also provided the results on original clean images for reference. We conducted evaluations
on Natural, Madry, and Adv-Interp. Adv-Interp* denotes the model with exactly the same
trained parameters as Adv-Interp, but only add a random perturbation to the input.1 The results
are shown in Table 9. We have the following observations from the results. The Adv-Interp
perorms well agasint PGD-min and CW-min attacks with multiple random starts, suggesting its
robustness against these attacks. It performs less favorably against Madry to Feature attack, but
the gap is further bridged by Adv-Interp*. More specifically, Adv-Interp* still achieves higher
performance against PGD-min and CW-min attacks, and performs comparably to Madry on Feature-
min attack. Essentially, the random perturbation does not impact the effectiveness of PGD-min and
CW-min attacks (as expected), while it shows more impacts on Feature-min attack. These results
imply that Feature attack is a less generic type of attack and generally less robust as it could be easily
affected by (typically non-impactful) random perturbations. The results also suggest that proposed
model could potentially benefit further by improving the surrogate function, e.g., by incorporating
explicit terms for enlarging the separation margin between classes, which is an interesting direction
that is worthwhile to be explored further in the future.

Attack Methods Models
Natural Madry Adv-Interp Adv-Interp*

Clean 95.6 86.7 90.3 90.1
PGD-min 0.0 44.5 71.5 70.0
CW-min 0.0 45.2 67.2 65.4

Feature-min 0.0 42.3 36.4 43.4

Table 9: More results against adaptive attacks on CIFAR10.

1x → clamp(x + ε · rand sign like(x), 0, 255), where rand sign like(x) returns a tensor with the same
shape as x and the elements are randomly set to−1 or 1. clamp ensures the input is within the specified range.
ε denotes the perturbation budget which is the same as used in training.
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