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Abstract
Brain lesion and anatomy segmentation in magnetic resonance images are fundamental tasks in
neuroimaging research and clinical practice. Given enough training data, convolutional neuronal
networks (CNN) proved to outperform all existent techniques in both tasks independently. How-
ever, to date, little work has been done regarding simultaneous learning of brain lesion and anatomy
segmentation from disjoint datasets.

In this work we focus on training a single CNN model to predict brain tissue and lesion segmen-
tations using heterogeneous datasets labeled independently, according to only one of these tasks (a
common scenario when using publicly available datasets). We show that label contradiction issues
can arise in this case, and propose a novel adaptive cross entropy (ACE) loss function that makes
such training possible. We provide quantitative evaluation in two different scenarios, benchmark-
ing the proposed method in comparison with a multi-network approach. Our experiments suggest
ACE loss enables training of single models when standard cross entropy and Dice loss functions
tend to fail. Moreover, we show that it is possible to achieve competitive results when comparing
with multiple networks trained for independent tasks.
Keywords: Brain image segmentation, heterogeneous datasets, convolutional neural networks

1. Introduction

Segmentation of anatomical and pathological structures in volumetric images is a fundamental task
for biomedical image analysis. It constitutes the first step in several medical procedures such as
shape analysis for population studies, computed assisted diagnosis/surgery and automatic radiother-
apy planning, among many others. Segmentation accuracy is therefore of paramount importance in
these cases, since it will necessarily influence the overall quality of such procedures.

During the last years, convolutional neural networks (CNNs) proved to be highly accurate to
perform medical image segmentation (Ronneberger et al., 2015; Kamnitsas et al., 2016, 2017a;
Shakeri et al., 2016). In this scenario, a training dataset consists of medical images with expert
annotations associated to a particular task of interest. Following a supervised approach, CNNs are
trained to perform such task by learning the network parameters that minimize a given loss function
over the training data. In the context of brain image segmentation (of main interest in this work),
publicly available datasets with manual annotations usually correspond to single tasks. These tasks
might be associated to anatomy segmentation (e.g. brain tissues (Mendrik et al., 2015; Cocosco
et al., 1997), sub-cortical structures (Rohlfing, 2012)) or pathological segmentation (e.g. brain
tumours (BRATS, 2012), white matter hiper-intensities (WMH, 2017)).
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Figure 1: Example of brain MRI with overlapped annotations corresponding to anatomy, lesion
and joint segmentations. Note that whatever is considered as background in both, WMH
and tumor segmentation datasets, should be classified as tissue according to the anatomy
dataset. This fact misleads the training process of a single CNN when using standard
categorical cross entropy or Dice losses to perform joint learning of lesion and anatomy
segmentation.

Even if most publicly available datasets provide image annotations for single tasks, in practice
it is usually desirable to train single models which can learn to perform multiple segmentation tasks
simultaneously. We focus on the particular case of brain magnetic resonance images (MRI), where
segmenting both brain lesions and anatomical structures is especially relevant. For example, in
the context of neurovascular and neurodegenerative diseases (Moeskops et al., 2018), white matter
hyper-intensity (WMH) segmentation in brain MRI is usually combined with brain tissue segmen-
tation when studying cognitive dysfunction in elderly patients (De Bresser et al., 2010). Another
example is related to brain tumour segmentation (Menze et al., 2015). Combining brain tumor seg-
mentation with brain tissue classification (Moon et al., 2002) would have an enormous potential
value for improved medical research and biomarkers discovery. We will explore both application
scenarios and provide experimental evidence about the effectiveness of the proposed method to
perform joint learning of brain lesion and anatomy segmentation in these cases.

Learning to segment multiple structures from heterogeneous datasets is a challenging task, since
labels coming from different datasets may contradict each other and mislead the training process.
In the particular case of brain lesion and anatomy segmentation from MRI, Figure 1 illustrates
this issue. Given two datasets with disjoint labels (for example, brain tissues and WMH lesions),
whatever is considered as background in the lesion dataset, should be classified as tissue according
to the anatomy dataset. This raises a label contradiction problem that will be studied in this work.

We interpret brain lesion and anatomy segmentation as two different tasks which are learned
from heterogeneous datasets, meaning that each dataset is annotated for a single task. In what
follows, we briefly describe related works about learning to segment from disjoint annotations,
discuss the issues that arise when training a single CNN model to perform both tasks with standard
loss functions, and propose a simple, yet effective, adaptive loss function that makes it possible to
train such model using heterogeneous datasets.
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1.1. Related Work

Similar multi-task problems in the context of image segmentation were explored in recent works.
Regarding segmentation for medical images, (Moeskops et al., 2016) studied how a single deep
CNN can be used to predict multiple anatomical structures for three different tasks including brain
MRI, breast MRI and cardiac computed tomography angiography (CTA) segmentation. They showed
that a standard combined training procedure with balanced mini-batch sampling results in segmen-
tation performance equivalent to that of a deep CNN trained specifically for that task. This problem
differs from our setting since every dataset is associated to a different organ. Therefore, labels
from different datasets can not co-exists in a single image avoiding the label contradiction problem
illustrated in Figure 1.

Closest to our work are those by (Fourure et al., 2017; Rajchl et al., 2018), where a single seg-
mentation model is learned from multiple training datasets defined on images representing similar
domains. In (Fourure et al., 2017), the authors train a model to perform semantic full scene labeling
in outdoor images coming from different datasets with heterogeneous labels. They propose a selec-
tive cross entropy loss that, instead of considering a single final softmax activation function defined
over the entire set of possible labels, is computed using a dataset-wise softmax activation function.
This dataset-wise softmax only takes into account those labels available in the dataset corresponding
to the current training sample. A similar strategy is followed by (Rajchl et al., 2018) in the context
of brain image segmentation. The authors propose the NeuroNet, a multi-output CNN that mim-
ics several popular and state-of-the-art brain segmentation tools producing segmentations for brain
tissues, cortical and sub-cortical structures. Differently from (Fourure et al., 2017), NeuroNet com-
bines a multi-decoder architecture (one decoder for every dataset/task) with an analogous multi-task
loss based on cross entropy, defined as the average of independent loss functions computed for every
single task. Note that our problem differs from those tackled in both papers: our aim is to produce a
segmentation model that assigns a single label to every voxel (considering the union of anatomical
and pathological labels). On the contrary, they aim at predicting one and exactly one label from
each labelset for every voxel, i.e. multiple labels will be assigned to every voxel.

2. Learning Brain Lesion and Anatomy Segmentation from Heterogeneous Datasets

Problem Statement: Given a set of K heterogeneous datasets {Dk}, 1 ≤ k ≤ K, let us formalize
the joint learning segmentation problem. Each dataset Dk = {(x,y)n} is composed of pairs (x,y)n,
where x is an image and y a segmentation mask assigning a label l ∈Lk to every i-th voxel xi. Lk
is the labelset associated to dataset Dk. We assume disjoint labelsets, except for the background
label included in all datasets. We aim at learning the parameters Θ for a single segmentation model
f (x̂;Θ) that, given a new image x̂, produces a segmentation mask ŷ where every voxel ŷi ∈ L̂ =⋃K

k=1 Lk. The label space L̂ is built as the union of all labelsets, and we assign a single label to
every voxel ŷi.

Note that, since the new labelset L̂ includes all labels from all datasets, some structures that
were labeled as background in one dataset may be labeled as foreground in other datasets, raising
the label contradiction problem shown in Figures 1 and 2.a. In these cases, the foreground labels
(e.g. brain tissue labels) should prevail over the background labels in the final mask generated by
the segmentation model.

In case of MRI brain lesion and anatomy segmentation, we have K = 2 brain MRI datasets.
The first one, denoted DA , is annotated with anatomical (brain tissue) labels while the second one,
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Figure 2: (a) Example of image patches with overlapped segmentation masks sampled from: the
lesion datasets (tumor and WMH), the anatomical (brain tissue) dataset and the desired
combined segmentation for which we do not have training data. Problematic areas are
those for which the original lesion datasets indicate background label, while they should
be annotated as actual tissue labels.
(b) The proposed adaptive cross entropy behaves differently depending on the structures
of interest under consideration. We reinterpret the meaning assigned to the lesion back-
ground label (in blue) as ’any label that is not lesion’ and modify the loss function ac-
cordingly.

referred as DL , considers brain lesions (tumor or WMH are the application scenarios studied in
this work). The corresponding label spaces for every dataset are LA and LL . In what follows,
we describe multiple alternatives to train such model based on a standard U-Net architecture (Ron-
neberger et al., 2015).

2.1. Naive Models

We first consider a naive model where a single U-Net is trained by minimizing standard loss func-
tions (typical categorical cross entropy and Dice losses), to perform joint learning from heteroge-
neous datasets. We employ a standard U-Net architecture (see Appendix A for a complete descrip-
tion of the architecture) with a final softmax layer producing |L̂ | probability maps, i.e. one for
each class in the joint labelset L̂ . Patch-based training is performed by constructing balanced mini-
batches of image patches. We balance the mini-batches by sampling with equal probability from all
datasets and all classes.

As stated in section 1.1 and illustrated in Figure 2.a, labels coming from different datasets may
contradict each other and mislead the training process. Brain tissue segmentations or cortical/sub-
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cortical structures generally cover the complete brain mass. However, lesion annotations like WMH
and tumour cover only a small portion of it. The main issue with the proposed naive model arises
from this fact: when sampling image patches containing small lesions, whatever is considered back-
ground in the patch should be actually classified as some type of brain tissue. However, since the
lesion dataset does not contain brain tissue annotations, it will be considered as background. In
other words, the model will be encouraged to classify brain tissue as background. In the results that
will be presented in Section 3, we provide empirical evidence of this issue and its impact in model
performance.

2.2. Multi-network Baseline

A trivial solution to the aforementioned problem is to use multiple independent models, trained
for every specific task. In this case, segmentation results are then combined following some kind
of fusion scheme. In case of brain lesion and tissue segmentation, since lesion labels prevail over
tissue labels, we can simply overwrite them. However, note that such model requires extra efforts
at training time: we need to train a single model for every dataset, increasing not only the training
time but also the overall model complexity, i.e. the number of learned parameters. Moreover, at
test time, every model is evaluated on the test image and a label fusion strategy must be applied to
combine the multiple predictions.

We consider a multi U-Net model as baseline to benchmark the proposed solution, training
a single U-Net with categorical cross entropy in every dataset. Label fusion is implemented by
overwriting the brain tissue segmentation with the (non-background) lesion masks.

2.3. Adaptive Cross Entropy

In this work, we propose to overcome the issues that arise when training a single CNN from het-
erogeneous (and potentially contradictory) datasets with a new loss function titled adaptive cross
entropy (ACE). Let us first recall the classical formulation of cross entropy. Given an estimate dis-
tribution q for a true probability distribution p defined over the same discrete set (in our setting, the
set L̂ of possible labels, with C = |L̂ |), the cross entropy between them is computed as:

H(p,q) =−
C

∑
j=1

p j · log(q j). (1)

For a given voxel xi with ground-truth label yi ∈ L̂ (with 1≤ yi≤C = |L̂ |), we compute the cat-
egorical cross entropy loss between the voxel-wise model prediction f (xi;Θ), and the corresponding
one-hot encoded version of yi denoted by e(yi) as:

H(xi,yi) =−
C

∑
j=1

e(yi)
j · log( f (xi;Θ) j) =−

C

∑
j=1

1[yi= j] · log( f (xi;Θ) j)

=−log( f (xi;Θ)yi). (2)

The standard voxel-wise cross entropy loss LH is aggregated as the average loss considering all
voxels {xi}1≤i≤m in the image patch:
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LH(x,y) =−
m

∑
i=1

log( f (xi;Θ)yi). (3)

The cross entropy loss LH is minimized when the prediction equals the ground-truth. In the
multi-task context discussed in this work, this raises the label contradiction problem between lesion
background and brain tissue segmentation illustrated in Figure 2.a. This fact motivates the design
of the adaptive cross entropy (ACE) loss which behaves differently depending on the structures
of interest under consideration. We reinterpret the meaning assigned to the background label of
the lesion dataset as ‘any label that is not lesion’ and modify the loss function accordingly. The
proposed adaptive cross entropy is therefore defined as:

HA(xi,yi) =

{
−log( f (xi;Θ)yi) if yi is not lesion background
−log(∑ j∈{L̂ \L (y)} f (xi;Θ) j) if yi is lesion background

(4)

where the set {L̂ \L (y)} contains all labels, except those in the current image patch ground-truth
(referred as L (y)). Equation 4 shows that ACE employs the standard cross entropy formulation
when voxel i is labeled as anything but lesion background. However, when voxel i corresponds
to lesion background, we compute −log(s), where s = ∑ j∈{L̂ \L (y)} f (xi;Θ) j is the sum of scores
f (xi;Θ) j for all classes j that are not present in the patch y (including background). In this way,
when the label is not in conflict, minimizing HA is equivalent to maximizing the score for the correct
class. However, when dealing with a voxel whose ground truth is lesion background (i.e. we are not
sure about the brain tissue that corresponds to it), the model tends to maximize the probability for
all non-lesion classes. Figure 2.b illustrates this idea. In practice, we compute the aggregated ACE
loss LA

H for all voxels {xi}1≤i≤m in the image patch as: LA
H(x,y) =

1
m ∑

m
i=1 HA(xi,yi).

Note that in the ACE formulation, we sum over the scores before taking the logarithm. The
reasoning behind having the sum inside the log function on the proposed adaptive cross entropy is
to effectively unify those labels that are not lesion (i.e. background and brain tissue segmentations,
which raise the label contradiction problem illustrated in Figure 2.a) in a unique class. We do that
by assigning to this virtual class the sum of the scores the model assigned to each of those labels.

Note that in the application scenarios studied in this work, lesion labels collide with brain tis-
sues, motivating the ACE formulation given in Equation 4. Nonetheless, given an arbitrary number
of K datasets, in general it is straightforward to apply the proposed ACE loss to different labels
raising similar issues, by just changing the condition that adapts the loss behaviour.

3. Experiments & Results

Six different datasets were used in the experimental comparative analysis. We consider joint learn-
ing of brain tissue segmentation and two separate type of lesions: brain tumor and WMH. We trained
models specialized for brain tissue + WMH, and other models for brain tissue + tumor, showing that
the proposed ACE loss function can generalize to different scenarios.

BRAIN TISSUES + WMH SCENARIO

We employed the training data provided by the MRBrainS13 Challenge (Mendrik et al., 2015)
(brain tissue annotations), the WMH Segmentation Challenge (WMH, 2017) (WMH lesions) and
MRBrains18 (MRBrainS, 2018) (brain tissues + WMH). We trained/validated our models using the
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Figure 3: Experimental results obtained when comparing a single model trained with the proposed
ACE loss, with the Multi-UNet and the naive cross entropy and Dice models (red diamond
indicates the mean value). Note that a single model trained with ACE achieves equivalent
performance to that of Multi-UNet, while naive models under-perform by a big margin in
both cases.

Table 1: Numerical results corresponding to the experiments shown in Figure 3.
Brain Tissues + WMH Brain Tissues + Tumor

WMH CSF GM WM Edema Tumor CSF GM WM
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Multi UNet 0.516 0.232 0.694 0.028 0.757 0.035 0.77 0.035 0.509 0.228 0.586 0.143 0.778 0.021 0.877 0.02 0.874 0.026
Naive CE 0.411 0.294 0.075 0.057 0.112 0.067 0 0 0.335 0.219 0 0 0.002 0.003 0.013 0.011 0.003 0.004
Naive Dice 0.508 0.218 0.721 0.035 0.75 0.029 0.783 0.038 0.114 0.126 0.282 0.252 0.432 0.032 0.863 0.025 0.846 0.042
ACE 0.54 0.245 0.75 0.031 0.802 0.034 0.807 0.033 0.414 0.264 0.415 0.3 0.779 0.018 0.891 0.013 0.891 0.012

training partition of MRBrainS13 as anatomical dataset (DA ) and WMH Segmentation Challenge
as lesion dataset (DL ). For testing, we used the joint segmentations provided for training in the MR-
BrainS2018 Challenge, to evaluate the simultaneous predictions. The data from the MRBrainS13
Challenge consists of 5 images with brain tissue annotations, of which 4 were used for training, and
the remaining one for validation. The WMH Segmentation Challenge provides 60 images with the
corresponding WMH reference segmentation, of which 48 were used for training, and the rest for
validation. The MRBrainS18 Challenge provides 7 images, which were all used for evaluation.

BRAIN TISSUES + TUMOR SCENARIO

Given the lack of datasets with simultaneous annotations for brain tumors and tissues, we resorted
to using synthetic and simulated images. We trained/validated our models using 15 images from
the Brainweb (Cocosco et al., 1997) synthetic brain phantoms with brain tissue annotations for the
anatomical dataset (DA ). For the lesion dataset (DL ) we employed 50 simulated tumor images
available from the BRATS2012 challenge (BRATS, 2012). For testing, we simulated 20 brain tu-
mors using Tumorsim (Prastawa et al., 2009), using 5 healthy Brainweb phantom probability maps.
In that way, combined segmentations of brain tissue and tumors were available for testing. Note
that, for the sake of fairness, healthy images used to simulate brain tumors for testing were not
included in the training dataset (DA ).
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Figure 4: Qualitative results for both scenarios (brain tissues + WMH in the top row, and brain
tissues + tumor segmentation in the bottom row). Note that using naive cross entropy
and Dice losses result in very poor performance. The proposed ACE makes it possible to
train a single model for both tasks with equivalent performance to multiple networks by
solving the label contradiction issues.

RESULTS & DISCUSSION

Figure 3 summarizes the quantitative results for both application scenarios, when comparing the
Multi-UNet model with single models trained with naive cross entropy and Dice functions as well
as the proposed ACE1 (see Figure 4 for qualitative results). As expected, the Multi-UNet model
trained with standard cross entropy outperforms the single models trained with naive losses. More
importantly, our proposed ACE makes it possible to train a single model for joint learning of brain
lesion and anatomy from heterogeneous datasets, achieving equivalent performance to that of Multi-
UNet.

This is due to the fact that both, Multi-UNet and the single ACE models, are not affected by the
label contradiction problem illustrated in Figure 2.a. Note that in case of brain tissue segmentation,
the single model trained with ACE tends to outperform even the Multi-UNet model. As discussed
in (Rajchl et al., 2018), learning jointly from hierarchical sets of class labels has the potential to
increase the overall accuracy based on theory derived from multi-task learning. We hypothesize
that this increase in performance is related to this fact: since the model trained with ACE learns to
predict lesion and tissues simultaneously, it can also learn label interactions that the Multi-UNet can
not capture.

1. We implemented the CNN in Keras and trained it using Adam optimizer with default parameters. Balanced mini-
batches of 7 image patches of size 32×32×32 are used during training. A complete description of the baseline UNet
architecture used for both, single and multi-network models, is provided in Appendix A.
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A deeper analysis of the quantitative results reveals that the single UNet model trained with
the proposed ACE achieved equivalent performance to the Multi-UNet in WMH segmentation (no
significant differences according to Wilcoxon test), better or equivalent performance in terms of
brain tissue segmentation (depending on the brain structure) and only worse performance for edema
and tumor. This worse performance for edema and tumor is explained by the fact that the Multi-
UNet was trained using all available modalities per dataset, while the single UNet was trained using
only those modalities available in both, anatomical and lesion datasets. This is a limitation of our
approach when compared with multiple UNets trained for specific tasks: since we perform joint
training of a single model with fixed number of input channels, we can only use those sequences
available in both anatomy and lesion datasets. In case of edema and brain tumor segmentation,
the Multi-UNet was trained with multiple MR modalities for the tumor segmentation task (it uses
T1, T1g, T2 and FLAIR) while the single UNet was trained using only T1 images (all details
about available MR modalities for every dataset are provided in Appendix B). This requirement
may represent a limitation if the datasets depend on different types of image modalities. There are
alternatives that could be considered to deal with this issue like imputing the missing modalities
by means of image synthesis or using ad-hoc techniques like the HeMIS (Hetero-Modal Image
Segmentation) model by (Havaei et al., 2016).

Even if all images used in the experiments are MRI, there is a shift in the distribution of image
intensities when we go from datasets used at training and test time. This is known as the multi-
domain problem, and is usually addressed using domain adaptation techniques (Kamnitsas et al.,
2017b). In this work, we did not take into account the multi-domain problem. In the future, we plan
to extend the proposed method and incorporate domain adaptation, further improving the accuracy
of the results.

4. Conclusions

In this work we proposed the adaptive cross entropy loss, a novel function to perform joint learning
of brain lesion and anatomy segmentation from heterogeneous datasets using CNNs. The proposed
loss takes into account potential label contradiction conflicts that can arise when training segmen-
tation algorithms for multiple tasks using datasets with disjoint annotations. We trained single
CNN models using the proposed ACE, naive cross entropy and Dice losses, and compared their
performance with a Multi-UNet model where independent CNNs were trained for every task. Ex-
perimental evaluations in two scenarios provided empirical evidence about the effectiveness of the
proposed approach.

In the future, we plan to extend the evaluation of the proposed loss function to other CNN ar-
chitectures (Deepmedic (Kamnitsas et al., 2016) for example) and to alternative brain MRI segmen-
tation scenarios (e.g. considering subcortical structures as anatomical segmentation or traumatic
brain injuries as lesions). Moreover, we plan to investigate the effects of the multi-domain problem
in this context, and incorporate domain adaptation strategies to address this issue when learning
from heterogeneous datasets.

Regarding the ACE formulation, we plan to explore alternative weighting mechanisms within
the loss function that could help to alleviate the class-imbalance problems that could emerge when
dealing with tiny structures of interest.
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Appendix A. Detailed Network Architecture

The architecture used in this work is based on a standard U-Net (Ronneberger et al., 2015). It can be
divided into a contraction and an expansion path. Each path is a sequence of four convolution blocks,
composed of two convolutional layers with 3× 3× 3 kernels and one voxel of padding, each one
followed a ReLU activation layer. We also used batch-normalization to ease training. Every block
from the contraction path is connected to the next one by a 2×2×2 max-pooling layer, while the
blocks from the expansion path are connected by 2×2×2 transposed convolutions for upsampling.
The output from each block of the contraction path is added to the input of the corresponding
block from the expansion path to combine the localized features of the former with the high level
information from the latter. This is in contrast with standard U-Net which uses concatenation of
feature maps instead of sumation. The layers from the first block have 32 channels. The number of
channels is doubled in every max-pooling layer and halved in every transposed convolution layer.
Finally, a 1×1×1 convolution layer with softmax activation is used to convert the output of the last
layer into voxel-wise label probability maps.

We implemented the CNN in Tensorflow and trained it using Adam optimizer. The weights
were initialized using He method (He et al., 2015). Balanced mini-batches of 7 image patches of
size 32×32×32 were used during training.

Appendix B. MR Sequences Available Per Dataset

Different MR sequences were available for every dataset. Table 2 summarizes this information.

Table 2: MR sequences available per dataset.
Scenario Dataset T1 T1 with Gadolinium (T1g) T2 IR FLAIR

Brain Tissue + WMH
MRBrains13 X X X

WMH X X
MRBrains18 X X X

Brain Tissue + Tumor
BrainWeb X
BRATS12 X X X X
Tumorsim X X X X

The UNet architecture used in our experiments can receive multiple MR sequences as input
by simply interpreting them as multiple image channels. Note that the Multi-UNet network was
trained with as many sequences as possible per task. For example, if T1, T2 and FLAIR sequences
were available in the lesion dataset and only T1, T2 were available for the anatomy dataset, we
trained every independent UNet using all available sequences (of course, these sequences have to be
available in the test dataset as well). However, when training the single UNet models using the naive
losses and ACE, we can only use those sequences available in both anatomy and lesion datasets.

Given the MR sequences available for every dataset (shown in Table 2) we trained the single
and multi-network models under the following setting:

• Brain Tissue + WMH scenario: The Multi-UNet model was trained and tested using T1+IR+FLAIR
for the brain tissue segmentation task, and T1+FLAIR for the WMH segmentation task. The
single UNet models were trained using only T1+FLAIR for all tasks.
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• Brain Tissue + Tumor scenario: The Multi-UNet model was trained and tested using T1 for
the brain tissue segmentation task, and T1+T1g+T2+FLAIR for the tumor segmentation task.
The single UNet models were trained using only T1 for all tasks.

Note that this setting gives some advantages to the Multi-UNet model over the single model
trained with ACE, since it uses more MR sequences for the lesion segmentation task. This is re-
flected in the results shown in Figure 3, specially for the brain lesion segmentation task, where the
better performance shown by the Multi-UNet model with respecto to the single model trained with
ACE can be explained by this difference in the number of sequences used to train them.
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