
The Difficulty of Training Sparse Neural Networks

Utku Evci 1 2 Fabian Pedregosa 2 Aidan Gomez 2 Erich Elsen 3

Abstract

We investigate the difficulties of training sparse
neural networks and make new observations
about optimization dynamics and the energy land-
scape within the sparse regime. Recent work of
Gale et al. (2019); Liu et al. (2018) has shown
that sparse ResNet-50 architectures trained on
ImageNet-2012 dataset converge to solutions that
are significantly worse than those found by prun-
ing. We show that, despite the failure of optimiz-
ers, there is a linear path with a monotonically
decreasing objective from the initialization to the
“good” solution. Additionally, our attempts to
find a decreasing objective path from “bad” solu-
tions to the “good” ones in the sparse subspace
fail. However, if we allow the path to traverse
the dense subspace, then we consistently find a
path between two solutions. These findings sug-
gest traversing extra dimensions may be needed
to escape stationary points found in the sparse
subspace.

1. Introduction
Reducing parameter footprint and inference latency of ma-
chine learning models is an active area of research, fostered
by diverse applications like mobile vision and on-device
intelligence. Sparse networks, that is, neural networks in
which a large subset of the model parameters are zero, have
emerged as one of the leading approaches for reducing
model parameter count. It has been shown empirically that
deep neural networks can achieve state-of-the-art results
under high levels of sparsity (Han et al., 2015; Louizos
et al., 2017; Gale et al., 2019) , and this property has been
leveraged to significantly reduce the parameter footprint and
inference complexity (Kalchbrenner et al., 2018) of densely
connected neural networks. However, pruning-based sparse
solutions require dense connectivity during training and
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Figure 1. Test accuracy of ResNet-50 networks trained on
ImageNet-2012 dataset at different sparsity levels. We observe
a large gap in generalization accuracy between approaches based
on pruning and other approaches. See text for details.

uses the same, or even greater, computational resources
compared to fully dense training, which imposes an upper
limit on the size of sparse networks we can train.

Training Sparse Networks. In the context of sparse net-
works, state-of-the-art results have been obtained through
training densely connected networks and modifying their
topology during training through a technique known as
pruning (Zhu & Gupta, 2018; Narang et al., 2017; Han
et al., 2015). A different approach is to reuse the sparsity
pattern found through pruning and train a sparse network
from scratch. This can be done with a random initialization
(“scratch”) or the same initialization as the original train-
ing (“lottery”). Previous work (Gale et al., 2019; Liu et al.,
2018) demonstrated that both approaches achieve similar
final accuracies, but lower than pruning1. The difference be-
tween pruning and both approaches to training while sparse
can be seen in Figure 1. Despite being in the same energy
landscape, “scratch” and “lottery” solutions fail to match
the performance of the solutions found by pruning. Given
the utility of being able to train sparse from scratch, it is crit-
ical to understand the reasons behind the failure of current
techniques at training sparse neural networks.

1(Frankle et al., 2019) closes this gap by using trained parame-
ters from 5th epoch to initialize the network. However they don’t
quantify how different these values are from the solution.
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There exists a line of work on training sparse networks
(Bellec et al., 2018; Mocanu et al., 2018; Liu et al., 2019;
Mostafa & Wang, 2019) which allows the connectivity
pattern to change over time. These techniques generally
achieve higher accuracy compared with fixed sparse connec-
tivity, but generally worse than pruning. Though promising,
the role of changing connections during the optimization
is not clear. While we focus on fixed sparsity pattern in
this work, our results give insight into why these other ap-
proaches are more successful.

Motivated by the disparity in accuracy observed in Figure 1,
we perform a series of experiments to improve our under-
standing of the difficulties present in training sparse neural
networks, and identify possible directions for future work.

More precisely, our main contributions are:

• A set of experiments showing that the objective function
is monotonically decreasing along the straight lines that
interpolate from:

– the original dense initialization
– the original dense initialization projected into the

sparse subspace
– a random initialization in the sparse subspace

to the solution obtained by pruning2. This demonstrates
that even when the optimization process fails, there was a
monotonically decreasing path to the “good” solution.

• In contrast, the linear path between the scratch and the
pruned solutions depicts a high energy barrier between
the two solutions. Our attempts to find quadratic and cu-
bic Bézier curves (Garipov et al., 2018) with a decreasing
objective between the two sparse solutions fails suggest-
ing that the optimization process gets attracted into a
“bad” local minima.

• Finally, by removing the sparsity constraint from the
path, we are consistently able to find decreasing objective
Bézier curves between the two sparse solutions. This
result suggests that allowing for dense connectivity might
be necessary and sufficient to escape the stationary point
converged in the sparse subspace.

The rest of the paper is organized as follows: In §2, we
describe the experimental setup. In §3 we present the results
from these experiments, followed by a discussion in §4.

2. Methods
Training methods. The different training strategies con-
sidered in this paper are summarized in Figure 2. In dense

2sparse subspace refers to the sparsity pattern found by pruning
and same in all settings.

Initial Point-1
(Dense) Pruned Solution

Initial Point-1
(Sparse) Lottery Solution

Initial Point-2
(Sparse) Scratch Solution

ID-1

IS-1

Sparse training

Dense training
+prune

IS-2 S-S

P-S

L-S

Initialization 1

Initialization 2

Sparse Mask
Sparse training

Figure 2. Experimental setup. In this paper we consider three
different methods for obtaining sparse solutions: pruned, lottery
and scratch. The pruned solution is obtained by starting with a
densely connected network and gradually removing connections
during training, whereas the other two solutions are obtained by
training sparse networks from start.

training, we train the densely connected model and apply
model pruning (Zhu & Gupta, 2018) to find the Pruned So-
lution (P-S). The other strategies start instead with a sparse
connectivity pattern (represented as a binary mask) obtained
from the pruned solution. The solution obtained from the
same random initialization as the pruned solution (Frankle &
Carbin, 2018) is denoted Lottery Solution (L-S), while the
solution obtained from another random initialization (Liu
et al., 2018) is named Scratch Solution (S-S). All of our
experiments are based on the Resnet-50 architecture (Wu
et al., 2018) and the Imagenet-2012 dataset (Russakovsky
et al., 2015). Abbreviations defined in Figure 2 below the
boxes are re-used to in the remaining of the text to indicate
start and end points of the interpolation experiments.

Pruning strategy. We use magnitude based model prun-
ing (Zhu & Gupta, 2018) in our experiments. This has
been shown (Gale et al., 2019) to perform as well as the
more complex and computationally demanding variational
dropout (Molchanov et al., 2017) and `0 regularization ap-
proaches (Christos Louizos, 2018). In our experiments, we
choose the 3 top performing pruning schedules for each spar-
sity level using the code and checkpoints provided by Gale
et al. (2019). The hyper-parameters involved in the pruning
algorithm were found by grid search separately for each
sparsity level. The 80% sparse model loses almost no accu-
racy over the baseline, while the 98% sparse model drops to
69% top-1 accuracy (see Figure 1-pruned). Training details
and the exact pruning schedules used in our experiments are
detailed in Appendix A.

Interpolation in parameter space. Visualizing the energy
landscape of neural network training is an active area of
research. Goodfellow et al. (2015) measured the training
loss on MNIST (Lecun et al., 1998) along the line segment
between the initial point θs and the solution θe, observing a
monotonically decreasing curve. Motivated by this, we were
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Figure 3. Linear interpolation experiments between various initial and final points. Interpolations are created with 0.02 increments and
evaluated on 500k data-augmented images from training set. Initial and final points (corresponding to coefficients 0 and 1 respectively)
are labeled with abbreviations as presented in Figure 2. From all points considered there exist a monotonically decreasing path to the
solution found through pruning.

curious if this was still true (a) for Resnet-50 on Imagenet-
2012 dataset and (b) if it was still true in the sparse subspace.
We hypothesized that if (a) was true but (b) was not, then
this could help explain some of the training difficulties en-
countered with sparse networks.

In our linear interpolation experiments, we generate net-
works along the segment θ = tθe + (1 − t)θs for t ∈
[−0.2, 1.2] with increments of 0.01 and evaluate them on
the training set of 500k images. Interpolated parameters in-
clude the weights, biases and trainable batch normalization
parameters. We enable training mode for batch normaliza-
tion layers so that the batch statistics are used during the
evaluation. The objective is identical to the objective used
during training, which includes a weight decay term scaled
by 10−4.

We now seek to find a non-linear path between the initial
point and solution using parametric Bézier curves of order
n = 2 and 3. These are curves given by the expression

Bn(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiθi ,

where θ0 = θe and θn = θs . We optimize the following,

min
θ1,··· ,θn−1

∫ 1

0

L(Bn(t))dt ,

using the stochastic method as proposed by Garipov et al.
(2018) with a batch size of 2048 where L(θ) denotes the
training loss as a function of trainable parameters. Mirror-
ing our original training settings, we set the weight decay
coefficient to 10−4. We performed a hyper-parameter search
over base learning rates (1, 10−1, 10−2, 10−3) and momen-
tum coefficients (0.9, 0.95, 0.99, 0.995), obtaining similar
learning curves for most of the combinations. We choose
0.01 as the base learning rate and 0.95 as the momentum
coefficient for these path finding experiments.

3. Results and Discussion
Our experiments highlight a gap in our understanding of en-
ergy landscape of sparse deep networks. Why does training
a sparse network from scratch gets stuck at a neighborhood
of a stationary point with a significantly higher objective?
This is in contrast with recent work that has proven that such
a gap does not exist for certain kinds of over-parameterized
dense networks (Sagun et al., 2014; Choromanska et al.,
2014). Since during pruning dimensions are slowly re-
moved, we conjecture that this prevents the optimizer from
getting stuck into “bad” local minima. The failure of the
optimizer is even more surprising in the light of the linear
interpolation experiments of Section 3.1, which show that
sparse initial points are connected to the pruning solutions
through a path in which the training loss is monotonically
decreasing.

In high dimensional energy landscapes, it is difficult to
assess whether the training converges to a local minimum or
to a higher order saddle point. Sagun et al. (2017) shows that
the Hessian of a convolutional network trained on MNIST
is degenerate and most of its eigenvalues are very close
to zero indicating an extremely flat landscape at solution.
Dauphin et al. (2014) comments on Bray & Dean (2007)’s
results and argues that critical points that are far from the
global minima in Gaussian fields are most likely to be saddle
points. In Section 3.2, we examine the linear interpolation
between solutions and attempt to find a parametric curve
between them with decreasing loss. This is because finding
a decreasing path from the high loss solution (“scratch”) to
the low loss solution(“pruned”) would demonstrate that the
former solution is at a saddle point.

3.1. Path between start and end

Linear interpolations from Initial-Point-1 (Dense), Initial-
Point-1 (Sparse) and Initial-Point-2 (Sparse) to Pruned Solu-
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Figure 4. Interpolation experiments between pruned (P-S) and scratch(S-S) sparse solutions: (left) linear interpolation (middle, right)
Bézier curves minimized in (sparse, dense) manifolds. Loss values are calculated using 500k images from the training set.

tion at different sparsity levels are shown in Figure 3 respec-
tively; all cases show monotonically decreasing curves. The
training loss represented in the y-axis consists of a cross
entropy loss and an `2 regularization term. While in Figure
3 the y axis represents the full training loss, the two terms
composing this loss are shown separately in Appendix C.
There we observe that the sum is dominated by the cross
entropy loss.

In Figure 3-left, we observe a long flat plateau followed by a
sharp drop: this is unlike typical learning curves, which are
steepest at the beginning and then level off. Model pruning
allows the optimizer to take the path of steepest descent
while still allowing it to find a good solution as dimensions
are slowly removed.

Finally, the linear interpolation from a random point sam-
pled from the original initialization distribution (“scratch”)
also depicts a decreasing curve (Figure 3-right), almost
identical to the interpolations that originates from the lottery
initialization (Figure 3-middle). This brings further evi-
dence against the “lottery ticket” initialization being special
relative to other initializations.

3.2. Path between two solutions

The training loss along the linear segment and the para-
metric Bézier curve connecting the scratch and the pruned
solutions are shown in Figure 4. As observed by Keskar
et al. (2017), linear interpolation (Figure 4-left) depicts a
barrier between solutions, as high as the values observed
by randomly initialized networks. The sparse parametric
curve (Figure 4-middle) found through optimization also
fails at connecting the two solutions with a monotonically
decreasing path (although it has much smaller loss value
than the straight line). Using a third order Bézier curve also
fails to decrease the maximum loss value over the second
order curve (Appendix D). The failure of the third order
curve does not prove that a path cannot be found. However,

as a second order curve was sufficient to connect solutions
in dense networks (Garipov et al., 2018), it does show that
if such a path exists, then it must be significantly more
complex than those necessary in dense networks.

We continue our experiments by removing the sparsity con-
straint from the quadratic Bézier curve and optimize over the
full parameter space (Figure 4-right). With all dimensions
unmasked, our algorithm consistently finds paths along
which the objective is significantly smaller. While this
path is not strictly monotonically decreasing, this is not
unexpected, given that our algorithm minimizes the inte-
gral of the objective over the interpolation segment and so
monotonicity is not enforced. We leave the exploration of
monotonically decreasing paths for future work.

4. Conclusion and Future Work
Our work provides insights into the dynamics of opti-
mization in the sparse regime which we hope will guide
progress towards better regularization techniques, initial-
ization schema, and/or optimization algorithms for training
sparse networks.

Training of sparse neural networks is still not fully un-
derstood from an optimization perspective. In the sparse
regime, we show that optimizers converge to stationary
points with a sub-optimal generalization accuracy. This is
despite monotonically decreasing paths existing from the
initial point to the pruned solution. And despite nearly
monotonically decreasing paths in the dense subspace from
the “bad” local minimum to the pruned one.

Optimizers sparse networks that reach pruned accuracy lev-
els are yet to be found. We believe that understanding why
popular optimizers used in deep learning fail in the sparse
regime will yield important insights leading us towards more
robust optimizers in general.
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A. Experimental details
Our experiments use the code made publicly available by 3. The pruning algorithm uses magnitude based iterative strategy
to reach to a predefined final sparsity goal over the coarse of the training. We use a batch size of 4096 and train the network
with 48000 steps (around 153 epochs). Our learning rate starts from 0 and increases linearly towards 0.1 in 5 epoch and
stays there until 50th epoch. The learning rate is dropped by a factor of 10 afterwards at 50th, 120th and 140th epochs
(Goyal et al., 2017).

Table 1. Pruning strategies used in various settings.

SPARSITY START END FREQUENCY

0.8
12500 40000 2000
12500 40000 500
12500 36000 1000

0.91
12500 36000 2000
10000 40000 4000
7500 36000 1000

0.96
7500 36000 1000

10000 32000 500
7500 40000 2000

0.98
12500 36000 500
7500 32000 500

12500 32000 500

Due to high sensitivity observed, we don’t prune the first convolutional layer and cap the maximum sparsity for the final
fully connected layer with 80%. Top 3 performing pruning schedules selected for each sparsity level are shared in Table 1.
We calculate the average `1 norm of the gradient for the first setting in the table and obtain 4e-6. As is the case for most
iterative (especially stochastic) methods, our solutions do not qualify as stationary points since the gradient is never exactly
zero. By slight abuse of language we refer to stationary point as any point where the gradient is below of 10−5.
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Figure 5. At the beginning of the training we randomly set a fraction of weights to zero and train the network with default parameters for
32k steps. We observe a sudden drop only if more than 99% of the parameters are set to zero.

B. Sparse Initialization
Initialization methods that control variance of activations during the first forward and backward-pass is known to be crucial
for training deep neural networks (Glorot & Bengio, 2010; He et al., 2015). However, with batch normalization (Ioffe
& Szegedy, 2015) and skip connections the importance of initialization is expected to be less pronounced. sparse-init
experiments shared in Figure 1 can be seen as a demonstration of such tolerance. In sparse-init experiments we train a dense

3https://github.com/google-research/google-research/tree/master/state_of_sparsity

https://github.com/google-research/google-research/tree/master/state_of_sparsity
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ResNet-50 but use the sparse binary mask found by pruning to set a fraction of initial weights to zero. At all sparsity levels
considered (0.8, 0.91, 0.96, 0.98), we observe that the training succeeds and reaches to final accuracy around 76% matching
the performance of the original training. Thus the initialization point alone cannot be the reason for the failure of sparse
training.

To understand the extent which we are able to train sparsely initialized networks without compromising performance, we
perform experiments where we randomly set a given fraction of weights to zero. Figure 5 shows the results. We observe no
significant difference until 99.5% after which we observe a sharp drop in performance. The initialization requires a very
small number of non-zero weights to succeed.

C. Loss Decomposition
Figure 6 depicts the value of the `2 regularization term over the linear interpolations described in Section 3.1. The curve
demonstrates that the solutions found are consistently of lower weight magnitude than their initialization, and they also
demonstrate that the regularization terms are a factor of ten smaller than the objective function.
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Figure 6. Regularization term of the linear interpolations of Figure 3.

Figure 7 depicts the value of the cross entropy loss over the linear interpolation described above. Figure 7-(left) the sparse to
sparse and random sparse to sparse interpolation maintain the monotonic decreasing pattern observed in the interpolations
plots of the total loss (Figure 3), whereas dense to sparse interpolation shows a slight increase in the objective before a rapid
descent.
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Figure 7. Cross entropy term of the linear interpolations of Figure 3.

Dense-sparse cross entropy is increasing. Time to drop is much less with original initializations, higher with random and
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least with dense.

D. Path Finding Experiments with Cubic Bézier Curve
In Section 3.2 our experiments fail to find paths along which the loss is decreasing between the “pruned” and “scratch”
solutions. Would optimizing more complex parametric curves change the result? Figure 8 depicts the objective along
the third order Bézier curves. Though the integral of the loss over the segment between solutions seems less than Figure
4-middle, we still observe a small barrier between solutions.
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Figure 8. Training loss along the third order (cubic) Bézier curve found between the “pruning” and “scratch” solutions.


