
Under review as a conference paper at ICLR 2020

RECURRENT EVENT NETWORK: GLOBAL STRUCTURE
INFERENCE OVER TEMPORAL KNOWLEDGE GRAPH

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling dynamically-evolving, multi-relational graph data has received a surge
of interests with the rapid growth of heterogeneous event data. However, predicting
future events on such data requires global structure inference over time and the
ability to integrate temporal and structural information, which are not yet well un-
derstood. We present Recurrent Event Network (RE-NET), a novel autoregressive
architecture for modeling temporal sequences of multi-relational graphs (e.g., tem-
poral knowledge graph), which can perform sequential, global structure inference
over future time stamps to predict new events. RE-NET employs a recurrent event
encoder to model the temporally conditioned joint probability distribution for the
event sequences, and equips the event encoder with a neighborhood aggregator for
modeling the concurrent events within a time window associated with each entity.
We apply teacher forcing for model training over historical data, and infer graph
sequences over future time stamps by sampling from the learned joint distribution
in a sequential manner. We evaluate the proposed method via temporal link predic-
tion on five public datasets. Extensive experiments1 demonstrate the strength of
RE-NET, especially on multi-step inference over future time stamps.

1 INTRODUCTION

Representation learning on dynamically-evolving, graph-structured data has emerged as an important
problem in a wide range of applications, including social network analysis (Zhou et al., 2018a; Trivedi
et al., 2019), knowledge graph reasoning (Trivedi et al., 2017; Nguyen et al., 2018; Kazemi et al.,
2019), event forecasting (Du et al., 2016), and recommender systems (Kumar et al., 2019; You et al.,
2019). Previous methods over dynamic graphs mainly focus on learning time-sensitive structure
representations for node classification and link prediction in single-relational graphs. However,
the rapid growth of heterogeneous event data (Mahdisoltani et al., 2014; Boschee et al., 2015) has
created new challenges on modeling temporal, complex interactions between entities (i.e., viewed
as a temporal knowledge graph or a TKG), and calls for approaches that can predict new events in
different future time stamps based on the history—i.e., structure inference of a TKG over time.

Recent attempts on learning over temporal knowledge graphs have focused on either predicting
missing events (facts) for the observed time stamps (García-Durán et al., 2018; Dasgupta et al., 2018;
Leblay & Chekol, 2018), or estimating the conditional probability of observing a future event using
temporal point process (Trivedi et al., 2017; 2019). However, the former group of methods adopts an
interpolation problem formulation over TKGs and thus cannot predict future events, as representations
of unseen time stamps are unavailable. The latter group of methods, including Know-Evolve and its
extension, DyRep, computes the probability of future events using ground-truths of the proceeding
events during inference time, and cannot model concurrent events occurring within the same time
window—which often happens when event time stamps are discrete. It is thus desirable to have a
principled method that can infer graph structure sequentially over time and can incorporate local
structural information (e.g., concurrent events) during temporal modeling.

To this end, we propose a sequential structure inference architecture, called Recurrent Event Network
(RE-NET), for modeling heterogeneous event data in the form of temporal knowledge graphs. Key
ideas of RE-NET are based on the following observations: (1) predicting future events can be viewed
as a sequential (multi-step) inference of multi-relational interactions between entities over time; (2)

1Code and data have been uploaded and will be published upon acceptance of the paper.

1

Under review as a conference paper at ICLR 2020

Grant diplomatic recognition at 1/1/18

Make statement at 3/8/18

Consult at 4/10/18
Make a request at 4/22/18

Criticize at 5/5/18

Visit at 5/6/18

Make statement at 6/13/18

(a) An example of temporal KG

?

? ?

𝐺"#$ 𝐺"#% 𝐺"#& 𝐺"

	

Aggregate

𝑃(𝐺"|𝐺"#$:"#&)

DecoderEncoder

Local

Global

(b) Overview of the RE-NET architecture
Figure 1: Illustration of (a) temporal knowledge graph and (b) the Recurrent Event Network
architecture. RE-NET employs an RNN to capture s-related interactions N(s)

t (modeled by a
neighborhood aggregator) at different time t. Also the global information from Gt is used to capture
the global graph structures. Recurrent event encoder updates its state with graph sequences in an
autoregressive manner. The decoder defines the probability P(st, rt, ot|G:t−1) at current time step
conditioned on the preceding events.

temporally adjacent events may carry related semantics and informative patterns, which can further
help inform future events (i.e., temporal information); and (3) multiple events may co-occur within
the same time window and exhibit structural dependencies as they share entities (i.e., local structural
information). To incorporate these ideas, RE-NET defines the joint probability distribution of all
the events in a TKG in an autoregressive fashion, where it models the probability distribution of the
concurrent events at the current time step conditioned on all the preceding events (see Fig. 1b for an
illustration). Specifically, a recurrent event encoder, parametrized by RNNs, is used to summarize
information of the past event sequences, and a neighborhood aggregator is employed to aggregate the
information of concurrent events for the related entity within each time stamp. With the summarized
information of the past event sequences, our decoder defines the joint probability of a current event.
Such an autoregressive model can be effectively trained by using teacher forcing. Global structure
inference for predicting future events can be achieved by performing sampling in a sequential manner.

We evaluate our proposed method on temporal link prediction task, by testing the performance of
multi-step inference over time on five public temporal knowledge graph datasets. Experimental
results demonstrate that RE-NET outperforms state-of-the-art models of both static and temporal
graph reasoning, showing its better capacity to model temporal, multi-relational graph data with
concurrent events. We further show that RE-NET can perform effective multi-step inference to
predict unseen entity relationships in a distant future.

2 RELATED WORK

Our work is related to previous studies on temporal knowledge graph reasoning, temporal modeling
on homogeneous graphs, recurrent graph neural networks, and deep autoregressive models.

Temporal KG Reasoning. There are some recent attempts on incorporating temporal information
in modeling dynamic knowledge graphs. (Trivedi et al., 2017) presented Know-Evolve which
models the occurrence of a fact as a temporal point process. However, this method is built on
a problematic formulation when dealing with concurrent events, as shown in Section F. Several
embedding-based methods have been proposed (García-Durán et al., 2018; Leblay & Chekol, 2018;
Dasgupta et al., 2018) to model time information. They embed the associate into a low dimensional
space such as relation embeddings with RNN on the text of time (García-Durán et al., 2018), time
embeddings (Leblay & Chekol, 2018), and temporal hyperplanes (Leblay & Chekol, 2018). However,
these models do not capture temporal dependency and cannot generalize to unobserved time stamps.

Temporal Modeling on Homogeneous Graphs. There are attempts on predicting future links on
homogeneous graphs (Pareja et al., 2019; Goyal et al., 2018; 2019; Zhou et al., 2018b; Singer et al.,
2019). Some of the methods try to incorporate and learn graphical structures to predict future
links (Pareja et al., 2019; Zhou et al., 2018b; Singer et al., 2019), while other methods predict by
reconstructing an adjacency matrix by using an autoencoder (Goyal et al., 2018; 2019). These

2

Under review as a conference paper at ICLR 2020

methods seek to predict on single-relational graphs, and are designed to predict future edges in one
future step (i.e., for t+ 1). However, our work focuses on “multi-relational” knowledge graphs and
aims for multi-step prediction (i.e., for t+ 1, . . . , t+ k).

Recurrent Graph Neural Models. There have been some studies on recurrent graph neural models
for sequential or temporal graph-structured data (Sanchez-Gonzalez et al., 2018; Battaglia et al.,
2018; Palm et al., 2018; Seo et al., 2017; Pareja et al., 2019). These methods adopt a message-
passing framework for aggregating nodes’ neighborhood information (e.g., via graph convolutional
operations). GN (Sanchez-Gonzalez et al., 2018; Battaglia et al., 2018) and RRN (Palm et al., 2018)
update node representations by a message-passing scheme between time stamps. Some prior methods
adopt an RNN to memorize and update the states of node embeddings that are dynamically evolving
(Seo et al., 2017), or memorize and update the model parameters for different time stamps (Pareja
et al., 2019). In contrast, our proposed method, RE-NET, aims to leverage autoregressive modeling
to parameterize the joint probability distributions of events with RNNs.

Deep Autoregressive Models. Deep autoregressive models define joint probability distributions as
a product of conditionals. DeepGMG (Li et al., 2018) and GraphRNN (You et al., 2018) are deep
generative models of graphs and focus on generating homogeneous graphs where there is only a
single type of edge. In contrast to these studies, our work focuses on generating heterogeneous
graphs, in which multiple types of edges exist, and thus our problem is more challenging. To the best
of my knowledge, this is the first paper to formulate the structure inference (prediction) problem for
temporal, multi-relational (knowledge) graphs in an autoregressive fashion.

3 PROPOSED METHOD: RE-NET

We consider a temporal knowledge graph (TKG) as a multi-relational, directed graph with time-
stamped edges (relationships) between nodes (entities). An event is defined as a time-stamped edge,
i.e., (subject entity, relation, object entity, time) and is denoted by a quadruple (s, r, o, t) or (st, rt, ot).
We denote a set of events at time t asGt. A TKG is built upon a sequence of event quadruples ordered
ascending based on their time stamps, i.e., {Gt}t = {(si, ri, oi, ti)}i (with ti < tj ,∀i < j), where
each time-stamped edge has a direction pointing from the subject entity to the object entity.2 The
goal of learning generative models of events is to learn a distribution P(G) over temporal knowledge
graphs, based on a set of observed event sets {G1, ..., GT }. To model lasting events which span
over a time range, i.e., (s, r, o, [t1, t2]), we simply partition such event into a sequence of time-stamp
events {Gt1 , ..., Gt2}. We leave more sophisticated modeling of lasting events as future work.

3.1 RECURRENT EVENT NETWORK

Sequential Structure Inference in TKG. The key idea in RE-NET is to define the joint distribution
of all the eventsG = {G1, ..., GT } in an autoregressive manner, i.e., P(G) =

∏T
t=1 P(Gt|Gt−m:t−1).

Basically, we decompose the joint distribution into a sequence of conditional distributions (e.g.,
P(Gt|Gt−m:t−1)), where we assume the probability of the events at a time step, e.g. Gt, only
depends on the events at the previous m steps, e.g., Gt−m:t−1. For each conditional distribution
P(Gt|Gt−m:t−1), we further assume that the events inGt are mutually independent given the previous
events Gt−m:t−1. In this way, the joint distribution can be rewritten as follows.

P(G) =
∏
t

∏
(st,rt,ot)∈Gt

P(st, rt, ot|Gt−m:t−1)

=
∏
t

∏
(st,rt,ot)∈Gt

P(ot|st, rt, Gt−m:t−1) · P(rt|st, Gt−m:t−1) · P(st|Gt−m:t−1).
(1)

Intuitively, the generation process of each triplet (st, rt, ot) is defined as below. Given all the past
events Gt−m:t−1, we fist generate a subject entity st through the distribution P(st|Gt−m:t−1). Then
we further generate a relation rt with P(rt|st, Gt−m:t−1), and finally the object entity ot is generated
by defining P(ot|st, rt, Gt−m:t−1).

In this work, we assume that P(ot|st, rt, Gt−m:t−1) and P(rt|st, Gt−m:t−1) depend only on events
that are related to s, and focus on modeling the following joint probability:

P(st, rt, ot|Gt−m:t−1) = P(ot|s, r,N(s)
t−m:t−1) · P(rt|s,N(s)

t−m:t−1) · P(st|Gt−m:t−1), (2)

2The same triple (s, r, o) may occur multiple times in different time stamps, yielding different event quadruples.

3

Under review as a conference paper at ICLR 2020

	𝑠

Graph from 𝑁 𝑠 $%&

	𝑠

Graph from 𝑁 𝑠 $%'

	𝑠

Graph from 𝑁 𝑠 $

ReLu

𝑔(𝑁 𝑠 $)

	𝑠

RGCN Aggregation

1-hop aggregator 2-hop aggregator

𝑟'
𝑟&

𝑟,

𝑟' 𝑟& 𝑟, 𝑟' 𝑟& 𝑟,

𝑔(𝑁 𝑠 $%')

𝑔(𝑁 𝑠 $%&)

Figure 2: Illustration of the multi-relational graph (RGCN) aggregator. The blue node corre-
sponds to node s, red nodes are 1-hop neighbors, and green nodes are 2-hop neighbors. Different
colored edges are different relations. In this figure, we get g(N(s)t), g(N(s)t−1), and g(N(s)t−2)
for each graph from a two-layered RGCN aggregator.

where Gt becomes N(s)
t which is a set of neighboring entities interacted with subject entity s under

all relations at time stamp t. For the third probability, the event sets should be considered since
subject is not given. Next, we introduce how we parameterize these distributions.

Recurrent Event Encoder. RE-NET parameterizes P(ot|s, r, Gt−m:t−1) in the following way:

P(ot|s, r,N(s)
t−m:t−1) ∝ exp

(
[es : er : ht−1(s, r)]> ·wot

)
, (3)

where es, er ∈ Rd are learnable embedding vectors specified for subject entity s and relation r.
ht−1(s, r) ∈ Rd is a history vector which encodes the information from the neighbor sets interacted
with s in the past, as well as the global information from graph structures of Gt−1:t−m. Basically,
[es : er : ht−1(s, r)] is an encoding to summarize all the past information. Based on that, we further
compute the probability of different object entities ot by passing the encoding into a linear softmax
classifier parameterized by {wot

}.
Similarly, we define the probabilities for relations and subjects as follows:

P(rt|s,N(s)
t−m:t−1) ∝ exp

(
[es : ht−1(s))]> ·wrt

)
, (4)

P(st|Gt−m:t−1) ∝ exp
(
H>t−1 ·wst

)
, (5)

where ht−1(s) captures all the local information about s in the past, and Ht−1 ∈ Rd is a vector
representation to encode the global graph structures Gt−1:t−m.

For each time step t, since the hidden vectors ht−1(s), ht−1(s, r) and Ht−1 preserve the information
from the past events, and we update them in the following recurrent way:

ht(s, r) = RNN1(g(N(s)
t),Ht,ht−1(s, r)), (6)

ht(s) = RNN2(g(N(s)
t),Ht,ht−1(s)), (7)

Ht = RNN3(g(Gt),Ht−1), (8)

where g is an aggregation function, and N(s)
t stands for all the events related to s at the current

time step t. Intuitively, we obtain the current information related to s by aggregating all the related
events at time t, i.e., g(N(s)

t). Then we update the hidden vector ht(s, r) by using the aggregated
information g(N(s)

t) at the current step, the past value ht−1(s, r) and also the global hidden vector
Ht. The hidden vector ht(s) is updated in a similar way. For the aggregation of all events g(Gt),
we define g(Gt) = max({g(N(s)

t)}s), which is from the element-wise max-pooling operation over all
g(N(s)

t). We use Gated Recurrent Units Cho et al. (2014) as RNN. Details are described in Section A.

For each subject entity s, it can interact with multiple relations and object entities at each time step t.
In other words, the set N(s)

t can contain multiple events. Designing effective aggregation functions g
to aggregate information from N(s)

t for s is therefore a nontrivial problem. Next, we introduce how
we design g(·) in RE-NET.

3.2 MULTI-RELATIONAL GRAPH (RGCN) AGGREGATOR

Here we discuss the aggregate function g(·), which capture different kinds of neighborhood infor-
mation for each subject entity and relation, i.e., (s, r). We first introduce two simple aggregation

4

Under review as a conference paper at ICLR 2020

functions, i.e., mean pooling aggregator and attentive pooling aggregator. These two simple aggrega-
tors only collect neighboring entities under the same relation r. Then we introduce a more powerful
aggregation function, i.e., multi-relational aggregator.

Mean Pooling Aggregator. The baseline aggregator simply takes the element-wise mean of the
vectors in {eo : o ∈ N(s,r)

t }, where N(s,r)
t is a set of objects interacted with s under r at t. But the mean

aggregator treats all neighboring objects equally, and thus ignores the different importance of each
neighbor entity.

Attentive Pooling Aggregator. We define an attentive aggregator based on the additive attention
introduced in (Bahdanau et al., 2015) to distinguish the important entities for (s, r). The aggregate
function is defined as g(N(s,r)

t) =
∑

o∈N(s,r)
t

αoeo, where αo = softmax(v> tanh(W (es; er; eo))). v ∈
Rd and W ∈ Rd×3d are trainable weight matrices. By adding the attention function of the subject and
the relation, the weight can determine how relevant each object entity is to the subject and relation.

Multi-Relational Aggregator. Here, we introduce a multi-relational graph aggregator based on
(Schlichtkrull et al., 2018). This is a general aggregator that can incorporate information from
multi-relational neighbors and multi-hop neighbors. Formally, the aggregator is defined as follows:

g(N(s)
t) = h(l+1)

s = σ
(∑

r∈R

∑
o∈N(s,r)

t

1

cs
W (l)

r h(l)
o + W

(l)
0 h(l)

s

)
, (9)

where initial hidden representations for each node (h(0)
o) are set to trainable embedding vectors (eo)

for each node.

Basically, each relation can derive a local graph structure between entities, which further yield
a message on each entity by aggregating the information from the neighbors of that entity, i.e.,∑

o∈N(s,r)
t

1
cs
W

(l)
r h

(l)
o . The overall message on each entity is further computed by aggregating all the

relation-specific messages, i.e.,
∑

r∈R
∑

o∈N(s,r)
t

1
cs
W

(l)
r h

(l)
o . Finally, the aggregator g(N(s)

t) is defined

by combining both the overall message and the information from past steps, i.e., W (l)
0 h

(l)
s .

To distinguish between different relations, we introduce independent weight matrices {W (l)
r } for

each relation r. Furthermore, the aggregator collects representations of multi-hop neighbors by
introducing multiple layers of the neural network, with each layer indexed by l. The number of layers
determines the depth to which the node reaches to aggregate information from its local neighborhood.
We depict this aggregator in Fig. 2.

The major issue of this aggregator is that the number of parameters grows rapidly with the number
of relations. In practice, this can easily lead to overfitting on rare relations and models of very
large size. Thus, we adopt the block-diagonal decomposition (Schlichtkrull et al., 2018), where
each relation-specific weight matrix is decomposed into a block-diagonal by decomposing into low-
dimensional matrices. W (l)

r in equation 9 is defined as a block diagonal matrix, diag(A
(l)
1r , ...,A

(l)
Br)

where A
(l)
kr ∈ R(d(l+1)/B)×(d(l)/B) and B is the number of basis matrices. The block decomposition

reduces the number of parameters and helps to prevent overfitting.

3.3 PARAMETER LEARNING AND INFERENCE OF RE-NET

Parameter Learning via Event Prediction. The (object) entity prediction given (s, r) can be viewed
as a multi-class classification task, where each class corresponds to one object entity. Similarly, rela-
tion prediction given s and subject entity prediction can be considered as a multi-class classification
task. Here we omit the notation for previous events. To learn weights and representations for entities
and relations, we adopt a multi-class cross-entropy loss to the model’s output.The loss function is
comprised of three losses and is defined as:

L = −
∑

(s,r,o,t)∈G

(
log(P(ot|st, rt) + λ1 log(P(rt|st)) + λ2 log(P(st))

)
, (10)

where G is set of events, and λ1 and λ2 are importance parameters that control the importance of
each loss term. λ1 and λ2 can chosen depending on a task. If the task aims to predict o given (s, r),
then we can give small values to λ1 and λ2. Each probability is defined in equations 3, 4, and 5,
respectively. We apply teacher forcing for model training over historical data.

5

Under review as a conference paper at ICLR 2020

Algorithm 1: Inference algorithm of RE-NET

Input: Observed graph sequence: {G1, ..., Gt−1}, Number of events to sample at each step: M .
Output: An estimation of the conditional distribution: P(Gt+∆t|G:t).

1 t′ = t
2 while t′ ≤ t+ ∆t do
3 Sample M number of s ∼ P(s|Ĝt+1:t′−1, G:t) by Equation 5.
4 Pick top-k triples {(s1, r1, o1, t

′), ..., (sk, rk, ok, t
′)} ranked by Equation 2.

5 Ĝt′ = {(s1, r1, o1, t
′), ..., (sk, rk, ok, t

′)}
6 t′ = t′ + 1

7 Estimate the probability of each event P(s, r, o|Ĝt+1:t+∆t−1, G:t) by Equation 2.
8 Estimate the joint distribution of all events P(Gt+∆t|Ĝt+1:t+∆t−1, G:t) by Equation 1.
9 return P(Gt+∆t|Ĝt+1:t+∆t−1, G:t) as the estimation.

Multi-step Inference over Time. At inference time, RE-NET seeks to predict the forthcoming
events based on the previous observations. Suppose that the current time is t and we aim at predicting
events at time t + ∆t, then the problem of multi-step inference can be formalized as an inference
problem, i.e., inferring the conditional probability P(Gt+∆t|G:t). The problem is nontrivial as we need
to integrate over all Gt+1:t+∆t−1. To achieve efficient inference, we draw a sample of Gt+1:t+∆t−1,
and estimate the conditional probability in the following way:

P(Gt+∆t|G:t) =
∑

Gt+1:t+∆t−1

P(Gt+∆t|G:t+∆t−1)P(Gt+∆t−1|G:t+∆t−2) · · ·P(Gt+1|G:t)

= EP(Gt+1:t+∆t−1|G:t)[P(Gt+∆t|G:t+∆t−1)] ' P(Gt+∆t|Ĝt+1:t+∆t−1, G:t) (11)
Such an inference procedure is intuitive. Basically, one starts with computing P(Gt+1|G:t), and
drawing a sample Ĝt+1 from the conditional distribution. With this sample, one can further compute
P(Gt+2|Ĝt+1, G:t). By iteratively computing the conditional distribution for Gt′ and drawing a
sample from it, one can eventually estimate P(Gt+∆t|G:t) as P(Gt+∆t|Ĝt+1:t+∆t−1, G:t). In practice,
we can improve the estimation by drawing multiple graph samples at each step, but RE-NET already
performs very well with a single sample, and thus we only draw one sample graph at each step for
better efficiency. Based on the estimation of the conditional distribution, we can further predict events
which are likely to form in the future. We summarize the detailed inference algorithm in Algorithm 1.
In Algorithm 1, we sample one graph at a time. To obtain the graph, we first sample M number of s
(line 3) and pick top-k triples (line 4). Then we have a knowledge graph at time t′ (line 5).

Computational Complexity Analysis. Here we analyze the time complexity of the graph genera-
tion algorithm 1. To compute P(st|Gt−m:t−1) (equation 5), it takes O(|E|Lm), where |E| is the
maximum number of triples among {Gt−m, ..., Gt−1}, L is the number of layers of aggregation,
and m is the number of the past time steps since we unroll m time steps in RNN. From this prob-
ability, we sample M number of subjects s. To compute P(st, rt, ot|Gt−m:t−1) (equation 2), it
takes O(DLm), where D is the maximum degree of entities. To get probabilities of all possible
triples given sampled subjects, it needs O(M |R||O|DLm) where |R| is the total number of relations
and |O| is the total number of entities. Thus, the time complexity for generating one graph is
O(|E|Lm+M |R||O|(DLm+ log k)) where k is the cutoff number for picking top-k triples. The
time complexity is linear to the number of entities and relations, and the number of sampled s.

4 EXPERIMENTS

Evaluating the quality of generated graphs is challenging, especially in knowledge graphs (Theis
et al., 2015). Instead, we evaluate our proposed method on a link prediction task on temporal
knowledge graphs. The task of predicting future links aims to predict unseen relationships with object
entities given (s, r, ?, t) (or subject entities given (?, r, o, t)), based on the observed events in the
TKG. Essentially, the task is a ranking problem over all the events (s, r, ?, t) (or (?, r, o, t)). RE-NET
can approach this problem by computing the probability of each event in a distant future with the
inference algorithm in Algorithm 1, and further rank all the events according to their probabilities.

We evaluate our proposed method on three benchmark tasks: (1) predicting future events on three
event-based datasets; (2) predicting future facts on two knowledge graphs which include facts with
time spans, and (3) studying parameter sensitivity and ablation of our proposed method. Section 4.1

6

Under review as a conference paper at ICLR 2020

Table 1: Performance comparison on temporal link prediction (average metrics in % over 5 runs) on
three event-based TKG datasets with filtered setting. RE-NET achieves the best results. Results with
raw setting are in the supplementary material.

Method
ICEWS18 - filtered GDELT - filtered ICEWS14 - filtered

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

St
at

ic

TransE 17.56 2.48 26.95 43.87 16.05 0.00 26.10 42.29 18.65 1.21 31.34 47.07
DistMult 22.16 12.13 26.00 42.18 18.71 11.59 20.05 32.55 19.06 10.09 22.00 36.41
ComplEx 30.09 21.88 34.15 45.96 22.77 15.77 24.05 36.33 24.47 16.13 27.49 41.09
R-GCN 23.19 16.36 25.34 36.48 23.31 17.24 24.94 34.36 26.31 18.23 30.43 45.34
ConvE 36.67 28.51 39.80 50.69 35.99 27.05 39.32 49.44 40.73 33.20 43.92 54.35
RotatE 23.10 14.33 27.61 38.72 22.33 16.68 23.89 32.29 29.56 22.14 32.92 42.68

Te
m

po
ra

l

HyTE 7.31 3.10 7.50 14.95 6.37 0.00 6.72 18.63 11.48 5.64 13.04 22.51
TTransE 8.36 1.94 8.71 21.93 5.52 0.47 5.01 15.27 6.35 1.23 5.80 16.65
TA-DistMult 28.53 20.30 31.57 44.96 29.35 22.11 31.56 41.39 20.78 13.43 22.80 35.26
Know-Evolve* 3.27 3.23 3.23 3.26 2.43 2.33 2.35 2.41 1.42 1.35 1.37 1.43
Know-Evolve+MLP 9.29 5.11 9.62 17.18 22.78 15.40 25.49 35.41 22.89 14.31 26.68 38.57
DyRep+MLP 9.86 5.14 10.66 18.66 23.94 15.57 27.88 36.58 24.61 15.88 28.87 39.34
R-GCRN+MLP 35.12 27.19 38.26 50.49 37.29 29.00 41.08 51.88 36.77 28.63 40.15 52.33

RE-NET w/o multi-step 40.05 33.32 42.60 52.92 38.72 30.57 42.52 52.78 42.72 35.42 46.06 56.15
RE-NET w/o agg. 33.46 26.64 35.98 46.62 38.10 29.34 41.26 51.61 42.23 34.73 45.61 56.07
RE-NET w. mean agg. 40.70 34.24 43.27 53.65 38.35 29.92 42.13 52.52 43.79 36.21 47.34 57.47
RE-NET w. attn agg. 40.96 34.57 44.08 54.32 38.54 29.65 42.25 52.85 43.94 37.01 47.85 57.91
RE-NET 42.93 36.19 45.47 55.80 40.12 32.43 43.40 53.80 45.71 38.42 49.06 59.12
RE-NET w. GT (s, r) 44.33 37.61 46.83 57.27 41.80 33.54 45.71 56.03 46.74 39.41 50.10 60.19

summarizes the datasets, and the supplementary material contains additional information. In all these
experiments, we perform predictions on time stamps that are not observed during training.

4.1 EXPERIMENTAL SET-UP

Datasets. We use five datasets: 1) three event-based temporal knowledge graphs: ICEWS18 (Boschee
et al., 2015), ICEWS14 (Trivedi et al., 2017), and GDELT (Leetaru & Schrodt, 2013); and 2) two
knowledge graphs where temporally associated facts have meta-facts as (s, r, o, [ts, te]) where ts
is the starting time point and te is the ending time point: WIKI (Leblay & Chekol, 2018) and
YAGO (Mahdisoltani et al., 2014). The details of the datasets are described in Section B.

Evaluation Setting and Metrics. For each dataset except ICEWS14, we split it into three subsets,
i.e., train(80%)/valid(10%)/test(10%), by time stamps. Thus, (times of train) < (times of valid) <
(times of test). We report Mean Reciprocal Ranks (MRR) and Hits@1/3/10, using the filtered version
and the raw version of the datasets. Similar to the definition of filtered setting in (Bordes et al., 2013),
during evaluation, we remove from the list of corrupted triplets all the triplets that appear either in the
train, dev, or test set.

Competitors. We compare our approach to baselines for static graphs and temporal graphs:

(1) Static Methods. By ignoring the edge time stamps, we construct a static, cumulative graph for
all the training events, and apply multi-relational graph representation learning methods including
TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), ComplEx (Trouillon et al., 2016), R-
GCN (Schlichtkrull et al., 2018), ConvE (Dettmers et al., 2018), and RotatE (Sun et al., 2019).

(2) Temporal Reasoning Methods. We also compare state-of-the-art temporal reasoning methods
for knowledge graphs, including Know-Evolve3 (Trivedi et al., 2017), TA-DistMult (García-Durán
et al., 2018), HyTE (Dasgupta et al., 2018), and TTransE (Leblay & Chekol, 2018). TA-DistMult,
HyTE, and TTransE are for a interpolation task which is to make predictions at time t such that
t1 < t < t2, which is different from our setting. We give random values or embeddings that are not
observed during training. To see the effectiveness of our recurrent event encoder, we use encoders
of previous work and our MLP decoder as baselines; we compare Know-Evolve, Dyrep (Trivedi
et al., 2019), and GCRN (Seo et al., 2017) combined with our MLP decoder, which are called
Know-Evolve+MLP, DyRep+MLP, and R-GCRN+MLP. The GCRN utilizes Graph Gonvolutional
Network (Kipf & Welling, 2016). Instead, we use RGCN (Schlichtkrull et al., 2018) to deal with
multi-relational graphs.

3*: We found a problematic formulation in Know-Evolve when dealing with concurrent events (Eq. (3) in its paper) and a flaw in its
evaluation code. The performance dramatically drops after fixing the evaluation code. Details of this issues are discussed in Section F.

7

Under review as a conference paper at ICLR 2020

Table 2: Performance comparison on temporal link prediction (average metrics in % over 5 runs) on
two public temporal knowledge graphs, i.e., WIKI and YAGO.

Method
WIKI - filtered WIKI - raw YAGO - filtered YAGO - raw

MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10
St

at
ic

TransE 46.68 49.71 51.71 26.21 31.25 39.06 48.97 62.45 66.05 33.85 48.19 59.50
DistMult 46.12 49.81 51.38 27.96 32.45 39.51 59.47 60.91 65.26 44.05 49.70 59.94
ComplEx 47.84 50.08 51.39 27.69 31.99 38.61 61.29 62.28 66.82 44.09 49.57 59.64
R-GCN 37.57 39.66 41.90 13.96 15.75 22.05 41.30 44.44 52.68 20.25 24.01 37.30
ConvE 47.57 50.10 50.53 26.03 30.51 39.18 62.32 63.97 65.60 41.22 47.03 59.90
RotatE 50.67 50.74 50.88 26.08 31.63 38.51 65.09 65.67 66.16 42.08 46.77 59.39

Te
m

po
ra

l

HyTE 43.02 45.12 49.49 25.40 29.16 37.54 23.16 45.74 51.94 14.42 39.73 46.98
TTransE 31.74 36.25 43.45 20.66 23.88 33.04 32.57 43.39 53.37 26.10 36.28 47.73
TA-DistMult 48.09 49.51 51.70 26.44 31.36 38.97 61.72 65.32 67.19 44.98 50.64 61.11
Know-Evolve* 0.09 00.03 0.10 0.03 0 0.04 00.07 0 0.04 0.02 0 0.01
Know-Evolve+MLP 12.64 14.33 21.57 10.54 13.08 20.21 6.19 6.59 11.48 5.23 5.63 10.23
DyRep+MLP 11.60 12.74 21.65 10.41 12.06 20.93 5.87 6.54 11.98 4.98 5.54 10.19
R-GCRN+MLP 47.71 48.14 49.66 28.68 31.44 38.58 53.89 56.06 61.19 43.71 48.53 56.98

RE-NET w/o multi-step 51.01 51.14 52.91 29.91 32.60 40.29 64.21 64.70 67.11 45.88 51.78 60.97
RE-NET w/o agg. 31.08 33.98 45.53 17.55 20.65 33.51 33.86 36.89 50.72 27.37 30.20 46.35
RE-NET w. mean agg. 51.13 51.37 53.01 30.19 32.94 40.57 65.10 65.24 67.34 46.33 52.49 61.21
RE-NET w. attn agg. 51.25 52.54 53.12 30.25 30.12 40.86 65.13 67.54 67.87 46.56 52.56 61.35
RE-NET 51.97 52.07 53.91 30.87 33.55 41.27 65.16 65.63 68.08 46.81 52.71 61.93
RE-NET w. GT (s, r) 53.57 54.10 55.72 32.44 35.42 43.16 66.80 67.23 69.77 48.60 54.20 63.59

(3) Variants of RE-NET. To evaluate the importance of different components of RE-NET, we varied
our base model in different ways: RE-NET w/o multi-step which does not update history during
inference, RE-NET without the aggregator (RE-NET w/o agg.), RE-NET with a mean aggregator
(RE-NET w. mean agg.), and RE-NET with an attentive aggregator (RE-NET w. attn agg.). takes
a zero vector instead of a representation of the aggregator. RE-NET w. GT (s, r) denotes RE-NET
with ground truth history or interactions during multi-step inference, and thus the model knows all
the interactions before the time for testing. It does not update history (or generate a graph) since it
already has ground truth history. Experiment settings and implementation details of RE-NET and
baselines are described in Section C.

4.2 PERFORMANCE COMPARISON ON TEMPORAL KNOWLEDGE GRAPHS.

In this section we compare our proposed method with other baselines. The test results are obtained
by averaged metrics over the entire test sets on datasets.

Performances on Event-based TKGs. Table 1 summarizes results on three event-based datasets:
ICEWS18, GDELT, and ICEWS14. Our proposed RE-NET outperforms all other baselines on
these datasets. Static methods show good results but they underperform our method since they
do not consider temporal factors. Also, RE-NET outperforms all other temporal methods, which
demonstrates effectiveness of the proposed method. The modified Know-Evolve with our MLP
decoder (Know-Evovle+MLP) achieves the better performances than Know-Evolve, which shows
effectiveness of our MLP decoder, but there is still a large gap from our model. We notice that
Know-Evolve and DyRep has a gradient exploding issue on their encoder since their RNN-like
structures keep accumulating embedding over time. This issue degrades their performances. Graph
Convolutional Recurrent Network (GCRN) is not for dynamic and multi-relational graphs, and is
not capable of link prediction. We modified the model to work on dynamic graphs and our problem
setting by using RGCN instead of GCN, and our MLP decoder. The modified model (R-GCRN+MLP)
shows good performances but it does not outperform our method. R-GCRN+MLP has a similar
structure to ours in that it has a recurrent encoder and an RGCN aggregator but it lacks multi-step
inference, global information, and sophisticated modeling for the recurrent encoder. These results
of the combined models suggest the our recurrent event encoder shows better performances in link
prediction. Importantly, all these temporal methods are not capable of multi-step inference, while
RE-NET sequentially infers multi-step events.

Performances on Public KGs. Previous results have proved the effectiveness of RE-NET, and
here we will compare the method on the Public KGs: WIKI and YAGO. In Table 2, our proposed
RE-NET outperforms all other baselines. In these datasets, baselines show better results than in the
Event-based TKGs. This is due to the characteristics of the datasets; they have facts that are valid
within a time span. However, our proposed method consistently outperforms the static and temporal

8

Under review as a conference paper at ICLR 2020

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000

H
it
s
@

3

Minutes

RE-Net ConvE TA-DistMult

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

H
it
s
@

3

Days

(a) ICEWS18 (H@3)

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000

H
it
s
@

3

Minutes

(b) GDELT (H@3)

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 2
008

 2
009

 2
010

 2
011

 2
012

 2
013

 2
014

 2
015

 2
016

 2
017

H
it
s
@

3

Years

(c) WIKI (H@3)

 0.62

 0.64

 0.66

 0.68

 2
013

 2
014

 2
015

 2
016

 2
017

H
it
s
@

3

Years

(d) YAGO (H@3)
Figure 3: Performance of temporal link prediction over future time stamps with filtered Hits@3.
RE-NET consistently outperforms the baselines.

 30

 35

 40

 45

 50

MRR

Mean

Attn

RGCN

(a) RE-NET with dif-
ferent aggregators

 30

 35

 40

 45

 50

MRR Hits@3

w/o global
global

(b) Effect of global rep-
resentations

 40

 41

 42

 43

 44

 45

MRR

emp. p(s,r)
emp p(s)

RE-Net

(c) Study of empirical
P(s) and P(s, r)

Figure 4: Performance study on model variations. We study the effects of (a) RE-NET with different
aggregators, (b) effect of the global representation from a global graph structure, and (c) empirical
P(s) and P(s, r)

methods. which implies that RE-NET effectively infers new events using a powerful event encoder
and an aggregator, and provides accurate prediction results.

Performances of Prediction over Time. Next, we further study performances of RE-NET over time.
Figs. 3 shows the performance comparisons over different time stamps on the ICEWS18, GDELT,
WIKI, and YAGO datasets with filtered Hits@3 metrics. RE-NET consistently outperforms baseline
methods for all different time stamps. Performances of each method fluctuate since testing entities
are different at each time step. We notice that with the increase of time step, the difference between
RE-NET and ConvE is getting smaller as shown in Fig. 3. This is expected since further future events
are harder to predict. Furthermore, we can think that the decline of the performances is due to the
generation of a long graph sequence. To estimate the joint probability distribution of all events in a
distant future, RE-NET should generates a long sequence of graphs. The quality of generated graphs
deteriorates when RE-NET generates a long graph sequence.

4.3 ABLATION STUDY

In this section, we study the effect of variations in RE-NET. To evaluate the importance of different
components of RE-NET, we varied our base model in different ways, measuring the change in
performance on the link prediction task on the ICEWS18 dataset. We present the results in Tables 1,
2, and Figs. 4.

Different Aggregators. We first analyze the effect of the aggregator. In Tables 1, 2, we observe that
RE-NET w/o agg. hurts model quality. This suggests that introducing aggregators make the model
capable of dealing with concurrent events and aggregators improve the prediction performances.
Fig. 4a shows the performances of RE-NET with different aggregators. Among them, RGCN
aggregator outperforms other aggregators. This aggregator has the advantage of exploring multi-
relational neighbors not limited to neighbors under the same relation. Also, RE-NET with an attentive
aggregator shows better performances than RE-NET with a mean aggregator, which implies that
giving different attention weights to each neighbor helps predictions.

Global Information. We further observe that representations from global graph structures help the
predictions. Fig. 4b shows effectiveness of a representation of global graph structures. We consider
that global representations give information beyond local graph structures.

9

Under review as a conference paper at ICLR 2020

 40

 41

 42

 43

 44

 45

 2 4 6 8 10 12 14
M

R
R

Length of history

(a) Length of past history

 40

 41

 42

 43

 44

 45

 0 200 400 600 800 1000

M
R

R

Cutoff position k

(b) Cutoff position k

 30

 35

 40

 45

 50

MRR Hits@3

1-layer
2-layers
3-layers

(c) # layers of RGCN
Figure 5: Parameter sensitivity on RE-NET. We study the effects of (a) length of RNN history in
event sequence encoder, (b) cutoff position at inference time, and (c) number of RGCN layers in
neigborhood aggregation.

Empirical Probabilities. Here, we study the role of P(st|Gt−m:t−1) and P(rt|s, Gt−m:t−1). We
simply denote them as P(s) and P(r) for brevity. Also, P(st, rt|Gt−m:t−1) (or simply P(s, r)) is
equivalent to P(s)P(r). In Fig 4c, emp. P(s) denotes a model with empirical P(s) (or Pe(s)) which is
defined as Pe(s) = (# of s-related triples) / (total # of triples). Also, emp. P(s, r) denotes a model
with Pe(s) and Pe(r) which is defined as Pe(r) = (# of r-related triples) / (total # of triples). Thus,
Pe(s, r) = Pe(s)Pe(r). RE-NET use a trained P(s) and P(r). The results show that the trained P(s)
and P(r) help RE-NET for multi-step predictions. Using Ps(s) underperforms RE-NET, and using
Pe(s, r) = Pe(s)Pe(r) shows the worst performances, which suggests that training each part of the
probability in equation 2 gives better prediction performances.

4.4 SENSITIVITY ANALYSIS

In this section, we study the parameter sensitivity of RE-NET including the length of history for the
event encoder, cutoff position k for events to generate a graph. Furthermore, we study the layers
of RGCN aggregator. We report the performance change of RE-NET on the ICEWS18 dataset by
varying the hyper-parameters in Table 5.

Length of Past History in Recurrent Event Encoder. The recurrent event encoder takes the
sequence of past interactions up to m graph sequences or previous histories. Figure 5a shows the
performances with varying length of past histories. When RE-NET uses longer histories, MRR is
getting higher. However, the MRR is not likely to go higher when the length of history is 5 and over.
This implies that long history does not make big differences.

Cut-off Position k at Inference Time. To generate a graph at each time, we cut off top-k triples on
ranking results. Fig. 5b shows the performances with choosing different cutoff position k. When
k is 0, RE-NET does not generate graphs for estimating P(Gt+∆t|G:t), and it shows the lowest
result. which means RE-NET performs single-step predictions, . When k is larger, the performance is
getting higher and it is saturated after 500. We notice that the conditional distribution P(Gt+∆t|G:t)

can be approximated by P(Gt+∆t|Ĝt+1:t+∆t−1, G:t) by using a larger cutoff position.

Layers of RGCN Aggregator. We examine the number of layers in the RGCN aggregator. The
number of layers in the aggregator means the depth to which the node reaches. Fig. 5c shows the
performances according to different numbers of layers of RGCN. We notice that 2-layered RGCN
improves the performances considerably compared to 1-layered RGCN since 2-layered RGCN
aggregates more information. However, RE-NET with 3-layered RGCN underperforms RE-NET
with 2-layered RGCN. We conjecture that the bigger parameter space leads to overfitting.

5 CONCLUSION

In this work, we studied the sequential graph generation on temporal knowledge graphs. To tackle this
problem, we proposed Recurrent Event Network (RE-NET) which models temporal, multi-relational,
and concurrent interactions between entities. A recurrent event encoder in RE-NET summarizes
information of the past event sequences, and a neighborhood aggregator collects the information of
concurrent. RE-NET defines the joint probability of all events, and thus is capable of inferring global
structures in a sequential manner. We tested the proposed model on a link prediction task on temporal
knowledge graphs. The experiment revealed that the proposed RE-NET outperforms all the static and
temporal methods and our extensive experiments shows its strength. Interesting future work includes
modeling lasting events and performing inference on the long-lasting graph structures.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2015.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani,
Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational
inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and Michael
Ward. Icews coded event data. Harvard Dataverse, 12, 2015.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In EMNLP, 2014.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In EMNLP, 2018.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI, 2018.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016.

Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. Learning sequence encoders for
temporal knowledge graph completion. In EMNLP, 2018.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273, 2018.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems, pp. 104816,
2019.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juan-Zi Li. Openke: An
open toolkit for knowledge embedding. In EMNLP, 2018.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Relational representation learning for dynamic (knowledge) graphs: A survey.
arXiv preprint arXiv:1905.11485, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019.

11

Under review as a conference paper at ICLR 2020

Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. In
Companion of the The Web Conference 2018 on The Web Conference 2018, pp. 1771–1776.
International World Wide Web Conferences Steering Committee, 2018.

Kalev Leetaru and Philip A Schrodt. Gdelt: Global data on events, location, and tone, 1979–2012. In
ISA annual convention, volume 2, pp. 1–49. Citeseer, 2013.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In CIDR, 2014.

Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and Sungchul
Kim. Continuous-time dynamic network embeddings. In WWW, 2018.

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In NeurIPS,
2018.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, and Charles E. Leisersen. Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. CoRR, abs/1902.10191, 2019.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin A. Ried-
miller, Raia Hadsell, and Peter W. Battaglia. Graph networks as learnable physics engines for
inference and control. In ICML, 2018.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In ICONIP, 2017.

Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over temporal graphs. arXiv preprint
arXiv:1903.08889, 2019.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In ICML, 2017.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In ICLR 2019, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In ICML, 2016.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. CoRR, abs/1412.6575, 2015.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning, pp. 5694–5703, 2018.

Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenburg, and Jure Leskovec.
Hierarchical temporal convolutional networks for dynamic recommender systems. In The World
Wide Web Conference, 2019.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding by
modeling triadic closure process. In AAAI, 2018a.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018b.

12

Under review as a conference paper at ICLR 2020

A RECURRENT EVENT ENCODER

We define a recurrent event encoder based on RNN as follows:
ht(s, r) = RNN(g(Nt(s)),Ht,ht−1(s, r)).

We use Gated Recurrent Units (Cho et al., 2014) as RNN:
at = [es : er : g(Nt(s)) : Ht]

zt = σ(Wzat + Uzht−1)

rt = σ(Wrat + Urht−1)

ht = (1− zt) ◦ ht−1 + zt ◦ tanh(What + Uh(rt ◦ ht−1)),

where : is concatenation, σ(·) is an activation function, and ◦ is a Hadamard operator. The input is a
concatenation of four vectors: subject embedding, object embedding, aggregation of neighborhood
representations, and global information vector (es, er, g(Nt(s)),Ht). ht(s) and Ht are similarly de-
fined. For ht(s), a concatenation of subject embedding, aggregation of neighborhood representations,
and global information vector (es, g(Nt(s)),Ht) is input. For Ht, aggregation of the whole graph
representations g(Gt) is input.

B DATASET

We use five datasets: 1) three event-based temporal knowledge graphs and 2) two knowledge graphs
where temporally associated facts have meta-facts as (s, r, o, [ts, te]) where ts is the starting time
point and te is the ending time point. The first group of graphs includes Integrated Crisis Early
Warning System (ICEWS18 (Boschee et al., 2015) and ICEWS14 (Trivedi et al., 2017)), and Global
Database of Events, Language, and Tone (GDELT) (Leetaru & Schrodt, 2013). The second group of
graphs includes WIKI (Leblay & Chekol, 2018) and YAGO (Mahdisoltani et al., 2014).

ICEWS18 is collected from 1/1/2018 to 10/31/2018, ICEWS14 is from 1/1/2014 to 12/31/2014, and
GDELT is from 1/1/2018 to 1/31/2018. The ICEWS14 is from (Trivedi et al., 2017). We didn’t use
their version of the GDELT dataset since they didn’t release the dataset.

WIKI and YAGO datasets have temporally associated facts (s, r, o, [ts, te]). We preprocess the
datasets such that each fact is converted to {(s, r, o, ts), (s, r, o, ts + 1t), ..., (s, r, o, te)} where 1t is
a unit time to ensure each fact has a sequence of events. Noisy events of early years are removed
(before 1786 for WIKI and 1830 for YAGO).

The difference between the first group and the second group is that facts happen multiple times (even
periodically) on the first group (event-based knowledge graphs) while facts last long time but are not
likely to occur multiple times in the second group.

Dataset statistics are described on table 3.

Table 3: Dataset Statistics.
Data Ntrain Nvalid Ntest Nent Nrel Time granularity

GDELT 1,734,399 238,765 305,241 7,691 240 15 mins
ICEWS18 373,018 45,995 49,545 23,033 256 24 hours
ICEWS14 323,895 - 341,409 12,498 260 24 hours

WIKI 539,286 67,538 63,110 12,554 24 1 year
YAGO 161,540 19,523 20,026 10,623 10 1 year

C DETAILED EXPERIMENTAL SETTINGS

Model details of RE-NET. We use Gated Recurrent Units (Cho et al., 2014) as our recurrent event
encoder, where the length of history is set as m = 10 which means saving past 10 event sequences.
If the events related to s are sparse, we check the previous time steps until we get m previous time
steps related to the entity s. We pretrain the parameters related to equations 5 and 8 due to large size
of training graphs. We use a multi-relational aggregator to compute Ht. The aggregator provides
hidden representations for each node and we max-pool over all hidden representations to get Ht. At
inference time, RE-NET performs multi-step prediction across the time stamps in dev and test sets.
In each time step, we sample 1000 (= M) number of subjects and save top-1000 (= k) triples to use

13

Under review as a conference paper at ICLR 2020

Table 4: Performance comparison on ICEWS and GDELT datasets with raw metrics. We observe our
method outperforms all other methods.

Method
ICEWS18 - raw GDELT - raw ICEWS14 - raw

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
St

at
ic

TransE 12.37 1.51 15.99 34.65 7.84 0.00 8.92 23.30 11.17 0.73 14.45 32.29
DisMult 13.86 5.61 15.22 31.26 8.61 3.91 8.27 17.04 9.72 3.23 10.09 22.53
ComplEx 15.45 8.04 17.19 30.73 9.84 5.17 9.58 18.23 11.20 5.68 12.11 24.17
R-GCN 15.05 8.13 16.49 29.00 12.17 7.40 12.37 20.63 15.03 7.17 16.12 31.47
ConvE 22.81 13.63 25.83 41.43 18.37 11.29 19.36 32.13 21.32 12.83 23.45 38.44
RotatE 11.63 4.21 12.31 28.03 3.62 0.52 2.26 8.37 9.79 3.77 9.37 22.24

Te
m

po
ra

l

HyTE 7.41 3.10 7.33 16.01 6.69 0.01 7.57 19.06 7.72 1.65 7.94 20.16
TTransE 8.44 1.85 8.95 22.38 5.53 0.46 4.97 15.37 4.34 0.81 3.27 10.47
TA-DistMult 15.62 7.63 17.09 32.21 10.34 4.44 10.44 21.63 11.29 5.11 11.60 23.71
Know-Evolve* 0.11 0.00 0.00 0.47 0.11 0.00 0.02 0.10 0.05 0.00 0.00 0.10
Know-Evolve+MLP 7.41 3.31 7.87 14.76 15.88 11.66 15.69 22.28 16.81 9.95 18.63 29.20
DyRep+MLP 7.82 3.57 7.73 16.33 16.25 11.78 16.45 23.86 17.54 10.39 19.87 30.34
R-GCRN+MLP 23.46 14.24 26.62 41.96 18.63 11.53 19.80 32.42 21.39 12.74 23.60 38.96

RE-NET w/o multi-step 25.67 15.98 29.33 44.65 19.15 11.87 20.34 33.39 22.55 13.46 25.36 41.45
RE-NET w/o agg. 23.11 14.46 26.45 39.96 18.90 11.69 20.07 32.93 21.43 12.25 24.12 40.09
RE-NET w. mean agg. 25.45 15.76 29.27 44.31 19.03 11.78 20.20 33.32 22.73 13.52 25.47 41.48
RE-NET w. attn agg. 25.76 16.07 29.56 44.86 19.35 11.87 20.42 33.55 23.18 14.02 25.98 41.95
RE-NET 26.62 16.96 30.27 45.57 19.60 12.03 20.56 33.89 23.85 14.63 26.52 42.58

RE-NET w. GT (s, r) 27.87 18.12 31.60 46.94 21.29 13.99 22.53 35.59 24.88 15.63 27.55 43.63

them as a generated graph . We set the size of entity/relation embeddings to be 200 and embedding of
unobserved embeddings are randomly initialized. We use two-layer RGCN in the RGCN aggregator
with block dimension 2× 2. The model is trained by the Adam optimizer (Kingma & Ba, 2014). We
set λ1 to 0.1, the learning rate to 0.001 and the weight decay rate to 0.00001. All experiments were
done on GeForce GTX 1080 Ti.

Experimental Settings for Baseline Methods. In this section, we provide detailed settings for
baselines. We use implementations of TransE and DistMult4. We implemented TTransE and TA-
DistMult based on the implementation of TransE and Distmult, respectively. For TA-DistMult, We use
temporal tokens with the vocabulary of year, month and day on the ICEWS dataset and the vocabulary
of year, month, day, hour and minute on the GDELT dataset. We use a margin-based ranking loss with
L1 norm for TransE and use a binary cross-entropy loss for DistMult and TA-DistMult. We validate
the embedding size among 100 and 200. We set the batch size to 1024, margin to 1.0, negative
sampling ratio to 1, and use the Adam optimizer.

We use the implementation of ComplEx5 Han et al. (2018). We validate the embedding size among
50, 100 and 200. The batch size is 100, the margin is 1.0, and the negative sampling ratio is 1. We
use the Adagrad optimizer.

We use the implementation of HyTE6. We use every timestamp as a hyperplane. The embedding
size is set to 128, the negative sampling ratio to 5, and margin to 1.0. We use time agnostic negative
sampling (TANS) for entity prediction, and the Adam optimizer.

We use the codes for ConvE7 and use implementation by Deep Graph Library8. Embedding sizes are
200 for both methods. We use 1 to all negative sampling for ConvE and use 10 negative sampling
ratio for RGCN, and use the Adam optimizer for both methods. We use the codes for Know-Evolve9.
For Know-Evolve, we fix the issue in their codes. Issues are described in Section F. We follow their
default settings.

We use the code for RotatE10. The hidden layer/embedding size is set to 100, and batch size 256;
other values follow the best values for the larger FB15K dataset configurations supplied by the author.
The author reports filtered metrics only, so we added the implementation of the raw setting.

4https://github.com/jimmywangheng/knowledge_representation_pytorch
5https://github.com/thunlp/OpenKE
6https://github.com/malllabiisc/HyTE
7https://github.com/TimDettmers/ConvE
8https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn
9https://github.com/rstriv/Know-Evolve

10https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

14

Under review as a conference paper at ICLR 2020

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000

H
it
s
@

3

Minutes

RE-Net ConvE TA-DistMult

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

M
R

R

Days

(a) ICEWS18 (MRR)

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000

M
R

R

Minutes

(b) GDELT (MRR)

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 2
008

 2
009

 2
010

 2
011

 2
012

 2
013

 2
014

 2
015

 2
016

 2
017

M
R

R

Years

(c) WIKI (MRR)

 0.6

 0.62

 0.64

 0.66

 0.68

 2
013

 2
014

 2
015

 2
016

 2
017

M
R

R

Years

(d) YAGO (MRR)
Figure 6: Performance of temporal link prediction over future time stamps. We report filtered MRR
(average metrics in %) on the test sets of ICEWS18, GDELT, WIKI, and YAGO datasets.

Table 5: Performance comparison on temporal link prediction on three TKG datasets with filtered
metrics. RE-NET achieves the best results.

Method
ICEWS18 - filtered ICEWS14 - filtered WIKI - filtered

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

R-GCN 23.19 16.36 25.34 36.48 26.31 18.23 30.43 45.34 37.57 37.44 39.66 41.90
ConvE 36.67 28.51 39.80 50.69 40.73 33.20 43.92 54.35 47.57 48.89 50.10 50.53

ConvE+RGCN 24.59 17.77 27.19 37.41 27.76 20.23 30.13 42.16 38.76 38.46 40.88 43.12

EvolveRGCN 18.50 16.38 19.19 22.09 21.70 18.21 22.81 28.04 36.58 32.50 38.10 41.30
DynGEM 0.00 0 0 0 0.01 0 0 0 0.01 0 0 0
dyngraph2vecAE 1.88 1.77 1.99 2.02 11.30 8.67 13.31 15.66 1.08 1.05 1.09 1.10
DynTriad 3.48 0 3.55 11.47 8.49 0 12.45 24.24 2.62 00.01 4.26 6.63
tNodeEmbed 8.32 3.19 9.74 17.47 17.84 9.98 20.16 32.88 9.54 5.78 10.44 16.60

RE-NET 42.93 36.19 45.47 55.80 45.71 38.42 49.06 59.12 51.97 51.01 52.07 53.91

D ADDITIONAL EXPERIMENTS

D.1 RESULTS WITH RAW METRICS.

Table 4 shows the performance comparison on ICEWS18, GDELT, ICEWS14 with raw settings. Our
proposed RE-NET outperforms all other baselines. Figs. 6 shows the performance comparisons over
different time stamps on the ICEWS18, GDELT, WIKI and YAGO datasets with filtered MRR. Our
proposed RE-NET consistently outperform baselines over time.

D.2 COMPARISONS WITH CONVE+RGCN.

To examine aggregation techniques in other baselines, we combine ConvE and R-GCN. We first run
2-layered R-GCN over the training graph and then each node has its own transformed representations.
We run ConvE on this transformed representations. As in Table 5, ConvE+R-GCN shows better
performances than R-GCN and worse performances than ConvE, which implies that the aggregation
technique is not helpful to ConvE. However, aggregators in our framework is a complementary and
necessary component to the temporal part, which shows superiority over the baselines.

D.3 COMPARISONS WITH DYNAMIC METHODS.

Here we compare our method with dynamic methods on homogeneous graphs: EvolveGCN-O (Pareja
et al., 2019), DynGEM (Goyal et al., 2018), dyngraph2vecAE (Goyal et al., 2019), DynTriad (Zhou
et al., 2018b), and tNodeEmbed (Singer et al., 2019). These methods were proposed to predict
interactions at a future time on homogeneous graphs, while our proposed method is for predicting
interactions on multi-relational graphs (or knowledge graphs). Furthermore, those methods predict
links at one future time stamp, whereas our method seeks to predict interactions at multiple future
time stamps. We modified some methods to apply them on multi-relational graphs as follows.

Experimental Settings. We adopt R-GCN (Schlichtkrull et al., 2018) for EvolveGCN-O and call
it EvolveRGCN. We convert knowledge graphs into homogeneous graphs for dyngraph2vecAE.
The idea of this method is to reconstruct an adjacency matrix using an auto-encoder and regard
it as a future adjacency matrix. If we keep relations, relation-specific adjacency matrices will be
extremely sparse; the method learns to reconstruct near-zero adjacency matrices. tNodeEmbed is a
temporal method on homogeneous graphs. To use this on multi-relational graphs, we first train entity

15

Under review as a conference paper at ICLR 2020

Men

President of
South Africa

(, Accuse, ?) (Criticize,) (visit,) (Statement,)

(Military, Use force, ?) (Use force, Businessman)
(Arrest, Men) (Arrest, Businessman) (Aid, Citizen)

(, Invite, ?) (Accuse,) (Use force,) (Employ weapons,)

Query (s, r, ?) History (r, o) with same s at different times Answer

𝑡 𝑡 − 1 𝑡 − 3𝑡 − 2

Figure 7: Case study of RE-NET’s predictions. RE-NET’s predictions depend on interaction
histories. Interaction histories are categorized into three cases: (1) consistent interactions with an
object, (2) a specific temporal pattern, and (3) irrelevant history. RE-NET achieves good performances
on the first two cases, and poor performances on the third case.

embeddings with DistMult and set these as initial embeddings for entities in tNodeEmbed. Also we
give entity embeddings as input to LSTM of tNodeEmbed. We concatenate output of LSTM and
relation embeddings to predict objects. We did not modified other methods since it is not trivial to
extend the methods.

Results. As shown in Table 5, RE-NET significantly outperforms the methods. Furthermore, all the
dynamic methods do not show good performances. We conjecture that the methods are not designed
for multi-relational graphs, and thus it is not capable of effectively handling multiple relations, which
leads to degradation of their performances. Also, DynGEM is not suitable for our setting since it
predicts edges based on observed edges at future time stamps. However, in our setting, we are not
given any observed edges at future times stamps, so it shows poor performances.

E CASE STUDY

In this section, we study RE-NET’s predictions. Its predictions depend on interaction histories.
We categorize histories into three cases: (1) consistent interactions with an object, (2) a specific
temporal pattern, and (3) irrelevant history. RE-NET can learn (1) and (2) cases, so it achieves high
performances. For the first case, static methods cannot predict the answer since it does not see past
interactions. However, RE-NET can predict the answer because it consistently interacts with an
object. The second case shows specific temporal patterns on relations: (Arrest, o)→ (Use force, o).
Without knowing this pattern, one method might predict “Businessman" instead of “Men". RE-NET
is able to learn these temporal patterns so it can predict the second case. Lastly, the third case shows
irrelevant history to the answer and the history is not helpful to predictions. RE-NET fails to predict
the third case.

F IMPLEMENTATION ISSUES OF KNOW-EVOLVE

We found a problematic formulation in the Know-Evolve model and codes. The intensity function
(equation 3 in (Trivedi et al., 2017)) is defined as λs,rr (t|t̄) = f(gs,rr (t̄))(t− t̄), where g(·) is a score
function, t is current time, and t̄ is the most recent time point when either subject or object entity was
involved in an event. This intensity function is used in inference to rank entity candidates. However,
they don’t consider concurrent event at the same time stamps, and thus t̄ will become t after one
event. For example, we have events e1 = (s, r, o1, t1), e2 = (s, r, o2, t1). After e1, t̄ will become t
(subject s’s most recent time point), and thus the value of intensity function for e2 will be 0. This
is problematic in inference since if t = t̄, then the intensity function will always be 0 regardless of
entity candidates. In inference, all object candidates are ranked by the intensity function. But all
intensity scores for all candidates will be 0 since t = t̄, which means all candidates have the same
0 score. In their code, they give the highest ranks (first rank) for all entities including the ground
truth object in this case. Thus, we fixed their code for a fair comparison; we give an average rank to
entities who have the same scores.

G THEORETICAL ANALYSIS

Here we analyze the model capacity of RE-NET of capturing complex time-invariant local structure
like (Hamilton et al., 2017), as well as the emerging global community structure as (You et al., 2018).

16

Under review as a conference paper at ICLR 2020

Theorem 1 Let {Gt}τt=1 be the snapshot of temporal knowledge graph after τ time-steps. Let
h0
v ∈ Rd, v ∈ {si} ∪ {oi} to be the input feature representation for Algorithm 1 of each entity node

v. Suppose that there exists a fixed positive constant C ∈ R+ such that ||h0
v − h0

v′ || > C for all pair
of all pair of entities v, v′. Then we have that ∀ε > 0, there exist a parameter setting Θ for RE-NET
s.t. after K = 4 layers of aggregation,

|hKv,τ − cv,τ , | < ε,∀v ∈ V,∀τ ∈ [T],

where hKv,τ are output values generated by RE-NET and cv,τ are clustering coefficients of {Gi}τi=1.

Observation 1 Consider a temporal graph under stochastic block model described in Section G.2.
Let h0

v ∈ Rd, v ∈ {si} ∪ {oi} to be the input feature representation for Algorithm 1 of each node.
Suppose that a constant portion pc of input representations can be linearly separated by a hyperplane,
while the representation of other nodes lies on the hyperplane. There exists a parameter setting of
RE-NET that can output the probability that new node j connected to node i.

G.1 PROOF FOR THEOREM 1

Using pooling aggregator of GraphSAGE, we can actually copy its behavior by setting recurrent
weight matrix of the RNN model to be 0. In this case, we lose all time-dependency our RE-NET and
the representation model becomes time-invariant. However, RE-NET have exactly the same model
capacity as GraphSAGE.

G.2 ANALYSIS FOR OBSERVATION 1

Here we define the generation process of our temporal graph. Assume that the generation process
of the graph follows a stochastic block model, and there are two communities in the graph. Half
of the nodes belong to community A and the other half belong to community B. Nodes within one
community have probability ps to be connected while other pairs have pd < ps probability to be
connected. The edges in the graph are introduced into the graph in a time. Suppose a sequence of
time-steps, a new node is introduced to the community and each edge is added to the graph.

This observation follows from three facts: (1) For each node vj in the neighborhood N (v), using
pooling aggregator, we can detect their community assignment sj . We assign the output of community
A to be +1 and the output of community B to be −1. (2) The error of incorrectly discerning the
community of a node decrease exponentially with the number of links. For example let the node v be
in community A. Let the total number of nodes at time t to be nt, by Hoeffding’s inequality we have

P(
∑

j:vj∈N (j)t

sj < 0) < exp(−2(ps − pd)2|N (j)t|)

(3) Given the correct community classification, the relation classifier is able to predict the probability
of linking nodes.

Combining these three facts, RE-NET is able to infer the community structure of the node.

17

	Introduction
	Related Work
	Proposed Method: RE-Net
	Recurrent Event Network
	Multi-relational Graph (RGCN) Aggregator
	Parameter Learning and Inference of RE-Net

	Experiments
	Experimental Set-up
	Performance Comparison on Temporal Knowledge Graphs.
	Ablation Study
	Sensitivity Analysis

	Conclusion
	Recurrent Event Encoder
	Dataset
	Detailed Experimental Settings
	Additional Experiments
	Results with raw metrics.
	Comparisons with ConvE+RGCN.
	Comparisons with Dynamic Methods.

	Case Study
	Implementation Issues of Know-Evolve
	Theoretical Analysis
	Proof for Theorem 1
	Analysis for Observation 1

