
Evolution of Eigenvalue Decay in Deep Networks

Anonymus Author
Earth

Abstract

The linear transformations in converged deep networks show fast eigenvalue decay.
The distribution of eigenvalues looks like a Heavy-tail distribution, where the vast
majority of eigenvalues is small, but not actually zero, and only a few spikes of
large eigenvalues exist. We use a stochastic approximator to generate histograms
of eigenvalues. This allows us to investigate layers with hundreds of thousands of
dimensions. We show how the distributions change over the course of image net
training, converging to a similar heavy-tail spectrum across all intermediate layers.

1 Motivation

The study of generalization in deep networks has shifted its focus from the skeleton structure of
neural networks [2] to the properties of the linear operators of the network layers [4, 5, 13]. Measures
like matrix norms, including standard Frobenius, other p-Norms or spectral norm) or stable rank [3]
are important components of theoretical bounds on generalization. All of these measures rely on
the singular values of the linear maps A, or equivalently on the eigenvalues of the operator times
its transpose AAT . In order to visually inspect the eigenvalue spectrum of a matrix, it is useful to
compute a histogram. Histograms allows us to roughly estimate the distribution of eigenvalues and
detect properties like decay behavior or the largest eigenvalues. An example of such a histogram is
Figure 1, that shows the eigenvalues of a Convolution-Layer in a squeeze_net network that maps
to a feature map of dimension 256 × 13 × 13 = 43, 264. It shows many interesting, but not well-
understood characteristic properties of fully trained networks: A Heavy-tail eigenvalue distribution
with the vast majority of eigenvalues being near zero, though none are actually zero, and only few
spikes of large eigenvalues. Martin and Mahoney show this phenomenon in the linear layer of large
pre-trained models[11], we also show it in the convolution layers and follow its evolution over the
course of optimization.
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(a) Linear Scale
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(b) Log-Scale

Figure 1: Example Histogram of a fully-trained convolution layer in a squeeze_net architecture.

Computing singular values exactly is a costly operation, particularly because the dimension in state-
of-the art convolutional neural networks often exceeds 100,000. Fortunately when we are interested

Preprint. Under review.



only in a histogram, we do not need to know the exact eigenvalues, but only the number of eigenvalues
that fall into the bins of the histogram.

Based on the decay property exhibited in deep networks, we propose an approach for estimating
histograms of eigenvalues in deep networks based on two techniques: For estimating the few high
eigenvalues, called spikes, and particularly the largest eigenvalue, we use ARPACK, a truncated
eigenvalue decomposition method that does not require the matrix explicitly, but accesses it only via
matrix-vector products. For estimating the remainder, called bulk, we use a method based on matrix
Chebyshev approximations and Hutchinson’s trace estimator [12]. Like ARPACK, it only accesses
the matrix via matrix-vector products. In Figure 1, we have colored the bins we computed exactly in
red, the approximated are blue.

2 Method

We denote the number of eigenvalues of a symmetric linear operator A : Rd → Rd that fall into the
bin [l, u) by #(A, l, u). We denote the eigenvalues of A by λ1 ≥ λ2 ≥ ... ≥ λd.

2.1 Implicit Matrices in Neural Networks

The highest-dimensional linear operators in deep networks used in production environments are
probably convolution layers. These layers transform feature maps with number of raw-features in the
input- and output feature often exceeding 100k. This is feasible because the convolution operator
is not implemented as matrix-vector multiplication with dense weight matrices, but specialized
and highly-optimized convolution routines are used. Really every reputable deep learning software
framework provides these routines.

We can use these same routines when we estimate the eigenvalues of the linear maps of network
layers. We first make sure that the network layer does not add a bias term1. Now let H be the linear
map of a neural network layer. The forward-pass of that layer computes Hx efficiently, whereas the
backward-pass computes HT y with backward-flowing gradient information y. We are interested in
the eigenvalues of HHT , hence to compute HHT y, we first pass y through the backward pass of H ,
and pass the resulting gradient through the forward pass to obtain the resulting vector.

2.2 Estimating the Spikes

To estimate the spikes and particularly the largest eigenvalue, we use the implicitly restarted Lanczos
method as implemented in the ARPACK software package. It computes a truncated eigenvalue
decomposition for implicit matrices that are accessed via matrix-vector products [10]. We specify
a number of spikes T > 0 and compute the first T eigenvalues with ARPACK. From the largest
eigenvalue, we derive the equidistant histogram-binning over the range [0, λ1].

2.3 Estimating the Bulk

We use a technique for stochastically estimating eigenvalue counts proposed by Napoli et al.[12].
It requires that all eigenvalues fall into the range [−1, 1]. Hence, we first transform the matrix via
A 7→ (2λ−1

1 A− I) since we already know λ1 from the ARPACK-based spike estimator.

We define the indicator function δl,u(λ) that is 1 iff. l ≤ λ < u and notice that we can write the
number of eigenvalues in [l, u) as

#(A, l, u) =

d∑
i

δl,u(λi)

We can approximate δl,u with Chebyshev polynomials of a fixed degree δl,u(x) ≈
K∑
k=0

bkφk(x) where

φk(x) is the kth Chebyshev basis and bk ∈ R its corresponding coefficient. These coefficients are

1Usually deep networks apply affine transformations not linear transformations. We simply set the bias
vector to zero to fix this.
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Algorithm 1 Estimate Bulk( linear map A, bin [l, u), degree K, numberOfSamples S )

Compute coefficients bk for k = 0, ...,K according to (1).
Sample X = [x1, ..., xS ]
for i = 1, ..., S do
f2 = xi
f1 = Af2 // in neural networks this is H.forward(H.backward(f2))
ts = b0x

T
s f2 + b1x

T
s f1

for k = 2, ...,K do
f = 2Af1 − f2 // in neural networks this is 2*H.forward(H.backward(f1))−f2
f2 = f1
f1 = f
ts = ts + bkx

T
s f

return S−1
∑S
s=1 ts

known for the indicator function[12]:

bk =

{
π−1(arccos(l)− arccos(u)) k = 0

2π−1k−1(sin(k · arccos(l))− sin(k · arccos(u))) k > 0
(1)

Now we can rewrite the count as the trace of a polynomial matrix function2 applied to our matrix of
interest, as it holds that trf(A) =

∑
i

f(λi)

#(A, l, u) ≈
d∑
i

K∑
k

bkφk(λi) = tr
K∑
k=0

bkΦk(A)

where Φk(A) is the kth Chebyshev base for matrix functions. This quantity in turn can be approxi-
mated using stochastic trace estimators, aka Hutchinson estimators [8]. It holds that trA = ExxTAx
where each component of x is drawn independently from a zero-mean distribution like standard
normal or Rademacher. This expression lends itself to a simple sampling algorithm, where we draw
S independent x1, ..., xS and estimate

#(A, l, u) ≈ 1

S

S∑
i=1

xTi

K∑
k

bkΦk(A)xi

We do not have to explicitly compute Φk(A), as only the product Φk(A)xi is required. Since
Chebyshev polynomials by construction follow the recursion Φk+1(A) = 2AΦk(A)−Φk−1(A), we
derive Algorithm 1 to estimate the count.

3 A Study of ImageNet Training with squeeze_nets

Our experiments are based on a pyTorch implementation of the proposed histogram estimator. We
train a squeeze_net architecure [9] on imagenet data. After 30 epochs of training, we reduce the
learning rate to 10%, and repeat this after another 30 epochs. We train using plain stochastic gradient
descent with mini-batches of size 128 and compute histograms for all convolution layers before the
first and after every epoch. For the histogram computation, we use a budget of 1000 for the exact
computation of eigenvalues and approximate the remainder using the stochastic estimator.

We present some histograms in Figures 3 and 4 for the first and last convolution layers3. The
histograms of the other layers show similar behavior as the last layer, for instance Figure 1a shows an
intermediate layer after the first epoch of training quite similar to Fig. 4b, but with less extreme decay.

2A real-valued function f(x) : R → R has a corresponding matrix function f(A) : Rm×m → Rm×m and
the eigenvalues of f(A) are f(λ1), ..., f(λm). For polynomials, we get this matrix function by replacing scalar
multiplications with matrix multiplications and scalar additions with matrix additions. For other classes of
functions and a comprehensive introduction to matrix functions see Highham’s book[7].

3Addional and animated histograms are available at https://whadup.github.io/Resultate/, however
note that the website is not sufficiently anonymized for double-blind reviewing. Proceed with caution.
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Figure 2: The norms || · ||2σ of three layers during training

Like Martin and Mahoney [11] we identify different phases in the spectograms. Right after initializa-
tion, the matrix behaves almost as random matrix theory suggests given the element-wise independent
random initialization with Gaussian random variables [14]. This can be observed in Figures 3a and 4a.
However, we note that on the first layer Fig. 3a, there are some unexpected bumps in the histogram.
We conjecture that this may be due to padding in the convolutions.

As optimization commences, we start to see heavytail behavior. Already after one epoch of traning,
the largest eigenvalues have seperated from the bulk, while the majority of eigenvalues remains in the
same order of magnitude as before training. This can be seen for the first and large convolution layer
in Figures 3b and 4b. The bumps in the first layer smooth out a little.

Over the course of the first 30 epochs, the largest eigenvalues grow steadily as the tail of the spectrum
grows further. Then as soon as the learning rate is reduced to 10%, the operator norms of the linear
maps start to decrease as depicted in Figure 2. Considering the importance of the operator norm in
known generalization bounds for feed-forward networks, this suggests that some sort of regularization
is happening.

The bumps in the first layer smooth out further, but remain visible. The last layer for the most part
keeps its shape in the last 60 epochs, beside the reduction of the norm we notice that the largest bar
decreases in size from 4157 to 2853 and that the difference seems to move to the other bars in the
blue portion of the histogram.

4 Conclusion

Understanding the structure in the linear transformations might be an important aspect of understand-
ing generalization in deep networks. To this end we have presented a stochastic approach that allows
us to estimate the eigenvalue spectrum of these transformations. We show how the spectrum evolves
during imagenet training using convolutional networks, more specifically squeeze_net networks.

In the future we want to apply similar approaches to estimating the covariance structure of the
intermediate feature representations and investigate the relations between covariance matrices and
parameter matrices. Since the estimator we use is differentiable [6, 1], it may be interesting to
investigate its usefulness for regularization.
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Appendix
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(a) Initialization
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(b) Epoch 1
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(c) Epoch 30
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(d) Epoch 90

Figure 3: The first 3 × 3 convolution layer in the network at various stages. During all stages of
optimization it shows some bumps in the histogram, that are more pronounced in earlier epochs.
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(b) Epoch 1
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(c) Epoch 30
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(d) Epoch 90

Figure 4: The last 3× 3 convolution layer in the network at various stages. After the 30-th epoch the
norm of the linear map starts to decrease and stabilized at around 190.

6


	Motivation
	Method
	Implicit Matrices in Neural Networks
	Estimating the Spikes
	Estimating the Bulk

	A Study of ImageNet Training with squeeze_nets
	Conclusion

