
Learning Exploration Policies for Model-Agnostic Meta-Reinforcement
Learning

Swaminathan Gurumurthy 1 Sumit Kumar 1 Katia Sycara 1

Abstract
Meta-Reinforcement learning approaches aim
to develop learning procedures that can adapt
quickly to a distribution of tasks with the help
of a few examples. Developing efficient explo-
ration strategies capable of finding the most use-
ful samples becomes critical in such settings.
Existing approaches to finding efficient explo-
ration strategies add auxiliary objectives to pro-
mote exploration by the pre-update policy, how-
ever, this makes the adaptation using a few gradi-
ent steps difficult as the pre-update (exploration)
and post-update (exploitation) policies are quite
different. Instead, we propose to explicitly model
a separate exploration policy for the task distri-
bution. Having two different policies gives more
flexibility in training the exploration policy and
also makes adaptation to any specific task eas-
ier. We show that using self-supervised or super-
vised learning objectives for adaptation stabilizes
the training process and further demonstrate the
superior performance of our model compared to
prior works in this domain.

1. Introduction
Reinforcement learning (RL) approaches have seen many
successes in recent years, from mastering the complex
game of Go (Silver et al., 2017) to even discovering
molecules (Olivecrona et al., 2017). However, a common
limitation of these methods is their propensity to overfit-
ting on a single task and inability to adapt to even slightly
perturbed configuration (Zhang et al., 2018). On the other
hand, humans have this astonishing ability to learn new
tasks in a matter of minutes by using their prior knowl-
edge and understanding of the underlying task mechanics.
Drawing inspiration from human behaviors, researchers
have proposed to incorporate multiple inductive biases and
heuristics to help the models learn quickly and generalize

1Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA 15213, USA.

to unseen scenarios. However, despite a lot of effort it has
been difficult to approach human levels of data efficiency
and generalization.

Meta-RL tries to address these shortcomings by learning
these inductive biases and heuristics from the data itself.
These inductive biases or heuristics can be induced in the
model in various ways like optimization, policy initializa-
tion, loss function, exploration strategies, etc. Recently,
a class of policy initialization based meta-learning ap-
proaches have gained attention like Model Agnostic Meta-
Learning (MAML) (Finn et al., 2017). MAML finds a
good initialization for a policy that can be adapted to a new
task by fine-tuning with policy gradient updates from a few
samples of that task.

Given the objective of meta RL algorithms to adapt to a
new task from a few examples, efficient exploration strate-
gies are crucial for quickly finding the optimal policy in
a new environment. Some recent works (Gupta et al.,
2018a;b) have tried to address this problem by using la-
tent variables to model the distribution of exploration be-
haviors. Another set of approaches (Stadie et al., 2018;
Rothfuss et al., 2018) focus on improving the credit as-
signment of the meta learning objective to the pre-update
trajectory distribution. However, all these prior works use
one or few policy gradient updates to transition from pre-
to post-update policy. This limits the applicability of these
methods to cases where the post-update (exploitation) pol-
icy is similar to the pre-update (exploration) policy and can
be obtained with only a few updates. Also, for cases where
pre- and post-update policies are expected to exhibit differ-
ent behaviors, large gradient updates may result in training
instabilities and lack of convergence. To address this prob-
lem, we propose to explicitly model a separate exploration
policy for the distribution of tasks. The exploration policy
is trained to find trajectories that can lead to fast adaptation
of the exploitation policy on the given task. This formu-
lation provides much more flexibility in training the explo-
ration policy. In the process, we also establish that, in order
to adapt as quickly as possible to the new task, it is often
more useful to use self-supervised or supervised learning
approaches, where possible, to get more effective updates.

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

2. Background
2.1. Meta-Reinforcement Learning

Unlike RL which tries to find an optimal policy for a sin-
gle task, meta-RL aims to learn a policy that can generalize
to a distribution of tasks. Each task T sampled from the
distribution ρ(T) corresponds to a different Markov Deci-
sion Process (MDP). These MDPs have similar state and
action space but might differ in the reward function or the
environment dynamics. The goal of meta RL is to quickly
adapt the policy to any task T ∼ ρ(T) with the help of few
examples from that task.

2.2. Credit Assignment in Meta-RL

Finn et al. (2017) introduced MAML - a gradient-based
meta-RL algorithm that tries to find a good initialization
for a policy which can be adapted to any task T ∼ ρ(T)
by fine-tuning with one or more gradient updates using the
sampled trajectories of that task. MAML maximizes the
following objective function:

J(θ) = ET ∼ρ(T)

[
Eτ ′∼PT (τ ′|θ′) [R(τ ′)]

]
with θ′ := U(θ, T) = θ + α∇θEτ∼PT (τ |θ) [R(τ)] (1)

where U is the update function that performs one policy
gradient ascent step to maximize the expected rewardR(τ)
obtained on the trajectories τ sampled from task T . Roth-
fuss et al. (2018) showed that the gradient of the objective
function J(θ) can be written as:

∇θJ(θ) = ET ∼ρ(T)

[
E τ∼PT (τ |θ)
τ ′∼PT (τ ′|θ′)

[
∇θJpost(τ , τ

′)

+∇θJpre (τ , τ ′)

]]
∇θJpost(τ , τ

′) = ∇θ′ log πθ(τ
′)R(τ ′)︸ ︷︷ ︸

∇θ′Jouter

(2)

(
I + αR(τ)∇2

θ log πθ′(τ)
)︸ ︷︷ ︸

transformation from θ′ to θ

(3)

∇θJpre(τ , τ
′) = α∇θ log πθ(τ)

(
(∇θ log πθ(τ)R(τ))>︸ ︷︷ ︸

∇θJ inner

(4)

(∇θ′ log πθ′(τ
′)R(τ ′))︸ ︷︷ ︸

∇θ′Jouter

)
(5)

where, ∇θJpost(τ , τ
′) optimizes θ to increase the like-

lihood of the trajectories τ ′ that lead to higher returns
given some trajectories τ . In other words, this term does
not optimize θ to yield trajectories τ that lead to good
adaptation steps. That is infact, done by the second term

∇θJpre(τ , τ
′). It optimizes for the pre-update trajectory

distribution, PT (τ |θ), i.e, increases the likelihood of tra-
jectories τ that lead to good adaptation steps.

During optimization, MAML only considers Jpost(τ , τ
′)

and ignores Jpre(τ , τ
′). Thus MAML finds a policy that

adapts quickly to a task given relevant experiences, how-
ever, the policy is not optimized to gather useful experi-
ences from the environment that can lead to fast adaptation.

ProMP (Rothfuss et al., 2018) analyzes this issue with
MAML and incorporates ∇θJpre(τ , τ

′) term in the update
as well. They propose to use DICE (Foerster et al., 2018)
to allow causal credit assignment on the pre-update tra-
jectory distribution, however, the gradients computed by
DICE suffer from high variance estimates. To remedy this,
they proposed a low variance (and slightly biased) approx-
imation of the DICE based loss that leads to stable updates.

3. Method
The pre-update and post-update policies are often expected
to exhibit very different behaviors, i.e, exploration and ex-
ploitation behaviors respectively. In such cases, transition-
ing a single policy from pure exploration phase to pure
exploitation phase via policy gradient updates will require
multiple steps. Unfortunately, this significantly increases
the computational and memory complexities of the algo-
rithm. Furthermore, it may not even be possible to achieve
this transition via few gradient updates. This raises an im-
portant question: DO WE REALLY NEED TO USE THE PRE-
UPDATE POLICY FOR EXPLORATION AS WELL? CAN WE
USE A SEPARATE POLICY FOR EXPLORATION?

Using separate policies for pre-update and post-update
sampling: The straightforward solution to the above prob-
lem is to use a separate exploration policy µφ responsible
for collecting trajectories for the inner loop updates to get
θ′. Following that, the post-update policy πθ′ can be used
to collect trajectories for performing the outer loop updates.
Unfortunately, this is not as simple as it sounds. To under-
stand this, let’s look at the inner loop updates:

U(θ, T) = θ + α∇θEτ∼PT (τ |θ) [R(τ)]

When using the exploration policy for sampling, we need to
perform importance sampling. The update thus becomes:

U(θ, T) = θ + α∇θEτ∼QT (τ |φ)

[
PT (τ |θ)
QT (τ |φ)

R(τ)

]
where PT (τ |θ) and QT (τ |φ) represent the trajectory dis-
tribution sampled by πθ and µφ respectively. Note that the
above update is an off-policy update which results in high
variance estimates when the two trajectory distributions are
quite different from each other. This makes it infeasible to
use the importance sampling update in the current form.

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

In fact, this is a more general problem that arises even in
the on-policy regime. The policy gradient updates in the
inner loop results in both ∇θJpre and ∇θJpost terms being
high variance. This stems from the mis-alignment of the
outer gradients (∇θ′Jouter) and the inner gradient,hessian
(∇θJ inner,∇2

θ log πθ(τ)) terms appearing in Eq. 2 and 5.
This motivates our second question: DO WE REALLY NEED
THE PRE-UPDATE GRADIENTS TO BE POLICY GRADI-
ENTS? CAN WE USE A DIFFERENT OBJECTIVE IN THE
INNER LOOP TO GET MORE STABLE UPDATES?

Using a self-supervised/supervised objective for the in-
ner loop update step: The instability in the inner loop
updates arises due to the high variance nature of the pol-
icy gradient update. Note that the objective of inner loop
update is to provide some task specific information to the
agent with the help of which it can adapt its behavior in the
new environment. We believe that this could be achieved
using some form of self-supervised or supervised learning
objective in place of policy gradient in the inner loop to en-
sure that the updates are more stable. We propose to use a
network for predicting some task (or MDP) specific prop-
erty like reward function, expected return or value. Dur-
ing the inner loop update, the network updates its param-
eters by minimizing its prediction error on the given task.
Unlike prior meta-RL works where the task adaptation in
the inner loop is done by policy gradient updates, here, we
update some parameters shared with the exploitation pol-
icy using a supervised loss objective function resulting in
stability during the adaptation phase. However, note that
the variance and usefulness of the update depends heavily
on the choice of the self-supervision/supervision objective.
We delve into this in more detail in the appendix.

3.1. Model

Our proposed model comprises of three modules, the ex-
ploration policy µφ(s), the exploitation policy πθ,z(s), and
the self-supervision network Mβ,z(s, a). Note that Mβ,z

and πθ,z share a set of parameters z while containing their
own set of parameters β and θ respectively.

The agent first collects a set of trajectories τ using its ex-
ploration policy µφ for each task T ∼ ρ(T). It then up-
dates the shared parameter z by minimizing the regression
loss (Mβ,z(s, a)−M t(s, a))

2:

z′ = U(z, T) = z − α∇zEτ∼QT (τ |φ)[
H−1∑
t=0

(
Mβ,z(st, at)−M(st, at)

)2]

where, M(s, a) is the target which can be any of the task
specific quantities as mentioned above. We further mod-
ify the above equation by multiplying the DICE operator
to simplify the gradient computation w.r.t φ. This elimi-
nates the need to apply the policy gradient trick to expand

the above expression for gradient computation. The update
then becomes:

z′ = U(z, T) = z − α∇zEτ∼QT (τ |φ)[
H−1∑
t=0

(
t∏

t′=0

µφ(at′ |st′)
⊥(µφ(at′ |st′))

)(
Mβ,z(st, at)−M(st, at)

)2]

where ⊥ is the stop gradient operator. After obtaining the
updated parameters z′, the agent samples trajectories τ ′

using its updated exploitation policy πθ,z′ . Note that our
model enables the agent to learn a generic exploitation pol-
icy πθ,z for the task distribution which can then be adapted
to any specific task by updating z to z′ as shown above.
Effectively, z′ encodes the necessary information regard-
ing the task that helps an agent in adapting its behavior to
maximize its expected return. The collected trajectories are
then used to perform a policy gradient update for all the pa-
rameters z, θ, φ and β using the following objective:

J(z′, θ) = ET ∼ρ(T)

[
Eτ ′∼PT (τ ′|θ,z′) [R(τ ′)]

]
The gradients of J(z′, θ) w.r.t. φ are shown in Eq. 6 (see
appendix). Although the gradients are unbiased, they still
have very high variance. To solve this problem, we draw
inspiration from Mnih et al. (2016) and replace the return
Rµt (see Eq. 7 in appendix) with an advantage estimate Aµt
(see 8 in appendix). Due to space constraints we describe
these formulations in more detail in appendix.

4. Experiments
We have evaluated our proposed model on the envi-
ronments used by Rothfuss et al. (2018). Specifically,
we have used HalfCheetahFwdBack, HalfCheetahVel and
Walker2DFwdBack environments for the dense reward
tasks and a 2D point environment proposed in Rothfuss
et al. (2018) for sparse rewards.

The details of the network architecture and the hyperpa-
rameters used for learning have been mentioned in the ap-
pendix. We would like to state that we have not performed
much hyperparameter tuning due to computational con-
straints and we expect the results of our method to show
further improvements with further tuning. Also, we restrict
ourselves to a single adaptation step in all environments for
the baselines as well as our method, but it can be easily ex-
tended to multiple gradient steps as well by conditioning
the exploration policy on z.

The results of the baselines for the benchmark environ-
ments have been borrowed directly from the the official
ProMP website 1. For the point environments, we have
used the publicly available official implementation2.

1https://sites.google.com/view/pro-mp/
experiments

2https://github.com/jonasrothfuss/ProMP

https://sites.google.com/view/pro-mp/experiments
https://sites.google.com/view/pro-mp/experiments
https://github.com/jonasrothfuss/ProMP

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

4.1. Results

We also compare our method with 3 baseline approaches:
MAML, EMAML and ProMP on the benchmark continu-
ous control tasks. The performance plots for all four algo-
rithms are shown in Fig. 1. In all the environments, our
proposed method outperforms others in terms of asymp-
totic performance. The training is also more stable for our
method and leads to lower variance plots. Our algorithm
particularly shines in 2DPointEnvCorner (Fig 2a) where
the reward is sparse. In this environment, the agent needs
to perform efficient exploration and use the sparse reward
trajectories to perform stable updates both of which are
salient aspects of our algorithm. Although ProMP man-
ages to reach similar peak performance to our method in
2DPointEnvCorner, the training itself is pretty unstable in-
dicating the inherent fragility of their updates. Further, we
show that our method leads to good exploration behavior
in a sparse reward point environment where the agent is al-
lowed to sample only two trajectories in order to perform
the updates illustrating the strength of our procedure. We
also show that the separation of exploration and exploita-
tion policies in this scenario allows us to train the explo-
ration policy using an independent objective providing bet-
ter performance in certain situations.

(a) AntDirEnv (b) Walker2DDirEnv

(c) HalfCheetahDirEnv (d) HalfCheetahVelEnv

Figure 1. Comparison of our method with 3 baseline methods in
sparse and dense reward environments.

Ablations: We perform several ablation experiments to
analyze the impact of different components of our algo-
rithm on 2D point navigation task. Fig. 2b shows the per-
formance plots for 5 different variants:
VPG-Inner loop : The supervised loss in the inner loop is
replaced with the vanilla policy gradient loss as in MAML
while using the exploration policy to sample the pre-update
trajectories. As expected, this model performs poorly due
to the high variance off-policy updates in the inner loop.
Reward Self-Supervision : A reward based self-supervised
objective is used instead of return based self-supervision.
This variant performs reasonably well but struggles to

reach peak performance since the task is sparse reward.
Vanilla DICE : We directly use the dice gradients to per-
form updates on φ instead of using the low variance gra-
dient estimator. The high variance dice gradients lead to
unstable training as can be seen from the plots.
E-MAML Based : Used an E-MAML (Stadie et al., 2018)
type objective to compute the gradients w.r.t φ instead of
using DICE. Although this variant manages to reach peak
performance, it is unstable due to the lack of causal credit
assignment.
Ours : Used the low variance estimate of the dice gra-
dients to compute updates for φ along with return based
self-supervision for inner loop updates. Our model reaches
peak performance and exhibits stable training due to low
variance updates.

(a) Baseline Comparisons (b) Ablation results

Figure 2. 2D Point Environment

5. Conclusion and Future Work
Unlike conventional meta-RL approaches, we proposed to
explicitly model a separate exploration policy for the task
distribution. Having two different policies gives more flex-
ibility in training the exploration policy and also makes
adaptation to any specific task easier. Hence, as future
work, we would like to explore the use of separate explo-
ration and exploitation policies in other meta-learning ap-
proaches as well. We showed that, through various exper-
iments on both sparse and dense reward tasks, our model
outperforms previous works while also being very stable
during training. This validates that using self-supervised
techniques increases the stability of these updates thus al-
lowing us to use a separate exploration policy to collect the
initial trajectories. Further, we also show that the variance
reduction techniques used in the objective of exploration
policy also have a huge impact on the performance. How-
ever, we would like to note that the idea of using a separate
exploration and exploitation policy is much more general
and doesn’t need to be restricted to MAML.

Acknowledgments
This work has been funded by AFOSR award FA9550-15-
1-0442 and AFOSR/AFRL award FA9550-18-1-0251. We
would like to thank Tristan Deleu, Maruan Al-Shedivat,
Anirudh Goyal and Lisa Lee for their insightful and fruitful
discussions and Tristan Deleu, Jonas Rothfuss and Dennis
Lee for opensourcing the repositories and result files.

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

References
Duan, Y., Chen, X., Houthooft, R., Schulman, J., and

Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 1126–1135. JMLR. org,
2017.

Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel,
T., Xing, E. P., and Whiteson, S. Dice: The infinitely
differentiable monte-carlo estimator. arXiv preprint
arXiv:1802.05098, 2018.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsu-
pervised meta-learning for reinforcement learning. arXiv
preprint arXiv:1806.04640, 2018a.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine,
S. Meta-reinforcement learning of structured exploration
strategies. In Advances in Neural Information Process-
ing Systems, pp. 5307–5316, 2018b.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman,
S. J. Deep successor reinforcement learning. arXiv
preprint arXiv:1606.02396, 2016.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T., Harley, T., Silver, D., and Kavukcuoglu, K.
Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pp.
1928–1937, 2016.

Olivecrona, M., Blaschke, T., Engkvist, O., and Chen, H.
Molecular de-novo design through deep reinforcement
learning. Journal of cheminformatics, 9(1):48, 2017.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. arXiv preprint
arXiv:1810.06784, 2018.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without hu-
man knowledge. Nature, 550(7676):354, 2017.

Stadie, B. C., Yang, G., Houthooft, R., Chen, X., Duan,
Y., Wu, Y., Abbeel, P., and Sutskever, I. Some consid-
erations on learning to explore via meta-reinforcement
learning. arXiv preprint arXiv:1803.01118, 2018.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A study
on overfitting in deep reinforcement learning. arXiv
preprint arXiv:1804.06893, 2018.

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and
Whiteson, S. Caml: Fast context adaptation via meta-
learning. arXiv preprint arXiv:1810.03642, 2018.

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

6. Appendix
We described our proposed model in Section 3. The
pseudo-code of our algorithm is shown in algorithm 6.
1: while not converge do
2: Sample a batch of tasks Ti ∼ ρ(T)
3: for all sampled tasks Ti do
4: Collect pre-update trajectories τTiµ using µφ(s)

5: Update z by minimizing
(
Mβ,z(s, a)− M̄(s, a)

)2:

z′ = z − α∇zEτ
Ti
µ ∼QTi (τ |φ)[

H−1∑
t=0

(
t∏

t′=0

µφ(at′ |st′)
⊥ (µφ(at′ |st′))

)(
Mβ,z(s, a)− M̄(s, a)

)2]

where
(∏t

t′=0

µφ(at′ |st′)
⊥(µφ(at′ |st′))

)
is the DICE operator

6: Collect post-update trajectory τTiπ using πθ,z′(s)
7: Policy gradient update to optimize all the parameters
z, θ, φ, β

Although, in principle, the above algorithm is what we
want to implement, implementing it as is leads to high vari-
ance dice gradients. This consequently leads to high vari-
ance gradients for the φ’s. To alleviate this, we apply some
variance reduction techniques described as follows.

The vanilla dice gradients can be written as follows:

∇φJ(z′, θ) = ET ∼ρ(T)

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)[
H−1∑
t′=t

(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ

′)R(τ ′))
>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2))]

The above expression can be seen as a policy gradient up-
date:

∇φJ(z′, θ) = ET ∼ρ(T)

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)R
µ
t

]
(6)

with returns

Rµt =

[
H−1∑
t′=t

(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ

′)R(τ ′))
>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2))]
(7)

Thus, instead of directly applying the gradients computed
above, we compute the advantagesAµt using the returnsRµt
and apply the following gradients.

∇φĴ(z′, θ) = ET ∼ρ(T)

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)A
µ
t

]

where,

Aµt = rµt + V µt+1 − V
µ
t (8)

where V µt is computed using using a linear feature baseline
(Duan et al., 2016) fitted on the returnsRµt . And rµt is given
by,

rµt =
(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ

′)R(τ ′))
>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2))
(9)

6.0.1. SELF-SUPERVISED/SUPERVISED OBJECTIVE

It is important to note that the self-supervised/supervised
learning objective not only guides the adaptation step
but also influences the exploration policy update as seen
in Eq. 6 and 7. We mentioned above that the self-
supervised/supervised learning objective could be as sim-
ple as a value/reward/return/next state prediction for each
state (state-action pair). However, the exact choice of the
objective can be critical to the final performance and sta-
bility. From the perspective of the adaptation step, the only
criterion is that the self-supervised objective should contain
enough task specific information to allow a useful adapta-
tion step. For example, it would not be a good idea to use
the rewards self-supervision in sparse/noisy reward scenar-
ios or the next state predictions as self-supervision when
the dynamics model does not change much over tasks since
the self-supervision updates in such cases will not carry
enough task specific information. From the perspective of
the exploration policy updates, an additional requirement
would be to ensure that the returns computed in Eq. 7 are
low variance and unbiased, which further translates to say-
ing ∇z

(
Mβ,z(st, at)−M(st, at)

)2
should ideally be low

variance and unbiased. For example, using the cumulative
future returns as self-supervision might lead to a very high
variance update in certain environments. Thus, finding a
generalizable self-supervision/supervision objective which
satisfies both properties mentioned above across all scenar-
ios is a challenging task.

In our experiments, we found that, usingN -step return pre-
diction for supervision works reasonably well across all
the environments. This acts as a trade-off between pre-
dicting the full return (which was high variance but also
more task-specific info) and the reward (which was lower
variance but lower task-specific info). Hence, M(st, at)
becomes M(st, at, st+1, at+1,st+N−1, at+N−1) =∑t+N−1
t′=t r(s′t, a

′
t). However, using Mβ,z to di-

rectly predict M would still lead to high variance in
∇z
(
Mβ,z(st, at)−M

)2
. Thus, we use the truncated N

step successor representations (Kulkarni et al., 2016) (simi-
lar to N-step returns)mβ(st, at) and a linear layer on top of

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

Figure 3. Ours

Figure 4. µφ maximizes its environment rewards

that to compute Mβ,z(st, at) = wTβmβ(st, at). Using the
successor representations can effectively be seen as using
a more accurate/powerful baseline than directly predicting
the N-step returns using the (st, at)pair.

6.1. Additional experiments

6.1.1. POINT ENVIRONMENT - SEMICIRCLE

We perform some additional experiments on another toy
environment to illustrate the exploration behavior shown by
our model and demonstrate the benefits of using different
exploration and exploitation policies. Fig 3 shows an envi-
ronment where the agent is initialized at the center of the
semi-circle. Each task in this environment corresponds to
reaching a goal location (red dot) randomly sampled from
the semi circle (green dots). This is also a sparse reward
task where the agent receives a reward only if it is suf-
ficiently close to the goal location. However, unlike the
previous environments, we only allow the agent to sample
2 pre-update trajectories per task in order to identify the
goal location. Thus the agent has to explore efficiently at
each exploration step in order to perform reasonably at the
task. Fig 3 shows the trajectories taken by our exploration

Figure 5. ProMP

Figure 6. Comparison with baselines

agent (orange and blue) and the exploitation/trained agent
(green). Clearly, our agent has learnt to explore the envi-
ronment. However, we know that a policy going around
the periphery of the semi-circle would be a more useful
exploration policy. In this environment we know that this
exploration behavior can be reached by simply maximizing
the environment rewards collected by the exploration pol-
icy. Fig. 4 shows this experiment where the exploration
policy is trained using environment reward maximization
while everything else is kept unchanged. We call this vari-
ant Ours-EnvReward. We also show the trajectories tra-
versed by promp in Fig 5. It is clear that it struggles to
learn different exploration and exploitation behaviors. Fig.
6 shows the performance of our two variants along with
the baselines. This experiment shows that decoupling the
exploration and exploitation policies also allows us, the de-
signers more flexibility at training them, i.e, it allows us to
add any domain knowledge we might have regarding the
exploration or the exploitation policies to further improve
the performance.

Learning Exploration Policies for Model-Agnostic Meta-Reinforcement Learning

6.1.2. EXPERIMENTS WITH DYNAMICS BASED
VARIATIONS

We also experiment with Walker2DRandParams and Hop-
perRandParams. The different tasks in these environments
arise from variations in the dynamics of the agent. The re-
sults are shown in Fig 7. We observe that in both these en-
vironments we match the performance of the baselines but
don’t really perform much better. This could be because
we still use the n-step return as the self-supervision objec-
tive in our experiments. We expect the results to get better
if we test with next-state prediction etc as self-superivision
objectives. We leave that for future work.

6.2. Hyper-parameters and Details

For all the experiments, we treat the shared parameter z
as a learnable latent embedding with fixed initial values of
0̄ as proposed in (Zintgraf et al., 2018),i.e, we don’t per-
form any outer-loop updates on z.. The exploitation policy
πθ,z(s) and the self-supervision network Mβ,z(s, a) con-
catenates z with their respective inputs. All the three net-
works (π, µ,M) have the same architecture (except inputs
and output sizes) as that of the policy network in (Rothfuss
et al., 2018) for all experiments. We also stick to the same
values of hyper-parameters such as inner loop learning rate,
gamma, tau and number of outer loop updates. We keep a
constant embedding size of 32 and a constant N=15 (for
computing the N-step returns) across all experiments and
runs. We use the Adam (Kingma & Ba, 2014) optimizer
with a learning rate of 7e − 4 for all parameters except φ,
which uses a learning rate of 7e− 5. Also, we restrict our-
selves to a single adaptation step in all environments, but
it can be easily extended to multiple gradient steps as well
by conditioning the exploration policy on the latent param-
eters z. We have provided a version of our code in the sup-
plementary material. We will soon open source a cleaned
version of this online.

(a) HopperRandParamsEnv (b) Walker2DRandParamsEnv

Figure 7. Comparison of our method with 3 baseline methods in
dynamics based environments.

