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ABSTRACT

Previous work on adversarially robust neural networks for image classification re-
quires large training sets and computationally expensive training procedures. On
the other hand, few-shot learning methods are highly vulnerable to adversarial ex-
amples. The goal of our work is to produce networks which both perform well
at few-shot classification tasks and are simultaneously robust to adversarial exam-
ples. We develop an algorithm for producing adversarially robust meta-learners,
and we thoroughly investigate factors which contribute to adversarial vulnerabil-
ity. Moreover, our method achieves far superior robust performance on few-shot
image classification tasks, such as Mini-ImageNet and CIFAR-FS, than robust
transfer learning.

1 INTRODUCTION

For safety-critical applications like facial recognition, traffic sign detection, and copyright control,
adversarial attacks pose an actionable threat (Zhao et al., 2018; Eykholt et al., 2017; Saadatpanah
et al., 2019). Conventional adversarial training and pre-processing defenses aim to produce networks
that resist attack (Madry et al., 2017; Zhang et al., 2019; Samangouei et al., 2018), but such defenses
rely heavily on the availability of large training data sets. In applications that require few-shot
learning, such as face recognition from few images, recognition of a video source from a single clip,
or recognition of a new object from few example photos, the conventional robust training pipeline
breaks down.

When data is scarce or new classes arise frequently, neural networks must adapt quickly (Duan
et al., 2017; Kaiser et al., 2017; Pfister et al., 2014; Vartak et al., 2017). In these situations, meta-
learning methods conduct few-shot learning by creating networks that learn quickly from little data
and with computationally cheap fine-tuning. While state-of-the-art meta-learning methods perform
well on benchmark few-shot classification tasks, these naturally trained neural networks are highly
vulnerable to adversarial examples. In fact, even adversarially trained feature extractors fail to resist
attacks in the few-shot setting (see Section 4.1).

We propose a new approach, called adversarial querying, in which the network is exposed to adver-
sarial attacks during the query step of meta-learning. This algorithm-agnostic method produces a
feature extractor that is robust, even without adversarial training during fine-tuning. In the few-shot
setting, we show that adversarial querying outperforms other robustness techniques by a wide mar-
gin in terms of both clean accuracy and adversarial robustness (see Table 1). We solve the following
minimax problem:

min
θ

ES,(x,y)
[

max
‖δ‖p<ε

L(FA(θ,S),x+ δ, y)

]
, (1)

where S and (x, y) are data sampled from the training distribution, A is a fine-tuning algorithm
for the model parameters, θ, and ε is a p-norm bound for the attacker. In Section 4, we further
motivate adversarial querying and exhibit a wide range of experiments. To motivate the necessity for
adversarial querying, we test methods, such as adversarial fine-tuning and pre-processing defenses,
which if successful, would eliminate the need for expensive adversarial training routines. We find
that these methods are far less effective than adversarial querying.
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Model Anat Aadv
AT transfer learning (R2-D2 backbone) 39.13% 25.33%
Naturally Trained R2-D2 73.01% 0.00%
ADML 47.75% 18.49%
AQ R2-D2 (ours) 57.87% 31.52%

Table 1: Adversarially trained transfer learning, R2-D2 (Bertinetto et al., 2018), ADML (Yin et al.,
2018), and our adversarially queried (AQ) R2-D2 model on 5-shot Mini-ImageNet. Natural accuracy
is denoted Anat, and robust accuracy, Aadv , is computed with a 20-step PGD attack as in Madry
et al. (2017) with ε = 8/255. A description of our training regime can be found in Appendix A.5.

2 RELATED WORK

2.1 LEARNING WITH LESS DATA

Before the emergence of meta-learning, a number of approaches existed to cope with few-shot prob-
lems. One simple approach is transfer learning, in which pre-trained feature extractors are trained
on large data sets and fine-tuned on new tasks (Bengio, 2012). Metric learning methods avoid over-
fitting to the small number of training examples in new classes by instead performing classification
using nearest-neighbors in feature space with a feature extractor that is trained on a large corpus
of data and not re-trained when classes are added (Snell et al., 2017; Gidaris & Komodakis, 2018;
Mensink et al., 2012). Metric learning methods are computationally efficient when adding new
classes at inference, since the feature extractor is not re-trained.

Meta-learning algorithms create a “base” model that quickly adapts to new tasks by fine-tuning.
This model is created using a set of training tasks {Ti} that can be sampled from a task distribution.
Each task comes with support data, T si , and query data, T qi . Support data is used for fine-tuning,
and query data is used to measure the performance of the resulting network. In practice, each task
is taken to be a classification problem involving only a small subset of classes in a large many-class
data set. The number of examples per class in the support set is called the shot, so that fine-tuning
on five support examples per class is 5-shot learning.

An iteration of training begins by sampling tasks {Ti} from the task distribution. In the “inner loop”
of training, the base model is fine-tuned on the support data from the sampled tasks. In the “outer
loop” of training, the fine-tuned network is used to make predictions on the query data, and the base
model parameters are updated to improve the accuracy of the resulting fine-tuned model. The outer
loop requires backpropagation through the fine-tuning steps. A formal treatment of the prototypical
meta-learning routine can be found in Algorithm 1.

Algorithm 1: The meta-learning framework
Require: Base model, Fθ, fine-tuning algorithm, A, learning rate, γ, and distribution over tasks,
p(T ).

Initialize θ, the weights of F ;
while not done do

Sample batch of tasks, {Ti}ni=1, where Ti ∼ p(T ) and Ti = (T si , T
q
i ).

for i = 1, ..., n do
Fine-tune model on Ti (inner loop). New network parameters are written θi = A(θ, T si ).
Compute gradient gi = ∇θL(Fθi , T

q
i ).

Update base model parameters (outer loop): θ ← θ − γ
n

∑
i gi

Note that the fine-tuned parameters, θi = A(θ, T si ), in Algorithm 1, are a function of the base
model’s parameters so that the gradient computation in the outer loop may backpropagate through
A. For validation after training, the base model is fine-tuned on the support set of hold-out tasks,
and accuracy on the query set is reported. In this work, we report performance on Omniglot, Mini-
ImageNet, and CIFAR-FS (Lake et al., 2015; Vinyals et al., 2016; Bertinetto et al., 2018).
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We focus on four meta-learning algorithms: MAML, R2-D2, MetaOptNet, and ProtoNet (Finn et al.,
2017; Bertinetto et al., 2018; Lee et al., 2019; Snell et al., 2017). During fine-tuning, MAML uses
SGD to update all parameters, minimizing cross-entropy loss. Since unrolling SGD steps into a
deep computation graph is expensive, first-order variants have been developed to avoid computing
second-order derivatives. We use the original MAML formulation. R2-D2 and MetaOptNet, on the
other hand, only update the final linear layer during fine-tuning, leaving the “backbone network”
that extracts these features frozen at test time. R2-D2 replaces SGD with a closed-form differen-
tiable solver for regularized ridge regression, while MetaOptNet achieves its best performance when
replacing SGD with a solver for SVM. Because the objective of these linear problems is convex,
differentiable convex optimizers can be efficiently deployed to find optima, and differentiate these
optima with respect to the backbone parameters at train time. ProtoNet takes an approach inspired
by metric learning. It constructs class prototypes as centroids in feature space for each task. These
centroids are then used to classify the query set in the outer loop of training. Because each class
prototype is a simple geometric average of feature representations, it is easy to differentiate through
the fine-tuning step.

2.2 ADVERSARIAL ATTACKS AND DEFENSES

Following standard practices, we assess the robustness of models by attacking them with `∞-
bounded perturbations. We craft adversarial perturbations using the projected gradient descent attack
(PGD) since it has proven to be one of the most effective algorithms both for attacking as well as for
adversarial training (Madry et al., 2017). A detailed description of the PGD attack can be found in
Algorithm 2. We consider perturbations with `∞ bound 8/255 and a step size of 2/255 as described
by Madry et al. (2017).

Adversarial training is the industry standard for creating robust models that maintain good clean-
label performance (Madry et al., 2017). This method involves replacing clean examples with adver-
sarial examples during the training routine. A simple way to harden models to attack is adversarial
training, which solves the minimax problem

min
θ

E(x,y)∼D

[
max
‖δ‖p<ε

Lθ(x+ δ, y)

]
, (2)

where Lθ(x + δ, y) is the loss function of a network with parameters θ, x is an input image with
label y, and δ is an adversarial perturbation. Adversarial training finds network parameters which
maintain low loss (and correct class labels) even when adversarial perturbations are added.

Algorithm 2: PGD Attack
Require: network, Fθ, input data, (x, y), number of steps, n, step size, γ, and attack bound, ε.
Initialize δ ∈ Bε(x) randomly;
for i = 1, ..., n do

Compute g = sign (∇δLθ (x+ δ, y)).
Update δ = δ + γg.
If ‖δ‖p > ε, then project δ onto the surface of Bε(x).

return perturbed image x+ δ

2.3 ROBUST LEARNING WITH LESS DATA

Several authors have tried to learn robust models in the data scarce regime. The authors of Shafahi
et al. (2019) study robustness properties of transfer learning. They find that retraining earlier layers
of the network during fine-tuning impairs the robustness of the network, while only retraining later
layers can largely preserve robustness. ADML is the first attempt at achieving robustness through
meta-learning. ADML is a MAML variant, specifically designed for robustness, which employs
adversarial training (Yin et al., 2018). However, this method for robustness is only compatible with
MAML, an outdated meta-learning algorithm. Moreover, ADML is computationally expensive, and
the authors only test their method against a weak attacker. We implement ADML and test it against
a strong attacker. We show that our method simultaneously achieves higher robustness and higher
natural accuracy.
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3 NATURALLY TRAINED META-LEARNING METHODS ARE NOT ROBUST

In this section, we benchmark the robustness of existing meta-learning methods. Similarly to clas-
sically trained classifiers, we expect that few-shot learners are highly vulnerable to attack when ad-
versarial defenses are not employed. We test prominent meta-learning algorithms against a 20-step
PGD attack as in Madry et al. (2017). Table 2 contains natural and robust accuracy on the Mini-
ImageNet and CIFAR-FS 5-shot tasks (Vinyals et al., 2016; Bertinetto et al., 2018). Experiments in
the 1-shot setting can be found in Appendix A.1.

Model Anat MI Aadv MI Anat FS Aadv FS
ProtoNet 70.23% 0.00% 79.66% 0.00%
R2-D2 73.02% 0.00% 82.81% 0.00%
MetaOptNet 78.12% 0.00% 84.11% 0.00%

Table 2: 5-shot MiniImageNet (MI) and CIFAR-FS (FS) results comparing naturally trained meta-
learners. Anat and Aadv are natural and robust test accuracy, respectively, where robust accuracy is
computed with respect to a 20-step PGD attack.

We find that these algorithms are completely unable to resist the attack. Interestingly, MetaOptNet
uses SVM for fine-tuning, which is endowed with a wide margins property. The failure of even
SVM to express robustness during testing suggests that using robust fine-tuning methods (at test
time) on naturally trained meta-learners is insufficient for robust performance. To further examine
this, we consider MAML, which updates the entire network during fine-tuning. We use a naturally
trained MAML model and perform adversarial training during fine-tuning (see Table 3). Adversarial
training is performed with 7-PGD as in (Madry et al., 2017). If adversarial fine-tuning yielded robust
classification, then we could avoid expensive adversarial training variants during meta-learning.

Model Anat Aadv Anat(AT ) Aadv(AT )

1-shot Mini-ImageNet 45.04% 0.03% 33.18% 0.20%
5-shot Mini-ImageNet 60.25% 0.03% 32.45% 1.55%
1-shot Omniglot 91.50% 68.46% 91.60% 74.66%
5-shot Omniglot 97.12% 82.28% 97.71% 87.94%

Table 3: MAML models on Mini-ImageNet and Omniglot. Anat and Aadv are natural and robust
test accuracy, respectively, where robust accuracy is computed with respect to a 20-step PGD attack.
Anat(AT ) and Aadv(AT ) are natural and robust test accuracy with 7-PGD fine-tuning.

While clean trained MAML models with adversarial fine-tuning are slightly more robust than their
naturally fine-tuned counterparts, they achieve almost no robustness on Mini-ImageNet. Omniglot
is an easier data set, and the performance of adversarially fine-tuned MAML on the 5-shot version
is below a reasonable tolerance for robustness. We conclude from these experiments that naturally
trained meta-learners are vulnerable to adversarial examples, and robustness techniques specifically
for few-shot learning are required.

4 ADVERSARIAL QUERYING: A META-LEARNING ALGORITHM FOR
ADVERSARIAL ROBUSTNESS

We now introduce adversarial querying (AQ), an adversarial training algorithm for meta-learning.
Let A(θ, S) denote a fine-tuning algorithm. Then, A is a map from support data set, S, and network
parameters, θ, to parameters for the fine-tuned network. Then, we seek to solve the following
minimax problem (Equation 1 revisited):

min
θ

ES,(x,y)
[

max
‖δ‖p<ε

L(FA(θ,S),x+ δ, y)

]
,

where S and (x, y) are support and query data, respectively, sampled from the training distribution,
and ε is a p-norm bound for the attacker. Thus, the objective is to find a central parameter vector
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which, when fine-tuned on support data, minimizes the expected query loss against an attacker. We
approach this minimax problem with an alternating algorithm consisting of the following steps:

1. Sample support and query data

2. Fine-tune on the support data (inner loop)

3. Perturb query data to maximize loss

4. Minimize query loss, backpropagating through the fine-tuning algorithm (outer loop)

A formal treatment of this method is presented in Algorithm 3. We test adversarial querying across
multiple data sets and meta-learning protocols. It is important to note that adversarial querying is
algorithm-agnostic. We test this method on the ProtoNet, R2-D2, and MetaOptNet algorithms on
CIFAR-FS and Mini-ImageNet (see Table 4 and Table 5).

Algorithm 3: Adversarial Querying
Require: Base model, Fθ, fine-tuning algorithm, A, learning rate, γ, and distribution over tasks,
p(T ).

Initialize θ, the weights of F ;
while not done do

Sample batch of tasks, {Ti}ni=1, where Ti ∼ p(T ) and Ti = (T si , T
q
i ).

for i = 1, ..., n do
Fine-tune model on Ti. New network parameters are written θi = A(θ, T si ).
Construct adversarial query data, T̂ qi , by maximizing L(Fθi , T̂

q
i ) constrained to

‖x̂qj − xqj‖p < ε for query examples, xqj , and their associated adversaries, x̂qj .

Compute gradient gi = ∇θL(Fθi , T̂
q
i ).

Update base model parameters: θ ← θ − γ
n

∑
i gi

Model Anat 1-Shot Aadv 1-Shot Anat 5-Shot Aadv 5-Shot
ProtoNet AQ 42.33% 26.48% 63.53% 40.11%
R2-D2 AQ 52.38% 32.33% 69.25% 44.80%
MetaOptNet AQ 53.27% 30.74% 71.07% 43.79%

Table 4: Comparison of adversarially queried (AQ) meta-learners on 1-shot and 5-shot CIFAR-FS.
Anat andAadv are natural and robust test accuracy, respectively, where robust accuracy is computed
with respect to a 20-step PGD attack. Top 1-shot and 5-shot robust accuracy is bolded.

Model Anat 1-Shot Aadv 1-Shot Anat 5-Shot Aadv 5-Shot
ProtoNet AQ 33.31% 17.69% 52.04% 27.99%
R2-D2 AQ 37.91% 20.59% 57.87% 31.52%
MetaOptNet AQ 43.74% 18.37% 60.71% 28.08%

Table 5: Comparison of adversarially queried (AQ) meta-learners on 1-shot and 5-shot Mini-
ImageNet. Anat and Aadv are natural and robust test accuracy, respectively, where robust accuracy
is computed with respect to a 20-step PGD attack. Top 1-shot and 5-shot robust accuracy is bolded.

In our tests, R2-D2 outperforms MetaOptNet in robust accuracy despite having a less powerful back-
bone architecture. In Section 4.5, we dissect the effects of backbone architecture and classification
head on robustness of meta-learned models. In Section 4.7, we verify that adversarial querying
generates networks robust to a wide array of strong attacks.
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4.1 ADVERSARIAL QUERYING IS MORE ROBUST THAN TRANSFER LEARNING FROM
ADVERSARIALLY TRAINED MODELS

We observe above that few-shot learning methods with a non-robust feature extractor break under
attack. But what if we use a robust feature extractor? In the following section, we consider both
transfer learning and meta-learning with a robust feature extractor.

In order to compare robust transfer learning and meta-learning, we train the backbone networks from
meta-learning algorithms on all training data simultaneously in the fashion of standard adversarial
training using 7-PGD (not meta-learning). We then fine-tune using the head from a meta-learning
algorithm on top of the transferred feature extractor. We compare the performance of these feature
extractors to that of those trained using adversarially queried meta-learning algorithms with the
same backbones and heads. This experiment provides a direct comparison of feature extractors
produced by robust transfer learning and robust meta-learning (see Table 6). Meta-learning exhibits
far superior robustness than transfer learning for all algorithms we test. Additional experiments on
CIFAR-FS and on 1-shot Mini-ImageNet can be found in Appendix A.2.

Model Anat Transfer Aadv Transfer Anat Meta Aadv Meta
MAML 32.79% 18.03% 33.45% 23.07%
ProtoNet 31.14% 22.31% 52.04% 27.99%
R2-D2 39.13% 25.33% 57.87% 31.52%
MetaOptNet 50.23% 22.45% 60.71% 28.08%

Table 6: Adversarially trained transfer learning and adversarially queried meta-learning on 5-shot
Mini-ImageNet. Anat and Aadv are natural and robust test accuracy, respectively, where robust
accuracy is computed with respect to a 20-step PGD attack. Top natural and robust accuracy for
each architecture is bolded.

4.2 WHY ATTACK ONLY QUERY DATA?

In the adversarial querying procedure detailed in Algorithm 3, we only attack query data. Consider
that the loss value on query data represents performance on testing data after fine-tuning on the
support data. Thus, low loss on perturbed query data represents robust accuracy on testing data
after fine-tuning. Simply put, minimizing loss on adversarial query data moves the parameter vector
towards a network with high robust test accuracy. It follows that attacking only support data is not an
option for achieving robust meta-learners. Attacking support data but not query data can be seen as
maximizing clean test accuracy when fine-tuned in a robust manner, but since we want to maximize
robust test accuracy, this would be inappropriate. One question remains: should we attack both
query and support data?

One reason to perturb only query data is computational efficiency. The bulk of computation in
adversarial training is spent computing adversarial attacks since perturbing each batch requires an
iterative algorithm. Perturbing support data doubles the number of adversarial attacks computed
during training. Thus, only attacking query data significantly accelerates training.

Another reason to avoid attacking support data is that some meta-learning fine-tuning algorithms
based on metric learning, such as ProtoNet, do not involve loss minimization during fine-tuning, so
it is not clear what loss the attacker would maximize during the inner loop. But if attacking support
data during the inner loop of training were to significantly improve robust performance, we would
like to know.

We now compare adversarial querying to a variant in which support data is also perturbed during
training. We use MAML to conduct this comparison on the Omniglot and Mini-ImageNet data sets.
Additional experiments on 1-shot tasks can be found in Appendix A.3.

In these experiments, we find that adversarially attacking the support data during the inner loop
of meta-learning does not improve performance over adversarial querying. Furthermore, networks
trained in this fashion require adversarial fine-tuning during test time or else they suffer a massive
loss in robust test accuracy. Following these results and the significant reasons to avoid attacking
support data, we subsequently only attack query data.
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Model Anat Aadv Anat(AT ) Aadv(AT )

MAML (naturally trained) 97.12% 82.28% 97.71% 87.94%
MAML adv. query 97.27% 95.85% 97.51% 96.14%
MAML adv. query and support 95.61% 77.73% 97.46% 95.65%
ADML 97.31% 94.19% 97.56% 94.82%

Table 7: Performance on 5-shot Omniglot. Robust accuracy, Aadv , is computed with respect to
a 20-step PGD attack. Anat(AT ) and Aadv(AT ) are natural and robust test accuracy with 7-PGD
training during fine-tuning. Top robust accuracy with and without adversarial fine-tuning is bolded.

Model Anat Aadv Anat(AT ) Aadv(AT )

MAML (naturally trained) 60.25% 0.03% 32.45% 1.55%
MAML adv. query 33.45% 23.07% 33.03% 23.29%
MAML adv. query and support 29.98% 22.55% 30.44% 23.03%
ADML 47.75% 18.49% 47.27% 20.23%

Table 8: Performance on 5-shot Mini-ImageNet. Robust accuracy, Aadv , is computed with respect
to a 20-step PGD attack. Anat(AT ) and Aadv(AT ) are natural and robust test accuracy with 7-PGD
training during fine-tuning. Top robust accuracy with and without adversarial fine-tuning is bolded.

4.3 ADVERSARIAL QUERYING MAY BE USED TO ADAPT OTHER ROBUSTNESS TECHNIQUES
TO META-LEARNING

Adversarial querying can also be used to construct meta-learning analogues for other variants of
adversarial training. We explore this by using the TRADES loss function in the querying step of
AQ (Zhang et al., 2019). We refer to this method as meta-TRADES. While meta-TRADES can
marginally outperform our initial adversarial querying method in robust accuracy with a careful hy-
perparameter choice, λ, we find that networks trained with meta-TRADES severely sacrifice natural
accuracy (see Table 9). Additional experiments on 1-shot tasks can be found in Appendix A.4.

Model Anat MI Aadv MI Anat FS Aadv FS
R2-D2 adversarial queried 57.87% 31.52% 69.25% 44.80%
R2-D2 TRADES (1/λ = 1) 56.02% 30.96% 66.29% 45.59%
R2-D2 TRADES (1/λ = 3) 51.51% 32.30% 61.41% 46.54%
R2-D2 TRADES (1/λ = 6) 34.29% 22.04% 58.32% 45.89%

Table 9: 5-shot Mini-ImagNet (MI) and CIFAR-FS (FS) results comparing meta-TRADES to ad-
versarial querying. Anat and Aadv are natural and robust test accuracy, respectively, where robust
accuracy is computed with respect to a 20-step PGD attack.

4.4 FOR BETTER NATURAL AND ROBUST ACCURACY, ONLY FINE-TUNE THE LAST LAYER.

High performing meta-learning models, like MetaOptNet and R2-D2, fix their feature extractor and
only update their last linear layer during fine-tuning. In the setting of transfer learning, robustness is
a feature of early convolutional layers, and re-training these early layers leads to a significant drop
in robust test accuracy (Shafahi et al., 2019). We verify that re-training only the last layer leads to
improved natural and robust accuracy in adversarially queried meta-learners by training a MAML
model but only updating the final fully-connected layer during fine-tuning including during the inner
loop of meta-learning. We find that the AQ model trained by fine-tuning only the last layer during
the inner loop decisively outperforms the standard AQ MAML algorithm in both natural and robust
accuracy (see Table 10).
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Layers updated Anat Aadv Anat(AT ) Aadv(AT )

All layers 33.45% 23.07% 33.03% 23.29%
FC only 40.06% 25.15% 39.94% 25.32%

Table 10: Adversarially queried MAML compared with a MAML variant where only the last layer
is re-trained during fine-tuning on 5-shot Mini-ImageNet. Anat and Aadv are natural and robust
test accuracy, respectively, where robust accuracy is computed with respect to a 20-step PGD at-
tack. Anat(AT ) andAadv(AT ) are natural and robust test accuracy, respectively with 7-PGD training
during fine-tuning. Layers are fine-tuned for 10 steps with a learning rate of 0.01.

4.5 THE R2-D2 HEAD, NOT EMBEDDING, IS RESPONSIBLE FOR SUPERIOR ROBUST
PERFORMANCE.

The naturally trained R2-D2 algorithm performs worse than MetaOptNet in natural accuracy, but
previous research has found that performance discrepancies between meta-learning algorithms
might be an artifact of different backbone networks (Chen et al., 2019). We confirm that MetaOpt-
Net with the R2-D2 backbone performs similarly to R2-D2 in the natural meta-learning setting (see
Table 11). However, we find that the performance discrepancy in the adversarial setting is not ex-
plained by differences in backbone architecture. In our adversarial querying experiments, we see
that MetaOptNet is less robust than R2-D2. This discrepancy remains when we train MetaOptNet
with the R2-D2 backbone (see Table 12). We conclude that MetaOptNet’s backbone is not respon-
sible for its inferior robustness. These experiments suggest that ridge regression may be a more
effective fine-tuning technique than SVM for robust performance. ProtoNet with R2-D2 backbone
also performs worse than the other two adversarially queried models with the same backbone archi-
tecture.

Model 1-shot MI 5-shot MI 1-shot FS 5-shot FS
R2-D2 55.22% 73.02% 68.36% 82.81%
MetaOptNet 60.65% 78.12% 70.99% 84.11%
MetaOptNet (R2-D2 backbone) 55.78% 73.15% 68.37% 82.71%

Table 11: Natural test accuracy of naturally trained R2-D2, MetaOptNet, and the MetaOptNet head
with R2-D2 backbone on the Mini-ImageNet (MI) and CIFAR-FS (FS) data sets.

Model 1-shot MI 5-shot MI 1-shot FS 5-shot FS
R2-D2 20.59% 31.52% 32.33% 44.80%
MetaOptNet 18.37% 28.08% 30.74% 43.79%
MetaOptNet (R2-D2 backbone) 18.81% 24.68% 29.57% 41.90%
ProtoNet (R2-D2 backbone) 18.24% 28.39% 26.48% 40.59%

Table 12: Robust test accuracy of adversarially queried R2-D2, MetaOptNet, and the MetaOptNet
and heads with R2-D2 backbone on Mini-ImageNet (MI) and CIFAR-FS (FS) data sets. Robust
accuracy is computed with respect to a 20-step PGD attack.

4.6 ENHANCING ROBUSTNESS WITH ROBUST ARCHITECTURAL FEATURES

In addition to adversarial training, architectural features have been used to enhance robustness (Xie
et al., 2019). Feature denoising blocks pair classical denoising operations with learned 1× 1 convo-
lutions to reduce the feature noise in feature maps at various stages of a network, and thus reduce the
success of adversarial attacks. Massive architectures with these blocks have achieved state-of-the-
art robustness against targeted adversarial attacks on ImageNet. However, when deployed on small
networks for meta-learning, we find that denoising blocks do not improve robustness. We deploy
denoising blocks identical to those in Xie et al. (2019) after various layers of the R2-D2 network.
The best results for the denoising experiments are achieved by adding a denoising block after the
fourth layer in the R2-D2 embedding network (see Table 13).
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Model Anat Aadv
R2-D2 73.02% 0.00%
R2-D2 AQ 57.87% 31.52%
R2-D2 AQ Denoising 57.68% 31.14%

Table 13: 5-shot MiniImageNet results for our highest performing R2-D2 with feature denoising
blocks. Anat and Aadv are natural and robust test accuracy, respectively, where robust accuracy is
computed with respect to a 20-step PGD attack. Top robust accuracy is bolded.

4.7 RESISTANCE TO OTHER ATTACKS

We test our method by exposing our adversarially queried R2-D2 model to a variety of powerful
adversarial attacks. We implement the momentum iterated fast gradient sign method (MI-FGSM),
DeepFool, and 20-step PGD with 20 random restarts (Dong et al., 2018; Moosavi-Dezfooli et al.,
2016; Madry et al., 2017). Our adversarially queried model is indeed nearly as robust against the
strongest `∞ bounded attacker as it is against the 20-step PGD attack with a single random start we
tested against previously. Note that DeepFool is not `∞ bounded and thus the perturbed images are
outside of the robustness radius enforced during adversarial querying. Additional experiments on
CIFAR-FS can be found in Appendix A.6.

Model ADF AMI A20−PGD
R2-D2 7.91% 0.01% 0.0%
R2-D2 AQ (ours) 14.45% 31.87% 30.31%
R2-D2 Transfer 0.42% 24.01% 19.75%

Table 14: 5-shot MiniImageNet results against DeepFool (DF) (2 iteration) `∞ attack, MI-FGSM
(MI) (ε = 8/255) attack, and PGD attack with 20 random restarts (20-PGD). We compare R2-D2
trained with adversarial-querying (AQ) to the adversarially trained transfer learning R2-D2 as in
section 4.1.

5 PRE-PROCESSING DEFENSES AS AN ALTERNATIVE TO ADVERSARIAL
TRAINING

Recent works have proposed pre-proccessing defenses for sanitizing adversarial examples before
feeding them into a naturally trained classifier. If successful, these methods would avoid the expen-
sive adversarial querying procedure during training. While this approach has found success in the
mainstream literature, we find that it is ineffective in the few-shot regime.

In DefenseGAN, a GAN trained on natural images is used to sanitize an adversarial example by
replacing (possible corrupted) test images with the nearest image in the output range of the GAN
(Samangouei et al., 2018). Unfortunately, GANs are not expressive enough to preserve the integrity
of testing images on complex data sets involving high-resolution natural images, and recent attacks
have critically compromised the performance of this defense (Ilyas et al., 2017; Athalye et al., 2018).
We found the expressiveness of the generator architecture used in the original DefenseGAN setup
to be insufficient for even CIFAR-FS, so we substitute a stronger ProGAN generator to model the
CIFAR-100 classes (Karras et al., 2017).

Another pre-processing method, the superresolution defense, first denoises data with sparse wavelet
filters and then performs superresolution (Mustafa et al., 2019). This defense is also motivated
by the principle of projecting adversarial examples onto the natural image manifold. We test the
superresolution defense using the same wavelet filtering and superresolution network (SRResNet)
used by Mustafa et al. (2019) and first introduced by Ledig et al. (2017). We train the SRResNet, in a
similar fashion to the generator for DefenseGAN, on the entire CIFAR-100 data set before applying
the superresolution defense.

We find that these methods are not well suited to the few-shot domain, in which the generative
model or superresolution network may not be able to train on the little data available. Morever, even
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after training the generator on all CIFAR-100 classes, we find that DefenseGAN with a naturally
trained R2-D2 meta-learner performs significantly worse in both natural and robust accuracy than an
adversarially queried meta-learner of the same architecture. Similarly, the superresolution defense
achieves little robustness. The results of these experiments can be found in Table 15.

Model Anat Aadv
R2-D2 82.81% 0.00%
R2-D2 AQ (ours) 69.25% 44.80%
R2-D2 with SR defense 35.15% 23.00%
R2-D2 with DefenseGAN 35.15% 28.05%

Table 15: 5-shot CIFAR-FS results comparing the superresolution defense (SR defense) and De-
fenseGAN.Anat andAadv are natural and robust test accuracy, respectively, where robust accuracy
is computed with respect to a 20-step PGD attack. Both methods perform worse than their adversar-
ially queried counterpart. Top robust accuracy is bolded.

6 DISCUSSION & CONCLUSION

Naturally trained networks for few-shot image classification are vulnerable to adversarial attacks,
and existing robust transfer learning methods do not perform well on few-shot tasks. Even, when
adversarially fine-tuned, naturally trained networks suffer from adversarial vulnerability. We thus
identify the need for few-shot methods for adversarial robustness. In particular, we study robust-
ness in the context of meta-learning. We develop an algorithm-agnostic method, called adversarial
querying, for hardening meta-learning models. We find that meta-learning models are most robust
when the feature extractor is fixed and only the last layer is retrained during fine-tuning. We further
identify that choice of classification head significantly impacts robustness. We believe that this paper
is a starting point for developing adversarially robust methods for few-shot applications.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS TESTING THE ROBUSTNESS OF NATURALLY TRAINED
META-LEARNING MODELS

Model Anat MI Aadv MI Anat FS Aadv FS
ProtoNet 43.26% 0.00% 59.56% 0.00%
R2-D2 55.22% 0.00% 68.36% 0.00%
MetaOptNet 60.65% 0.00% 70.99% 0.00%

Table 16: 1-shot MiniImageNet (MI) and CIFAR-FS (FS) results comparing naturally trained meta-
learners. Anat and Aadv are natural and robust test accuracy, respectively, where robust accuracy is
computed with respect to a 20-step PGD attack.

A.2 ADDITIONAL EXPERIMENTS COMPARING ROBUST META-LEARNING AND ROBUST
TRANSFER LEARNING

Model Anat Transfer Aadv Transfer Anat Meta Aadv Meta
ProtoNet 45.98% 35.63% 63.53% 40.11%
R2-D2 53.26% 33.33 % 69.25% 44.80%
MetaOptNet 60.72% 35.11% 71.07% 43.79%

Table 17: Adversarially trained transfer learning and adversarially queried meta-learning on 5-shot
CIFAR-FS. Anat and Aadv are natural and robust test accuracy, respectively, where robust accu-
racy is computed with respect to a 20-step PGD attack. Top natural and robust accuracy for each
architecture is bolded.

Model Anat Transfer Aadv Transfer Anat Meta Aadv Meta
MAML 25.84% 15.52% 21.42% 17.9%
ProtoNet 25.58% 18.06% 33.31% 17.69%
R2-D2 27.88% 17.72% 37.91% 20.59%
MetaOptNet 34.71% 16.01% 43.74% 18.37%

Table 18: Adversarially trained transfer learning and adversarially queried meta-learning on 1-shot
Mini-ImageNet. Anat and Aadv are natural and robust test accuracy, respectively, where robust
accuracy is computed with respect to a 20-step PGD attack. Top natural and robust accuracy for
each architecture is bolded.
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Model Anat Transfer Aadv Transfer Anat Meta Aadv Meta
ProtoNet 35.15% 26.25% 42.33% 26.48%
R2-D2 38.15% 26.78% 52.38% 32.33%
MetaOptNet 42.98% 25.37% 53.27% 30.74%

Table 19: Adversarially trained transfer learning and adversarially queried meta-learning on 1-shot
CIFAR-FS. Anat and Aadv are natural and robust test accuracy, respectively, where robust accu-
racy is computed with respect to a 20-step PGD attack. Top natural and robust accuracy for each
architecture is bolded.

A.3 ADDITIONAL EXPERIMENTS COMPARING ADVERSARIAL QUERYING TO BOTH
ADVERSARIAL SUPPORT AND ADVERSARIAL QUERYING DURING TRAINING

Model Anat Aadv Anat(AT ) Aadv(AT )

MAML (naturally trained) 91.50% 68.46% 91.60% 74.66%
MAML adv. query 91.11% 88.72% 91.31% 89.01%
MAML adv. query and support 90.58% 82.23% 91.36% 88.97%
ADML 91.99% 86.87% 92.24% 87.35%

Table 20: Performance on 1-shot Omniglot. Robust accuracy, Aadv , is computed with respect to
a 20-step PGD attack. Anat(AT ) and Aadv(AT ) are natural and robust test accuracy with 7-PGD
training during fine-tuning.

Model Anat Aadv Anat(AT ) Aadv(AT )

MAML (naturally trained) 45.04% 0.03% 33.18% 0.20%
MAML adv. query 21.42% 17.9% 21.23% 17.87%
MAML adv. query and support 22.39% 19.07% 22.06% 19.14%
ADML 26.68% 16.63% 27.34% 17.78%

Table 21: Performance on 1-shot Mini-ImageNet. Robust accuracy, Aadv , is computed with respect
to a 20-step PGD attack. Anat(AT ) and Aadv(AT ) are natural and robust test accuracy with 7-PGD
training during fine-tuning.

A.4 ADDITIONAL META-TRADES EXPERIMENTS

Model Anat MI Aadv MI Anat FS Aadv FS
R2-D2 adversarial queried 37.91% 20.59% 52.38% 32.33%
R2-D2 TRADES (1/λ = 1) 39.11% 20.25% 48.77% 31.99%
R2-D2 TRADES (1/λ = 6) 34.27% 22.00% 44.37% 33.55%

Table 22: 1-shot Mini-ImagNet (MI) and CIFAR-FS (FS) results comparing meta-TRADES to ad-
versarial querying. Anat and Aadv are natural and robust test accuracy, respectively, where robust
accuracy is computed with respect to a 20-step PGD attack.

A.5 TRAINING HYPERPARAMETERS

We train ProtoNet, R2-D2, and MetaOptNet models for 60 epochs with SGD. We use a learning rate
of 0.1, momentum (Nesterov) of 0.9, and a weight decay term of 5(10−4) for the parameters of both
the head and the embedding. We decrease the learning rate to 0.06 after epoch 20, 0.012 after epoch
40, and 0.0024 after epoch 50. MAML is trained for 60000 epochs with meta learning rate of 0.001
and fine-tuning learning rate of 0.01. Fine-tuning is performed for 10 steps per task.
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A.6 MORE RESULTS AGAINST OTHER ATTACKS

Model ADF AMI A20−PGD
R2-D2 0.00% 0.39% 0.01%
R2-D2 AQ (ours) 14.45% 53.46% 46.57%
R2-D2 AT (Transfer Learning) 1.41% 38.28% 33.17%

Table 23: 5-shot CIFAR-FS results against DeepFool (DF) (2 iteration) `∞ attack, MI-FGSM (MI)
(ε = 8/255) attack, and PGD attack with 20 random restarts (20-PGD). We compare R2-D2 trained
with adversarial-querying (AQ) to the transfer learning R2-D2 as in section 4.1.

Model AResNet
R2-D2 0.00%
R2-D2 AQ (ours) 59.68%
R2-D2 AT (Transfer Learning) 42.02%

Table 24: 5-shot CIFAR-FS results against black-box transfer attacks crafted on an adversari-
ally trained (transfer learning) ResNet-12 model using 7-PGD. We then test R2-D2 trained with
adversarial-querying (AQ) and the transfer learning R2-D2 model on these crafted perturbations.
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