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ABSTRACT

Due to the significant costs of data generation, many prediction tasks within drug1

discovery are by nature few-shot regression (FSR) problems, including accurate2

modelling of biological assays. Although a number of few-shot classification and3

reinforcement learning methods exist for similar applications, we find relatively4

few FSR methods meeting the performance standards required for such tasks under5

real-world constraints. Inspired by deep kernel learning, we develop a novel FSR6

algorithm that is better suited to these settings. Our algorithm consists of learning7

a deep network in combination with a kernel function and a differentiable kernel8

algorithm. As the choice of kernel is critical, our algorithm learns to find the9

appropriate kernel for each task during inference. It thus performs more effectively10

with complex task distributions, outperforming current state-of-the-art algorithms11

on both toy and novel, real-world benchmarks that we introduce herein. By12

introducing novel benchmarks derived from biological assays, we hope that the13

community will progress towards the development of FSR algorithms suitable for14

use in noisy and uncertain environments such as drug discovery.15

1 INTRODUCTION16

Following breakthroughs in domains including computer vision, autonomous driving, and natural17

language processing, deep learning methods are now entering the domain of pharmaceutical R&D.18

Recent successes include the deconvolution of biological targets from -omics data (Min et al.,19

2017), generation of drug-like compounds via de novo molecular design (Xu et al., 2019), chemical20

synthesis planning (Segler and Waller, 2017; Segler et al., 2017), and multi-modal image analysis for21

quantification of cellular response (Min et al., 2017). A common characteristic of these applications,22

however, is the availability of high quality, high quantity training data. Unfortunately, many critical23

prediction tasks in the drug discovery pipeline fail to satisfy these requirements, in part due to24

resource and cost constraints (Cherkasov et al., 2014).25

We therefore focus this work on modelling biological assays (bio-assays) relevant in the early stages26

of drug discovery, primarily binding and cellular readouts. Under the constraints of an active drug27

discovery program, the data from these assays, consisting of libraries of molecules and their associated28

real-valued activity scores, is often relatively small and noisy (refer to statistics in Section 5). In29

many contexts, it can be challenging to build a training set of even a few dozen samples per individual30

assay. Modelling an assay is thus best viewed as a few-shot regression (FSR) problem, with many31

variables (including experimental conditions, readouts, concentrations, and instrument configurations)32

accounting for the data distribution being generated. Practically, these variables make it infeasible to33

compare data collected across different assays, thereby making it difficult to learn predictive models34

from molecular structures. Furthermore, as bio-assay modelling is intended to be used for prioritizing35

molecules for subsequent evaluation (e.g. Bayesian optimization) and efficiently exploring the overall36

chemical space (e.g. active learning), accurate prediction and uncertainty estimation using few37

datapoints is critical to successful application in drug discovery.38

It is our view that robust FSR algorithms are needed to tackle this challenge. Specifically, we argue39

that these algorithms should remain accurate in noisy environments, and also provide well-calibrated40

uncertainty estimates to inform efficient exploration of chemical space during molecular optimization.41

Fortunately, recent advances in few-shot learning have led to new algorithms that learn efficiently42

and generalize adequately from small training data (Wang and Yao, 2019; Chen et al., 2019). Most43
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have adopted the meta-learning paradigm (Thrun and Pratt, 1998; Vilalta and Drissi, 2002), where44

some prior knowledge is learned across a large collection of tasks and then transferred to new tasks45

in which there are limited amounts of data. Such algorithms tend to differ in two aspects: the nature46

of the meta-knowledge captured and the amount of adaptation performed at test-time for new47

tasks or datasets. The meta-knowledge refers to the domain specific prior needed to solve each task48

most effectively. Due to the size of the total chemical space accessible when modelling bio-assays49

(Bohacek et al., 1996), there is a particular need for the meta-knowledge to be sufficiently rich so as50

to allow for extrapolation and uncertainty estimation in unseen regions of chemical space at test-time51

(i.e. for new tasks). Given that the same molecule can behave differently across different assays,52

greater test-time adaptation is also required and must be accounted for during modelling.53

In previous work, metric learning methods (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,54

2017; Garcia and Bruna, 2017; Bertinetto et al., 2018) accumulate meta-knowledge in high capacity55

covariance/distance functions and use simple base-learners such as k-nearest neighbor (Snell et al.,56

2017; Vinyals et al., 2016) or low capacity neural networks (Garcia and Bruna, 2017) to produce57

adequate models for new tasks. However, they do not adapt the covariance functions nor the base-58

learners at test-time. Initialization- and optimization-based methods (Finn et al., 2017; Kim et al.,59

2018; Ravi and Larochelle, 2016) that learn the initialization points and update rules for gradient60

descent-based algorithms, respectively, allow for improved adaptation on new tasks but remain time61

consuming and memory inefficient. We therefore argue that to ensure optimal performance when62

modelling bio-assays, it is crucial to combine the strengths of both types of methods while also63

allowing for the incorporation of domain-specific knowledge when making predictions. We achieve64

this by framing FSR as a deep kernel learning (DKL) task, deriving novel algorithms that we apply to65

modelling specific assays and readouts.66

Contributions: Our contributions are three-fold. We first frame few-shot regression as a DKL67

problem and showcase its advantages relative to classical metric learning methods. We then derive68

the adaptive deep kernel learning (ADKL) framework by learning a conditional kernel function that69

is task dependant, allowing for more test-time adaptation than the DKL framework. Finally, we70

introduce two real-world datasets for modelling biological assays using FSR. With this contribution,71

we hope to encourage the development of subsequent few-shot regression methods suitable for72

real-world applications, as is the case for few-shot classification and reinforcement learning, each of73

which have received comparatively greater attention in recent years (Wang and Yao, 2019).74

2 DEEP KERNEL LEARNING75

In this section, we describe the DKL framework introduced for single tasks by Wilson et al. (2016).76

We then extend it to few-shot learning and discuss its advantages over metric learning algorithms.77

Single Task DKL: Let Dt
trn = {(xi, yi)}mi=1 ⊂ X × R, a training dataset available for learning78

the regression task t where X is the input space and R is the output space. A DKL algorithm aims79

to obtain a non-linear embedding of inputs in the embedding spaceH, using a deep neural network80

φθ : X → H of parameters θ. It then finds the minimal norm regressor ht∗ in the reproducing kernel81

Hilbert space (RKHS)R onH, that minimize an objective function such as82

ht∗ := argmin
h∈R

λ ‖h‖R + `(h,Dt
trn) (1)

where ` is a non-negative loss function that measures the loss of a regressor h and λ weighs the83

importance of the norm minimization against the training loss. Following the representer theorem84

(Scholkopf and Smola, 2001; Steinwart and Christmann, 2008), ht∗ can be written as a finite linear85

combination of kernel evaluations on training inputs, i.e.:86

ht∗(x) =
∑

(xi,yi)∈Dt
trn

αtikρ(φθ(x),φθ(xi)), (2)

where αt = (αt1, · · · , αtm) are the learned combination weights and kρ : H × H → R+ is a87

chosen reproducing kernel ofR with hyperparameters ρ. Candidate kernels include the radial basis,88

polynomial, and linear kernels. αt can be obtained by using a differentiable kernel method enabling89

the computation of the gradients of the loss w.r.t. the parameters θ. Such methods include Gaussian90

Process (GP), Kernel Ridge Regression (KRR), and Logistic Regression (LR).91
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As DKL inherits from deep learning and kernel methods, it follows that gradient descent algorithms are92

required to optimize the network parameters θ. The latter can be high dimensional and a substantial93

amount of training samples are required to train DKL models and avoid overfitting. However, once94

the latter condition is met, scalability of the kernel method can be limiting (running time in O(m3)95

for m training samples) and approximations can be needed for scalability (see Williams and Seeger96

(2001); Wilson and Nickisch (2015)).97

Few-Shot DKL: In few-shot learning, one has access to a meta-training collection Dmeta−trn :=98 {
(D

tj
trn, D

tj
val)
}T
j=1

of T tasks Each task tj has its own training (or support) set Dtj
trn and validation99

(or query) set Dtj
val. A meta-testing collection Dmeta−tst is also available to assess the generalization100

performance of the few-shot algorithm across unseen tasks. To obtain a Few-Shot DKL (FSDKL)101

method for FSR in such settings, one can share the parameters of φθ across all tasks, similar to metric102

learning algorithms. Hence, for a given task tj , the inputs are first transformed by the function φθ103

and then a kernel method is used to obtain the regressor htj∗ , which will be evaluated on Dtj
val. Here,104

KRR and GP are explored as they are the state-of-the-art algorithms for kernel-based regression. The105

latter is used to allow our models to provide accurate predictive uncertainty, which is useful when106

prioritizing molecules in the context of drug discovery.107

KRR: Using the squared loss and the L2-norm to compute ‖h‖R, KRR gives the optimal regressor
for a task t and its validation loss Ltθ,ρ,λ as follows:

ht∗(x) = αKx,trn, with α = (Ktrn,trn + λI)−1 ytrn (3)

Ltθ,ρ,λ = E
x,y∼Dt

val

(αKx,trn − y)2, (4)

where ytrn = (y1, · · · , y|Dt
trn|)

T , Ktrn,trn is the matrix of kernel evaluations where entry i, l is108

kρ(φθ(xi),φθ(xl)) for pairs of examples in Dt
trn . An equivalent definition applies to Kx,trn.109

GP: When using the negative log likelihood loss function, the GP algorithm gives a probabilistic
regressor for which the predictive mean, covariance, and loss for a task t are:

Ltθ,ρ,λ = − lnN (yval;E[ht∗], cov(ht∗)), (5)

E[ht∗] = Kval,trn(Ktrn,trn + λI)−1ytrn, (6)

cov(ht∗) = Kval,val −Kval,trn(Ktrn,trn + λI)−1Ktrn,val (7)

Finally, the parameters θ of the neural network, along with λ and the kernel hyperparameters ρ, are110

optimized using the expected loss on all tasks:111

argmin
θ,ρ,λ

E
t∼Dmeta−trn

Ltθ,ρ,λ. (8)

To summarize, FSDKL finds a representation common to all tasks such that the kernel method (in our112

case, GP and KRR) will generalize well from a small amount of samples. In doing so, this alleviates113

two of the main limitations of single task DKL: i) the scalability of the kernel method is no longer an114

issue since we are in the few-shot learning regime1, and ii) the parameters θ (and ρ, λ) are learned115

across a potentially large amount of tasks and samples, providing the opportunity to learn a rich116

representation without overfitting.117

Despite shared characteristics with the metric learning framework, the FSDKL framework is more118

powerful and flexible. It provides better task-specific adaptation due to the inference of the appropriate119

model using the kernel methods compared to shared model parameters in metric learning. After meta-120

training, any task-specific model also inherits the generalization guarantees of kernel-based models,121

and consequently increasing the number of shots for new tasks can only improve generalization122

performance. The incorporation of prior knowledge through user-specific kernel functions is also123

a major advantage of DKL over metric learning (e.g. use periodic kernels for periodic function124

regression tasks).125

1Even with several hundred samples, the computational cost of embedding each example is usually higher
than inverting the Gram matrix.
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3 ADAPTIVE DEEP KERNEL LEARNING126

In this section, we present a new algorithm, deemed adapative deep kernel learning (ADKL). Funda-127

mentally, it differs from FSDKL by having more flexibility in its kernel definition and by learning to128

produce task-specific kernel functions during the meta-training instead of using one defined by the129

user. It does so by learning a task representation using a task encoding network ψη and leveraging it130

to build task-specific kernels using a multi-modal neural network cρ. More explicitly, given a task t,131

ADKL first computes a task embedding zt = ψη(D
t
trn) using its support set Dt

trn and then it infers132

the adapted kernel with cρ. We describe in more detail both the task encoding network ψη and the133

network cρ responsible for computing the task-specific kernel below.134

Figure 1: ADKL-KRR. The blue and orange colors show the procedure for a task during internal train
and test, respectively. During training, ADKL first computes a task embedding zt = ψη(D

t
trn) that is

used with a pseudo-representations U by the network cρ to produce a the task-specific kernel function.
The empirical kernel map of this kernel gives the function Ct(·) that is evaluated for every training point
to produce Ktrn,trn. The latter and the train targets are used by KRR (or GP) to produce the model h∗

t .
At evaluation, Ct(·) is evaluated again for every test point to obtain Kval,trn, which is used to compute

the predictions. The loss is then computed and used to update all parameters of ADKL.

3.1 TASK ENCODING135

The challenge of the network ψη is to capture complex dependencies in the training set Dt
trn to136

provide a useful task encoding zt. Furthermore, the task encoder should be invariant to permutations137

of the training set and be able to encode a variable amount of samples. After exploring a variety138

of architectures, we found that those that are more complex, such as Transformers (Vaswani et al.,139

2017), tend to underperform. This is possibly due to overfitting or the sensitivity of training such140

architectures.141

Consequently, inspired by DeepSets (Zaheer et al., 2017), we propose a simple order invariant142

network that captures the first and second order statistics of regression datasets. Given a dataset, this143

network first processes each of its samples individually as follows: a) extract input features using144

φθ (see section2), b) concatenate the input features with the target and embed the obtained vector145

using a simple fully connected neural network rη of parameters η 2. It then computes the first and146

the second order statistics of the obtained vectors for all samples of the dataset and concatenates them147

to produce the representation. More formally,148

ψη(D
t
trn) :=

[
µt, σt

]
, with µt = E

(x,y)∈Dt
trn

rη([φθ(xi), yi]), σt = Var
(x,y)∈Dt

trn

rη([φθ(xi), yi])

where [·, ·] is the concatenation operator. As µt and σt are invariant to permutations in Dt
trn, it149

follows that ψη is also permutation invariant. Overall, ψη is simply the concatenation of the first and150

second moments of the sample representations, which were nonlinear transformations of the original151

inputs and targets.152

To help the training of the parameters η, we add a regularization term that maximizes the mutual
information between Dt

trn and Dt
val. This encourage the network to produce similar task encodings

2These are the only parameters involved in the computation of the task encoding, which is why we also use
the notation ψη .
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when presented with different data partitions for a given task. Concretely, we maximize the lower
bound on the mutual information between the task representations given by the support and the query
sets instead of the true mutual information (Belghazi et al., 2018). Using a batch of b tasks and the
cosine similarity c as the similarity measure the between two task encodings, this lower bound Ĩη is
defined by Eq. (9) and is the regularizer that we used to a have better task encoder.

Ĩη
def
= 1

b

b∑
j=1

c(ψη(D
tj
trn),ψη(D

tj
val))− ln 1

b(b−1)

b∑
j=1

∑
i6=j

ec(ψη(D
tj
trn),ψη(D

ti
val)) (9)

3.2 TASK-SPECIFIC KERNEL153

Here, we describe how the task-specific kernels are inferred using the task representations described154

previously. In fact, they are all obtained using a multi-modal neural network cρ of parameter ρ.155

Given any pair of input representations (φ(x) and φ(x′)) and a task encoding zt, this network simply156

computes the input pair similarity under the condition given by the task encoding as follows:157

cρ(φ(x),φ(x
′), zt) := MLPρ(

[
(φ(x)− φ(x′))2, zt

]
), (10)

where (φ(x)− φ(x′))2 is the element-wise L2 distance between the input representations, [·, ·] is158

the concatenation operator and MLP is a fully connected neural network of parameters ρ which has a159

single neuron at its last layer. It bears mentioning that cρ is symmetric and stationary with regard160

to φ(x) and φ(x′) as their element-wise L2 distances vector is received as part of the input of the161

fully connected network. Further, by simply concatenating the task representation zt to this distance162

vector at the input, cρ provides a powerful approach to produce task-specific kernels. However, these163

kernels are not positive semi-definite (PSD) and cannot be directly used for KRR and GP. Therefore,164

using the empirical kernel mapping technique (Schölkopf et al., 1999) we computed the task-specific165

PSD kernel kρ,t associated with a given task representation zt obtained from Dt
trn. This kernel can166

be written as the empirical kernel map of cρ(·, ·, zt) with regard to Dt
trn i.e.:167

kρ,t(x,x
′) = Ct(x) · Ct(x′), with

Ct(x) = (cρ(x,x1, zt), · · · , cρ(x,xm, zt)), and (xi, ·) ∈ Dt
trn∀i = 1, · · · ,m (11)

Using the empirical kernel map of cρ to compute kρ,t offers the opportunity to introduce pseudo-input168

representations (or pseudo-representations) that could improve the kernel evaluations, specially in169

low data settings. More precisely, instead of computing the empirical kernel map with regard to170

Dt
trn alone, we use (Dt

trn ∪U) where U is the set of pseudo-representations . The function Ct, from171

Eq. (11), becomes:172

Ct(x) = (cρ(x,x1, zt), · · · , cρ(x,xm, zt), cρ(x,u1, zt), · · · , cρ(x,ul, zt)),
with ul ∈ U ∀ l = 1, · · · , |U | and(xi, ·) ∈ Dt

trn∀i = 1, · · · ,m (12)

The number of pseudo-representations is a hyperparameter of ADKL (in our experiments we choose173

|U |∈ [0, 50]) and all pseudo-representations ul ∈ H are learnable parameters that are shared by174

all tasks and learned during meta-training. To prevent their collapse into a single point during the175

training and to ensure that they are well distributed in the feature spaceH, we add a regularization176

term (D̃u) to the training loss function. To introduce this regularization term, let’s consider p and177

q to be the distributions that generate the true input representations and the pseudo-representations,178

respectively. We make the assumption that p and q are both multivariate Gaussian distributions with179

diagonal covariance matrices and have respective parameters (µφ, σ2
φ) and (µu, σ2

u). The parameters180

of p are estimated using the running means and variances of all input representations computed over181

batches of tasks. Those of q are estimated using U . As, p and q must be close, the training of the182

pseudo-representations is regularized by minimizing the KL distance D̃u between p and q, i.e.:183

D̃u = KL(N (µu, σ
2
u) ‖ N (µφ, σ

2
φ)) (13)

Putting it all together, the ADKL training objective is the following:

argmin
θ,η,ρ,u,λ

E
tj∼B

Ltjθ,η,ρ,u,λ − γtask Ĩη.+ γpseudoD̃u, (14)

with γtask ≥ 0 as a tradeoff hyperparameter for the regularization of the task-encoder and γpseudo ≥ 0184

as a tradeoff hyperparameter for the regularization of the pseudo-inputs.185
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4 RELATED WORK186

Across the spectrum of learning approaches, DKL methods lie between neural networks and kernel187

methods. While neural networks can learn from a very large amount of data without much prior188

knowledge, kernel methods learn from fewer data when given an appropriate covariance function189

that accounts for prior knowledge of the relevant task. In the first DKL attempt, Wilson et al. (2016)190

combined GP with CNN to learn a covariance function adapted to a task from large amounts of data,191

though the large time and space complexity of kernel methods forced the approximation of the exact192

kernel using KISS-GP (Wilson and Nickisch, 2015). Dasgupta et al. (2018) have demonstrated that193

such approximation is not necessary using finite rank kernels. Here, we show that learning from a194

collection of tasks (FSR mode) does not require any approximation when the covariance function is195

shared across tasks. This is an important distinction between our study and other existing studies in196

DKL, which learn their kernel for single task applications instead of multiple task collections.197

On the spectrum between NNs and kernel methods we must also mention metric learning. Metric198

learning algorithms learn an input covariance function shared across tasks but rely only on the199

expressive power of DNNs. First, stochastic kernels are built out of shared feature extractors and200

simple pairwise metrics (e.g. cosine similarity (Vinyals et al., 2016), Euclidean distance (Snell et al.,201

2017)), or parametric functions (e.g. relation modules (Sung et al., 2018), graph neural networks202

(Garcia and Bruna, 2017; Kim et al., 2019a)). Then, within tasks, the predictions are distance-203

weighted combinations of the training labels with the stochastic kernel evaluations—no adaptation is204

done.205

In connection with the test-time adaptation capabilities of our method, methods that combine metric206

learning with initialization-based models are great competitors. In fact, Proto-MAML (Triantafillou207

et al., 2019), which captures the best of Prototypical Networks (Snell et al., 2017) and MAML208

(Finn et al., 2017), allows within-task adaptation using MAML on top of a shared feature extractor.209

Similarly, Kim et al. (2018) have proposed a Bayesian version of MAML where a feature extractor is210

shared across tasks, while multiple MAML particles are used for the task-level adaptation. Bertinetto211

et al. (2018) have also tackled the lack of adaptation for new tasks by using Ridge Regression and212

Logistic Regression to find the appropriate weighting of the training samples for classification tasks.213

This study can be considered as an instance of the FSDKL framework, though its contribution was214

limited to showing that simple differentiable learning algorithms can increase adaptation in the metric215

learning framework. Our work goes beyond by formalizing few-shot DKL and proposing ADKL: a216

data-driven manner to compute the correct kernel for a task.217

Since ADKL-GP learns task-specific stochastic processes, it is related to neural processes (Garnelo218

et al., 2018a) and the ML-PIP framework (Gordon et al., 2018). Both propose a scalable alternative219

to learning regression functions by performing inference on stochastic processes. In these families220

of methods, both Conditional Neural Processes (CNP) (Garnelo et al., 2018b) and Attentive Neural221

Processes (ANP) (Kim et al., 2019b) learn conditional stochastic processes parameterized by task-222

specific conditions derived from the support sets, but CNP is the most related to ADKL-GP. CNP is223

an instance of ML-PIP when the task encoder gives a point estimate of the task parameters instead224

of a distribution. Finally, the main differences between ANP and CNP are the architecture of the225

task-encoder and the lack of mathematical guarantees associated with stochastic processes in CNP226

(as it does not impose any consistency with respect to a prior process). By comparison, ADKL-GP227

also learns conditional stochastic processes but has mathematical guarantees thanks to GP and PSD228

kernels.229

5 DATASETS230

Existing FSR methods have been mostly tested on 1D function regression and pixel-wise image231

completion tasks with MNIST and CelebA (Kim et al., 2018; Garnelo et al., 2018b;a). On one hand,232

the 1D regression tasks are all relatively simple, almost noise-less, and homogeneous. On the other233

hand, methods have been successful for image completion tasks only outside the few-shot regime (i.e.234

when the number of samples is greater than 500) (Garnelo et al., 2018b;a). For these reasons, we235

introduce two task collections from a real-world context. Deemed Binding and Antibacterial, these236

task collections contain data from bio-assays that are representative of real-world FSR tasks in drug237
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discovery. The pre-processed versions of these collections and detailed statistics are available here238

(anonymized link).239

Binding: All tasks in this collection aim to predict the binding affinity of small molecules to a target240

protein. The characteristics of the proteins thus define different data distributions over the chemical241

space. The inputs and the targets for each task are molecules that have been tested in a binding242

assay and the measured binding affinity of the molecule against a given protein. The task collection243

was extracted from the public database BindingDB and altered by removing bio-assays with targets244

correlated above 0.8 or those with less than 10 experimental measurements, leaving us with 5, 717245

tasks.246

Antibacterial: Within this collection, the task is to predict the antimicrobial activity of small247

molecules against various bacteria. They are characterized by a bacterial strain whose resistance to248

drug-like molecules was being evaluated. The task collection was extracted from the public database249

PubChem. After also removing bio-assays with correlations above 0.8 and those with less than 10250

samples, we obtain 3, 255 tasks.251

Their meta-test partitions each contain 1000 tasks, with the remaining used in the meta-train and252

meta-validation. The molecules (represented as SMILES) are converted into vectors using routines253

available in the RDKit software (more precisely into ECFP6 binary fingerprint vectors of 4,096254

dimensions). These inputs were also processed in all methods using the same feature extractor255

architecture, which is a fully-connected network of 256× 256× 256. Due to the high noise-to-signal256

ratio, the targets are first log2-scaled and then scaled linearly between 0 and 1 to avoid scaling issues257

during training.258

Fig. 2 highlights three aspects of the collections that make them complementary to existing bench-259

marks, but better suited for evaluating the readiness of FSR methods for real-world applications260

relative to toy collections. First, the distributions of number of samples per task show that they261

naturally contain few samples, which we believe reflects the costs of acquiring labelled data in a262

drug discovery setting. In comparison, the number of samples available per task is relatively large in263

previous benchmarks, with the few-shot regime being achieved artificially through sampling. Second,264

as illustrated by their noise-to-signal ratio, real-world tasks are inherently noisy, increasing the265

difficulties associated with few-shot learning. Finally, the input diversity within each task is reduced266

relative to the total among tasks. Despite this diversity difference, good models should perform267

relatively well outside the input region they have seen in the support set. This situation challenges the268

methods to learn strong priors about the input space and to be able to generalize after seeing only a269

small fraction of it. These collections invite researchers to explore meta-learning with increasingly270

heterogeneous datasets and in noisy environments, as well as generalisation and extrapolation in271

large input spaces (such as the drug-like chemical space, which is estimated to be approximately 1033272

molecules (Polishchuk et al., 2013)).273

To test our method in a noise-less environment, we also use the Sinusoids collection introduced by274

Kim et al. (2018). This challenging few-shot regression benchmark consists of 5,000 tasks defined275

by functions of the form: y = A sin(wx + b) + ε with A ∈ [0.1, 5.0], b ∈ [0.0, 2π], and276

w ∈ [0.5, 2.0]. Sampling inputs x ∈ [−5.0, 5.0] and observational noise ε ∈ N(0, (0.01A)2) and277

computing y gives the samples for each task. Here, the meta-train, meta-validation, and meta-test278

contain 56.25%, 18.75% and 25% of all the tasks, respectively, and all methods use the same feature279

extractor architecture, which is a fully-connected network of 40× 40× 40.280

6 EXPERIMENTS281

6.1 BENCHMARKING ANALYSIS282

For all benchmarks, the performances of ADKL is compared against other meta-learning algorithms:283

R2-D2 (an instance of FSDKL Bertinetto et al. (2018)), CNP (Garnelo et al., 2018b), MAML (Finn284

et al., 2017), BMAML (Kim et al., 2018), and Learned Basis (Yi Loo, 2019) (all implementations are285

available here (anonymized link)). These algorithms have all proven to have efficient and effective286

test-time adaptation routines and therefore constitute strong baselines for benchmarking. However,287

for bioassay modelling benchmarks, we have also added two methods considered to be state-of-the-art288

in chemoinformatics to assess performance relative to all meta-learning approaches. These methods289
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Figure 2: Statistics on bio-assay modelling tasks. Left: Number of samples per task. Middle: Noise-to-signal ratio. Right: Within-task
versus overall molecular diversity.

k 5 10 20
model

ADKL-GP
ADKL-KRR 0.0380 ± 0.0020 0.0348 ± 0.0009 0.0322 ± 0.0020
BMAML 0.0813 ± 0.0571 0.0486 ± 0.0071 0.0487 ± 0.0012
CNP 0.0416 ± 0.0019 0.0393 ± 0.0030 0.0397 ± 0.0027
ECFP4+KRR 0.0376 ± 0.0012 0.0352 ± 0.0014 0.0317 ± 0.0016
ECFP4+RF 0.0373 ± 0.0012 0.0339 ± 0.0013 0.0311 ± 0.0012
LearnedBasis 0.0761 ± 0.0040 0.0754 ± 0.0042 0.0616 ± 0.0215
R2D2 0.0492 ± 0.0015 0.0460 ± 0.0110 0.0342 ± 0.0012

Table 1: Average MSE on Binding

k 5 10 20
model

ADKL-GP 0.1017 ± 0.0013 0.0895 ± 0.0015 0.0860 ± 0.0016
ADKL-KRR 0.1000 ± 0.0012 0.0893 ± 0.0015 0.0862 ± 0.0009
BMAML 0.1059 ± 0.0021 0.1020 ± 0.0029 0.4616 ± 0.4210
CNP 0.1063 ± 0.0023 0.1239 ± 0.0219 0.1382 ± 0.0049
ECFP4+KRR 0.1166 ± 0.0020 0.1003 ± 0.0009 0.0956 ± 0.0009
ECFP4+RF 0.1129 ± 0.0002 0.1016 ± 0.0008 0.0970 ± 0.0003
LearnedBasis 0.1274 ± 0.0037 0.1308 ± 0.0032 0.1329 ± 0.0043
R2D2 0.1104 ± 0.0023 0.0962 ± 0.0021 0.0921 ± 0.0010

Table 2: Average MSE on Antibacterial

are the Random Forest algorithm with ECFP4 (Extended Connectivity FingerPrints of diameter 4) as290

molecular input representation, and ECFP4 with KRR and tanimoto similarity as a kernel function291

(Olier et al., 2018). During meta-test, each task is partitioned into query and support sets, then the292

support set is used to generate a model which is evaluated on the query set to compute the MSE. This293

process is repeated 30 times per task and the average MSE over the repetitions per task and over all294

tasks is reported in Tables 1 to 3.295

For the Sinusoids collection, Table 3 shows that DKL-based methods significantly outperform all296

other methods despite their test-time adaptation capabilities. These results alone demonstrate the297

effectiveness of DKL-based methods in FSR relative to the current state-of-the-art. Furthermore, of298

all DKL-based methods, ADKL-KRR shows consistently stronger performance than others. This299

demonstrates that using ADKL increases test-time performance relative to FS-DKL (as R2-D2 and300

ADKL-KRR only differ by the kernel definition). It also indicates that attempting to capture the301

model uncertainty using GP in ADKL (instead of KRR) comes with a significant cost, especially in302

lower data regimes. This may be due to the inability of GP to differentiate between the observational303

noise and the model uncertainty as the number of samples get smaller. Also, notice that all task304

encoding based methods significantly outperform the others. This shows that adequately capturing305

the task representation is crucial for this task collection, and ADKL-KRR appears to be best equipped306

to do so.307

Tables 1 and 2 show the performances of all methods on real-world datasets. As complements,308

Tables 4 and 5 show the p-value that assesses the statistical significance of the difference between309

each model and ADKL-GP and ADKL-KRR. These p-values result from Wilcoxon ranked tests310

comparing the MSE per task of each algorithm to ADKLs. Combined together, these tables shows311

that ADKL methods significantly outperforms all other meta-learning methods (p−values < 0.05).312

They also outperformed the state-of the art in chemoinformatic for Antibacterial, but do not on313

Binding where those methods are significantly better than all meta-learning algorithms. Even if,314

ADKL is a first step in the right direction, these results show that there remains much room to develop315

meta-learning algorithms which are undoubtedly superior to methods in computational chemistry. It316

is also worth noticing that ADKL methods are significantly better than R2-D2 for these collections317

also confirming that using task specific kernels are useful and improve generalization.318
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m 5 10 20
model

BMAML 2.042 1.371 0.844
CNP 1.616 0.392 0.117
Learned Basis 3.587 0.800 0.127
MAML 2.896 1.634 0.901
ADKL-GP 1.178 0.084 0.007
ADKL-KRR 0.867 0.061 0.005
FSDKL (R2D2) 1.002 0.073 0.009

Table 3: Average MSE on
Sinusoidals

ADKL-GP ADKL-KRR

ADKL-GP 1.21e-01
CNP 0.00e+00 0.00e+00
ADKL-KRR 1.21e-01
ECFP4+KRR 2.48e-78 3.69e-62
LearnedBasis 0.00e+00 0.00e+00
BMAML 0.00e+00 0.00e+00
FSDKL (R2D2) 1.18e-41 5.50e-15
ECFP4+RF 9.70e-81 2.20e-168

Table 4: Wilcoxon
p-values – BindingDB

ADKL-KRR

ADKL-GP
CNP 1.77e-114
ADKL-KRR
ECFP4+KRR 2.70e-03
LearnedBasis 0.00e+00
BMAML 0.00e+00
FSDKL (R2D2) 1.76e-49
ECFP4+RF 5.94e-01

Table 5: Wilcoxon
p-values – BindingDB

6.2 ACTIVE LEARNING319

In this section, we report the results of active learning experiments. Our intent is to measure the320

effectiveness of the uncertainty captured by the predictive distribution of ADKL-GP for active321

learning, as it is critical to our drug discovery use-cases. CNP, in comparison, serves to measure322

which of CNP and GP better captures the data uncertainty for improving FSR under active sample323

selection. For this purpose, we meta-train both algorithms using support and query sets of size324

m = 5. During meta-test time, five samples are randomly selected to constitute the support set Dtrn325

and build the initial hypothesis for each task. Then, from a pool U of unlabeled data, we choose the326

input x∗ of maximum predictive entropy, i.e. x∗ = argmaxx∈UE [log p(y|x, Dtrn)]. The latter is327

removed from U and added to Dtrn with its predicted label. The within-task adaptation is performed328

on the new support set to obtain a new hypothesis which is evaluated on the query set Dval of the329

task. This process is repeated until we reach the allotted budget of 20 queries.330

Fig. 3 illustrates, for all collections, the MSE after each sample acquisition iteration and under both331

random and active learning acquisition strategies. Under the active learning strategy, ADKL-GP332

consistently outperforms CNP. In particular, we observe that very few samples are queried by ADKL-333

GP to capture the data distribution whereas CNP performance remains far from optimal even when334

allowed the maximum number of queries. Further, since using the maximum predictive entropy335

strategy is better than querying samples at random for ADKL-GP (solid vs. dashed line), these results336

suggest that the predictive uncertainty obtained with GP is informative and more accurate than that of337

CNP. Moreover, when the number of queries is greater than 10, we observe a performance degradation338

for CNP while ADKL-GP remains consistent. This observation highlights the generalization capacity339

of DKL methods, even outside the few-shot regime where they have been trained — this same340

property does not hold true for CNP. We attribute this property of DKL methods to their use of kernel341

methods. In fact, their role in adaptation and generalization increases as we move away from the342

few-shot training regime.343
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Figure 3: Average MSE performance on the meta-test during active learning. The width of the shaded
regions denotes the uncertainty over five runs for the sinusoidal collection. No uncertainty is shown

for the real-world tasks as they were too time consuming.

6.3 ABLATION EXPERIMENTS344

In our final set of experiments, we more closely evaluate the impact of the task encoder and the pseudo-345

inputs on the generalization during meta-testing. We do so by training and evaluating ADKL on346
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Sinusoids with different hyperparameter combinations. Figs. 4a to 4d show the relative improvements347

(negative values) or setbacks (positive values) in the meta-test MSE compared to different baselines348

(but the joint impact of γtask and γpseudo is only discussed in Appendix A.3).349

First, Fig. 4a compares γtask ∈ {0.01, 0.1} relative to γtask = 0 and consequently demonstrates that350

regularizing the task encoder by maximizing the mutual information between the support set and351

the query set significantly improves the generalization performance. This conclusion holds for all352

support set sizes tested, as shown in Appendix A.1. Combined with the results from Section 6.1, this353

figure shows the importance of good task encoders for generalization in few-shot learning and how354

using the regularization term that we introduced is a step forward in that direction.355

Then, Fig. 4c measures the relative differences between γpseudo ∈ {0.01, 0.1} and γpseudo = 0 for356

different values of hyperparameter combinations. It shows that improving the kernel map evaluations357

using pseudo-input representations can significantly help with the generalization performance of358

ADKL. This conclusion also holds for all values tested for |Dt
trn| ( see Appendix A.2). However, the359

improvements were more consistent for smaller support sets, which is not surprising as improving360

the kernel map estimations in these cases is more critical.361

Finally, Figs. 4b and 4d illustrate for ADKL-GP and ADKL-KRR, and different sizes of support sets,362

how the number of pseudo-representations (i.e |U |) affects performance. The values for each cell363

are relative performance using |U |∈ {20, 50} versus |U |= 0 and have been averaged over different364

hyperparameters and γpseudo. In general, we can confirm that increasing the number of pseudo-365

representations increases the estimates of the kernel maps and improves generalization. However, the366

improvements are more prominent with KRR in comparison to GP, which may be due to the fact that367

GP attributes a part of the modelling noise to the kernel evaluations, leading to more constraints on368

the optimization of the pseudo-representation parameters.369

(a) Impact of the task encoder trade-off parameter. (b) |U | in ADKL-KRR

(c) Impact of the pseudo inputs trade-off parameter (d) |U | in ADKL-GP

Figure 4: Relative decrease/increase in the meta-test MSE compared to different baselines. In (a) and
(c) the baselines are γtask = 0 and γpseudo = 0, respectively. In (b) and (d) the baselines are |U |= 0

7 CONCLUSION370

We investigate bio-assays modelling using FSR methods. Our proposed method, ADKL, stores371

meta-knowledge in kernel functions and adapts to new tasks using KRR or GP. Our experiments372

provide evidence that the additional adaptation capacity at test-time provided by ADKL increases373

generalization significantly. Also, in a Bayesian setup, ADKL provides better predictive uncertainty,374

increasing their utility in bioassay modelling. However, there is still room to improve ADKL and375

most meta-learning methods to be better than traditional chemoinformatic methods. We hope, by376

making our bio-assay task collections publicly available, that the community will leverage them to377

propose new competitive FSR methods.378
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Appendices468

A REGULARIZATION IMPACT469

A.1 TASK REGULARIZATION470

Table 6 presents the hyperparameter combinations used in the experiments to assess the impact of471

the trade-off parameter γtask. We report the MSE performance obtained on the meta-test for each472

combination. To make reading this table easier, we also repeat the Fig. 5 showing the improvement473

of the MSE relative to γtask = 0 (no regularization).474

Table 6: Effect of using task regularization (parameter γtask) on the MSE performance

γtask 0.00 0.01 0.10
algorithm K γpseudo Configuration

ADKL-KRR 20 0.01 a 0.0585 0.0327 0.0289
10 0.00 b 0.4051 0.2944 0.3671

0.10 c 0.4363 0.2964 0.2882
ADKL-GP 5 0.10 d 2.4920 2.2511 2.2994
ADKL-KRR 20 0.00 e 0.0574 0.0305 0.0302
ADKL-GP 5 0.01 f 2.5611 2.1511 2.2112

0.01 g 3.2933 2.7663 3.0971
10 0.01 h 0.7675 0.7105 0.4352
20 0.00 i 0.1201 0.0873 0.0646

ADKL-KRR 20 0.10 j 0.0575 0.0447 0.0273

Figure 5: Relative improvement of the MSE depending on the γtask parameter

For a more in-depth analysis, we show below the similar tables and figures for different values of K (475

5, 10 and 20). These results confirm that regularizing the task encoder is helpful for any value of476

K, even though the impact seems to become much more important as K increases (observe that the477

maximum improvement in each figure increases with K).478

For K = 5479

γtask 0.00 0.01 0.10
algorithm γpseudo

ADKL-GP 0.01 3.2933 2.7663 3.0971
0.00 2.8528 3.1136 2.2801
0.01 2.5611 2.1511 2.2112
0.10 2.4920 2.2511 2.2994

ADKL-KRR 0.00 1.7123 1.7079 1.2808
0.01 1.6344 1.6655 1.1974
0.10 1.6868 1.6532 1.2173
0.00 1.1951 1.2129 1.1998
0.01 1.1655 1.1611 1.1416
0.10 1.1658 1.1716 1.1442

480

For K = 10481
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γtask 0.00 0.01 0.10
algorithm γpseudo

ADKL-GP 0.00 0.6423 0.6556 0.6079
0.01 0.7675 0.7105 0.4352
0.10 0.6182 0.6577 0.5244
0.10 0.7326 0.6294 0.7663

ADKL-KRR 0.00 0.4051 0.2944 0.3671
0.01 0.4386 0.3544 0.3628
0.10 0.4363 0.2964 0.2882
0.00 0.3170 0.2967 0.2395
0.01 0.3070 0.2888 0.2299
0.10 0.3038 0.2893 0.2326

482

For K = 20483

γtask 0.00 0.01 0.10
algorithm γpseudo

ADKL-GP 0.00 0.1201 0.0873 0.0646
0.01 0.0958 0.0761 0.0952
0.10 0.0940 0.0882 0.1286
0.01 0.1069 0.1029 0.1144

ADKL-KRR 0.00 0.0526 0.0535 0.0430
0.01 0.0375 0.0325 0.0414
0.10 0.0380 0.0325 0.0395
0.00 0.0574 0.0305 0.0302
0.01 0.0585 0.0327 0.0289
0.10 0.0575 0.0447 0.0273

484

A.2 PSEUDO-INPUT REPRESENTATIONS485

Table 7 presents the hyperparameter combinations used in the experiments to assess the impact of486

the trade-off parameter γpseudo, which governs the penalty applied to the divergence between the487

distribution of learned pseudo-representations and the distribution of actual representations. We also488

repeat in Fig. 6, the relative improvement of MSE compared to γpseudo = 0 as shown in the main489

text.490

Table 7: Effect of the pseudo-examples regularization (parameter γpseudo)
on the MSE performance

γpseudo 0.00 0.01 0.10
algorithm K γtask Conf.

ADKL-GP 10 0.10 a 0.6079 0.4352 0.5244
20 0.01 b 0.0873 0.0761 0.0882

ADKL-KRR 20 0.00 c 0.0526 0.0375 0.0380
ADKL-GP 5 0.10 d 2.2801 2.2112 2.2994
ADKL-KRR 20 0.01 e 0.0535 0.0325 0.0325
ADKL-GP 5 0.01 f 2.9466 2.7663 2.7121

20 0.10 g 0.1147 0.1144 0.0870
0.00 h 0.1201 0.0958 0.0940

5 0.01 i 3.1136 2.1511 2.2511
0.00 j 2.8528 2.5611 2.4920

Figure 6: Relative improvement of the MSE depending on the γtask parameter

Once again, for a more in-depth analysis, we show below the same format of tables and figures for491

different values of K, confirming again that regularizing using the pseudo-representation can be very492

helpful for any value of K. It is worth noticing here that the improvement gain is more consistent for493
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K = 5 compared to K ∈ {10, 20}, supporting the fact that improving kernel maps evaluations using494

pseudo-representations is critical as size of the support set decreases.495

For K = 5496

γpseudo 0.00 0.01 0.10
algorithm γtask

ADKL-GP 0.01 2.9466 2.7663 2.7121
0.10 2.2801 2.2112 2.2994

ADKL-KRR 0.00 1.7123 1.6344 1.6868
0.00 1.1951 1.1655 1.1658

ADKL-GP 0.00 2.8528 2.5611 2.4920
ADKL-KRR 0.10 1.1998 1.1416 1.1442

0.01 1.2129 1.1611 1.1716
0.10 1.2808 1.1974 1.2173

ADKL-GP 0.01 3.1136 2.1511 2.2511
ADKL-KRR 0.01 1.7079 1.6655 1.6532

497

For K = 10498

γpseudo 0.00 0.01 0.10
algorithm γtask

ADKL-GP 0.01 0.7329 0.7907 0.6294
0.10 0.7479 0.7800 0.7663

ADKL-KRR 0.00 0.3170 0.3070 0.3038
ADKL-GP 0.00 0.6423 0.7675 0.6182
ADKL-KRR 0.10 0.3671 0.3628 0.2882

0.01 0.2967 0.2888 0.2893
ADKL-GP 0.01 0.6556 0.7105 0.6577

0.00 0.7145 0.6758 0.7326
0.10 0.6079 0.4352 0.5244

ADKL-KRR 0.10 0.2395 0.2299 0.2326

499

For K = 20500

γpseudo 0.00 0.01 0.10
algorithm γtask

ADKL-GP 0.00 0.1201 0.0958 0.0940
0.00 0.0794 0.1069 0.0702
0.01 0.0873 0.0761 0.0882

ADKL-KRR 0.01 0.0305 0.0327 0.0447
0.00 0.0526 0.0375 0.0380
0.10 0.0302 0.0289 0.0273
0.00 0.0574 0.0585 0.0575

ADKL-GP 0.10 0.1147 0.1144 0.0870
ADKL-KRR 0.01 0.0535 0.0325 0.0325

0.10 0.0430 0.0414 0.0395

501

Overall, the effect of the regularization is beneficial, even though we witness a few pathological cases.502

A.3 JOINT IMPACT OF γtask AND γpseudo503

Since both γtask and γpseudo have a high impact on the training and the generalization performance,504

we need to assess the relationship between the two. Fig. 7 shows, for different values of K, the505

relative improvement of the test MSE compared to the case where no regularization is done, i.e.506

γtask = 0 and γpseudo = 0. Overall, one can see that higher is better in both dimensions but there507

seems to be a sweet spot on the grid for each value of K and therefore we can only advise the user to508

cross-validate on those hyperparameters.509

Figure 7: Average relative improvement of the MSE
and joint impact of γtask and γpseudo.
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B PREDICTION CURVES ON THE SINUSOIDS COLLECTION510

Figure 8 presents a visualization of the results obtained by each model on three tasks taken randomly511

from the meta-test set. We provide the model with ten examples from an unseen task consisting of512

a slightly noisy sine function (shown in blue), and present in orange the predictions made by the513

network based on these ten examples.514
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Figure 8: Meta-test time predictions on the Sinusoids collection
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C SUPPLEMENTARY RESULTS FOR THE REAL-WORLD DATASETS515
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Figure 9: Distribution of the mean squared error (MSE) across the tasks

Figure 9 shows the distribution over the random support/query sets generated at test time. Note that516

the results presented in the main paper estimate the influence of the initialisation by using multiple517

seeds and computing the standard deviation on the average MSE (averaged over the support/query518

splits).519

The two pieces of information are important : the results presented above give us a better idea of520

the “meta-generalisation” capabilities of each algorithm, while those in the main paper assess the521

reproducibility and the statistical significance of the relative improvements.522
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