
Insect Cyborgs: Bio-mimetic Feature Generators
Improve ML Accuracy on Limited Data

Charles B. Delahunt1,2, J. Nathan Kutz1

1Applied Math, University of Washington, Seattle, WA
2Computational Neuroscience Center, UW, Seattle, WA

{delahunt,kutz}@uw.edu

Abstract

We seek to auto-generate stronger input features for ML methods faced with limited
training data. Biological neural nets (BNNs) excel at fast learning, implying that
they extract highly informative features. In particular, the insect olfactory network
learns new odors very rapidly, by means of three key elements: A competitive
inhibition layer; randomized, sparse connectivity into a high-dimensional sparse
plastic layer; and Hebbian updates of synaptic weights. In this work we deploy
MothNet, a computational model of the moth olfactory network, as an automatic
feature generator. Attached as a front-end pre-processor, MothNet’s readout neu-
rons provide new features, derived from the original features, for use by standard
ML classifiers. These “insect cyborgs” (part BNN and part ML method) have
significantly better performance than baseline ML methods alone on vectorized
MNIST and Omniglot data sets, reducing test set error averages 20% to 55%. The
MothNet feature generator also substantially out-performs other feature generating
methods including PCA, PLS, and NNs. These results highlight the potential value
of BNN-inspired feature generators in the ML context.

1 Introduction

Machine learning (ML) methods, especially neural nets (NNs) with backprop, often require large
amounts of training data to attain their high performance. This creates bottlenecks to deployment, and
constrains the types of problems that can be addressed [1]. The limited-data constraint is common
for ML targets that use medical, scientific, or field-collected data, as well as AI efforts focused on
rapid learning. We seek to improve ML methods’ ability to learn from limited data by means of an
architecure that automatically generates, from existing features, a new set of class-separating features.

Biological neural nets (BNNs) are able to learn rapidly, even from just a few samples. Assuming
that rapid learning requires effective ways to separate classes, we may look to BNNs for effective
feature-generators [2]. One of the simplest BNNs that can learn is the insect olfactory network [3],
containing the Antennal Lobe (AL) [4] and Mushroom Body(MB) [5], which can learn a new odor
given just a few exposures. This simple but effective feedforward network contains three key elements
that are ubiquitous in BNN designs: Competitive inhibition [6], high-dimensional sparse layers [7; 8],
and a Hebbian update mechanism [9]. Synaptic connections are largely random [10].

MothNet is a computational model of the M. sexta moth AL-MB that demonstrated rapid learning of
vectorized MNIST digits, with performance superior to standard ML methods given N ≤ 10 training
samples per class [11]. The MothNet model includes three key elements, as follows. (i) Competitive
inhibition in the AL: Each neural unit in the AL receives input from one feature, and outputs not
only a feedforward excitatory signal to the MB, but also an inhibitory signal to other neural units
in the AL that tries to dampen other features’ presence in the sample’s output AL signature. (ii)
Sparsity in the MB, of two types: The projections from the AL to the MB are non-dense (≈ 15%

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



non-zero), and the MB neurons fire sparsely in the sense that only the strongest 5% to 15% of the
total population are allowed to fire (through a mechanism of global inhibition). (iii) Weight updates
affect only MB→Readout connections (AL connections are not plastic). Hebbian updates occur as:
∆wij = αfifj if fifj > 0 (growth), and ∆wij = −δwij if fifj = 0 (decay), where fi, fj are two
neural firing rates (fi ∈MB, fj ∈ Readouts) with connection weight wij .

In this work we tested whether the MothNet architecture can usefully serve as a front-end feature
generator for an ML classifier (our thanks to Blake Richards for this suggestion). We combined
MothNet with a downstream ML module, so that the Readouts of the trained AL-MB model were
fed into the ML module as additional features. From the ML perspective, the AL-MB acted as
an automatic feature generator; from the biological perspective, the ML module stood in for the
downstream processing in more complex BNNs. Our Test Case was a non-spatial, 85-feature, 10-class
task derived from the downsampled, vectorized MNIST data set (hereafter “vMNIST”). On this
non-spatial dataset, CNNs or other spatial methods were not applicable.

The trained Mothnet Readouts, used as features, significantly improved the accuracies of ML methods
(NN, SVM, and Nearest Neighbors) on the test set in almost every case. That is, the original input
features (pixels) contained class-relevant information unavailable to the ML methods alone, but which
the AL-MB network encoded in a form that enabled the ML methods to access it. MothNet-generated
features also significantly out-performed features generated by PCA (Principal Components Analysis),
PLS (Partial Least Squares), NNs, and transfer learning (weight pretraining) in terms of their ability to
improve ML accuracy. These results indicate that the insect-derived network generated significantly
stronger features than these other methods.

2 Experimental setup

To generate vMNIST, we downsampled, preprocessed, and vectorized the MNIST data set to give
samples with 85 pixels-as-features. vMNIST has the advantage that our baseline ML methods
(Nearest Neighbors, SVM, and Neural Net) do not attain full accuracy at low N. Trained accuracy of
baseline ML methods was controlled by restricting training data. Full network architecture details
of the AL-MB model (MothNet) are given in [11]. Full Matlab code for these cyborg experiments
including comparison methods, all details re ML methods and hyperparameters, and code for MothNet
simulations, can be found at [12]. MothNet instances were generated randomly from templates that
specified connectivity parameters. We ran two sets of experiments:

Cyborg vs baseline ML methods on vMNIST Experiments were structured as follows:
1. A random set of N training samples per class was drawn from vMNIST.
2. The ML methods trained on these samples, to provide a baseline.
3. MothNet was trained on these same samples, using time-evolved stochastic differential equation

simulations and Hebbian updates, as in [11].
4. The ML methods were then retrained from scratch, with the Readout Neuron outputs from

the trained MothNet instance fed in as additional features. These were the “insect cyborgs”, i.e. an
AL-MB feature generator joined to a ML classifier.

5. Trained ML accuracies of the baselines and cyborgs were compared to assess gains.

MothNet features vs other feature generators To compare the effectiveness of MothNet features
vs features generated by conventional ML methods, we ran vMNIST experiments structured as as
above, but with MothNet replaced by one of the following feature generators:

1. PCA applied to the vMNIST training samples. The new features were the projections onto each
of the top 10 modes.

2. PLS applied to the vMNIST training samples. The new features were the projections onto each
of the top 10 modes. Since PLS incorporates class information, we expected it to out-perform PCA.

3. NN pre-trained on the vMNIST training samples. The new features were the (logs of the) 10
output units. This feature generator was used as a front end to SVM and Nearest Neighbors only.
Since vMNIST has no spatial content, CNNs were not used.

4. NN with weights initialized by training on an 85-feature vectorized Omniglot data set [13], then
trained on the vMNIST data as usual (transfer learning, applied to the NN baseline only). Omniglot
is an MNIST-like thumbnail collection of 1623 characters with 20 samples each.

(5.) For the baseline NN method, we used one hidden layer. Including two hidden layers did not

2



improve baseline performance. This was an implicit control, showing that MothNet features were not
equivalent to just adding an extra layer to a NN.

3 Results

MothNet readouts as features significantly improved accuracy of ML methods, demonstrating that the
MothNet architecture effectively captured new class-relevant features. We also tested a non-spatial,
10-class task derived from the Omniglot data set and found similar gains. MothNet-generated features
were also far more effective than the comparison feature generators (PCA, PLS, and NN).

Gains due to MothNet features on vMNIST
ML baseline test set accuracies ranged from 10% to 88%, depending on method and on N (we
stopped our sweep at N = 100). This baseline accuracy is marked by the lower colored circles in
Fig 1. Cyborg test set accuracy is marked by the upper colored circles in Fig 1, and the raw gains in
accuracy due to MothNet features are marked by thick vertical bars. MothNet features increased raw
accuracy across all ML models. Relative reduction in test set error, as a percentage of baseline error,
was 20% to 55%, with high baseline accuracies seeing the most benefit (Fig 2). NN models saw the
greatest benefits, with 40% to 55% relative reduction in test error. Remarkably, a MothNet front-end
improved ML accuracy even in cases where the ML baseline already exceeded the ≈ 75% accuracy
ceiling of MothNet (e.g. NNs at N = 15 to 100 samples per class): the MothNet readouts contained
clustering information which ML methods leveraged more effectively than MothNet itself. Gains
were significant in almost all cases with N > 3. Table 1 gives p-values of the gains due to MothNet.

Figure 1: Test set accuracy of baseline ML and cyborg classifiers, vs N training samples per class.
Baseline ML accuracies are shown as small circles, cyborg accuracies are shown as larger circles, and
thick vertical bars mark the increase in accuracy. MothNet test accuracy is ≈ 65% to 75%. Baseline
methods’ std dev (σ) are given as solid dots near the x-axis. Inset: Gain in accuracy (cyborg over ML
baseline), in units of std dev (Fisher discriminant), showing that gains were significant (see Table 1).

Table 1: p-values of gains over ML baseline due to MothNet. Gains were significant for all N > 3.

Method N =1 2 3 5 7 10 15 20 30 50 70 100
NearNeigh .58 .42 .20 .02 .04 .04 .02 .01 .09 .07 .00 .03
SVM 1.00 .96 .31 .39 .18 .04 .06 .16 .04 .08 .00 .04
Neural Net .89 .76 .48 .07 .03 .01 .01 .01 .00 .01 .08 .00

3



Figure 2: Relative reduction in test set error due to MothNet features. A: On vMNIST, error
reductions were especially high (40% to 60%) for NNs. B: On vOmniglot error reductions were
highest for NNs and SVMs.

Comparison to other feature generators
We ran the cyborg framework on vMNIST using PCA (projections onto top 10 modes), PLS (projec-
tion onto top 10 modes), and NN (logs of the 10 output units) as feature generators. Each feature
generator was trained (e.g. PCA projections were defined) using the training samples. Table 2 gives
the relative increase in mean accuracy due to the various feature generators (or to pre-training) for
NN models (13 runs per data point). Results for Nearest Neighbors and SVM were similar. MothNet
features were far more effective than these other methods.

Table 2: Mean relative percentage increase in accuracy due to various feature generators (“F Gen”),
for NN classifiers. “preTrain ” means: pretrain weights on Omniglot, then train on vMNIST.

F Gen N=1 2 3 5 7 10 15 20 30 50 70 100
PCA -57 0.2 -0.8 1.2 2.6 1.7 0.3 1.3 -0.3 0.2 0.3 0.2
PLS NA 0.2 5.9 1.0 1.5 2.8 -0.2 1.2 0.3 1.6 1.5 1.9
preTrain 15 4.2 5.8 -3.1 -1.1 0.2 1.3 1.5 -3.4 -0.4 -4.7 -1.1
MothNet 4 17 15 13.1 13 11.3 10.8 9.0 9.7 8.5 7.1 6.4

Effect of pass-through AL
The MothNet architecture has two main layers: a competitive inhibition layer (AL) and a high-
dimensional, sparse layer (MB). To test the effectiveness the MB alone, we ran the vMNIST experi-
ments, but using a pass-through (identity) AL layer for MothNet. Cyborgs with a pass-through AL
still posted significant improvements in accuracy over baseline ML methods. The gains of cyborgs
with pass-through ALs were generally between 60% and 100% of the gains posted by cyborgs with
normal ALs (see Table 3), suggesting that the high-dimensional, trainable layer (the MB) was most
important. However, the competitive inhibition of the AL layer clearly added value in terms of
generating strong features, up to 40% of the total gain. NNs benefitted most from the AL layer.

Table 3: Relative importance of the MB, vs number of training samples per class N . Entries give the
gains posted by cyborgs with pass-through ALs as a percentage of the gains of full cyborgs, for the
three ML methods. Entries = 100% indicate that average gains from the pass-through AL were ≥
average gains from the normal AL.

Method N =1 2 3 5 7 10 15 20 30 40 50 70 100
NearNeigh 82 100 91 76 100 100 58 74 88 64 100 100 65
SVM NA NA 100 87 79 97 75 94 98 82 100 76 15
NN 100 60 62 67 75 91 100 93 100 100 100 82 65

4



4 Discussion

We deployed an automated feature generator based on a very simple BNN, containing three key
elements rare in engineered NNs but endemic in BNNs of all complexity levels: (i) competitive
inhibition; (ii) sparse projection into a high-dimensional sparse layer; and (iii) Hebbian weight
updates for training. This bio-mimetic feature generator significantly improved the learning abilities
of standard ML methods on both vMNIST and vOmniglot. Class-relevant information in the raw
feature distributions, not extracted by the ML methods alone, was evidently made accessible by
MothNet’s pre-processing. In addition, MothNet features were consistently much more useful than
features generated by standard methods such as PCA, PLS, NNs, and pre-training.

The competitive inhibition layer may enhance classification by creating several attractor basins for
inputs, each focused on the features that present most strongly for a given class. This may push
otherwise similar samples (of different classes) away from each other, towards their respective class
attractors, increasing the effective distance between the samples. The sparse connectivity from AL to
MB has been analysed as an additive function, which has computational and anti-noise benefits [14].

The insect MB brings to mind sparse autoencoders (SAs) e.g. [15]. However, there are several
differences: MBs do not seek to match the identity function; the sparse layers of SAs have fewer
active neurons than the input dimension, while in the MB the number of active neurons is much
greater than the input dimension; MBs have no pre-training step; and the MB needs very few samples
to bake in structure that improves classification. The MB differs from Reservoir Networks [16] in
that MB neurons have no recurrent connections.

Finally, the Hebbian update mechanism appears to be quite distinct from backprop. It has no objective
function or output-based loss that is pushed back through the network, and Hebbian weight updates,
either growth or decay, occur on a local “use it or lose it” basis. We suspect that the dissimilarity of
the optimizers (MothNet vs ML) was an asset in terms of increasing total encoded information.

Acknowledgements
Our thanks to Blake Richards, who suggested these experiments.
CBD’s work was partially supported by the Swartz Foundation.
JNK acknowledges support from the Air Force Office of Scientific Research (FA9550-19-1-0011).

References
[1] D. Koller and Y. Bengio, “A fireside chat with Daphne Koller.” [online] https://www.youtube.com/

watch?v=N4mdV1CIpvI, 2018.
[2] S. Srinivasan, R. Greenspan, C. Stevens, and D. Grover, “Deep(er) learning,” J Neurosci, 2018.
[3] J. Riffell, H. Lei, L. Abrell, and J. Hildebrand, “Neural basis of a pollinator’s buffet: Olfactory specialization

and learning in Manduca sexta,” Science, 2012.
[4] R. Wilson, “Neural and behavioral mechanisms of olfactory perception,” Curr Opinion Neurobio, 2008.
[5] R. Campbell and G. Turner, “The mushroom body,” Curr Biol, 2010.
[6] V. Bhandawat, S. Olsen, N. Gouwens, M. Schlief, and R. Wilson, “Sensory processing in the Drosophila

antennal lobe increases reliability and separability of ensemble odor representations,” Nature Neuro, 2007.
[7] S. Ganguli and H. Sompolinsky, “Compressed sensing, sparsity, and dimensionality in neuronal information

processing and data analysis,” Ann Rev Neurosci, 2012.
[8] A. Litwin-Kumar, K. Harris, R. Axel, H. Sompolinsky, and L. Abbott, “Optimal degrees of synaptic

connectivity,” Neuron, 2017.
[9] P. Roelfsema and A. Holtmaat, “Control of synaptic plasticity in deep cortical networks,” Nature Rev

Neurosci, 2018.
[10] S. Caron, V. Ruta, L. Abbott, and R. Axel, “Random convergence of olfactory inputs in the Drosophila

mushroom body.,” Nature, 2013.
[11] C. Delahunt and J. Kutz, “Putting a bug in ML: The moth olfactory network learns to read MNIST,” Neural

Networks, 2019.
[12] C. Delahunt, “Codebase for moth-MNIST learning simulations.” [online]https://github.com/

charlesDelahunt/PuttingABugInML, 2018.
[13] B. Lake, R. Salakhutdinov, and J. Tenenbaum, “Human-level concept learning through probabilistic

program induction,” Science, 2015.
[14] K. Harris, “Additive function approximation in the brain,” arXiv, 2019.
[15] A. Makhzani and B. Frey, “k-sparse autoencoders,” CoRR, 2013.
[16] D. V. B Schrauwen and J. V. Campenhout, “An overview of reservoir computing: theory, applications and

implementations,” in Proc 15th Eur Symp on Artificial Neural Networks, 2007.

5

https://www.youtube.com/watch?v=N4mdV1CIpvI
https://www.youtube.com/watch?v=N4mdV1CIpvI
https://github.com/charlesDelahunt/PuttingABugInML
https://github.com/charlesDelahunt/PuttingABugInML

	Introduction
	Experimental setup
	Results
	Discussion

