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ABSTRACT

Recent advances in Generative Adversarial Networks facilitated by improvements
to the framework and successful application to various problems has resulted in
extensions to multiple domains. IRGAN attempts to leverage the framework for
Information-Retrieval (IR), a task that can be described as modeling the correct
conditional probability distribution p(d|q) over the documents (d), given the query
(q). The work that proposes IRGAN claims that optimizing their minimax loss
function will result in a generator which can learn the distribution, but their setup
and baseline term steer the model away from an exact adversarial formulation, and
this work attempts to point out certain inaccuracies in their formulation. Analyz-
ing their loss curves gives insight into possible mistakes in the loss functions and
better performance can be obtained by using the co-training like setup we propose,
where two models are trained in a co-operative rather than an adversarial fashion.

1 INTRODUCTION

Information-Retrieval (IR) involves providing a list of ranked documents {d1, d2, . . . , dk} in answer
to a query q. This general formulation can be extended to various tasks like web-search, where
the documents are web pages and information needs are queries, content-recommendation, where
the documents are items/content to suggest and queries are users, and Question-Answering, where
the documents are answers and queries are questions. The retrieved list can also be viewed as a
probability distribution over candidates, one example being Rankq(di) ≡ p(di|q) ∝ ( 1

Rankq(di)
)l,

where l is a hyperparameter. Even if the probability distribution is not explicit, it is desirable to
retrieve a higher ranked document more often than a lower ranked document.

GANs were proposed as alternatives to generative models and have been shown to be capable of
modeling the true data well. High dimensional settings like images and word sequences have seen
some success. Given that the generator in GANs tries to model the training data’s distribution,
adversarial setups seem like a natural fit for IR. The learned distribution can then be used to retrieve
relevant documents for incoming queries. IRGAN is a framework proposed by Wang et al. (2017),
with the hope of giving Information-Retrieval, access to the large literature of GANs.

IRGAN consists of a discriminator and a generator. Like in a typical setup, the discriminator learns
to distinguish between documents produces by the real probability distribution or the real ranking
and the generator’s probability distribution. It increases the likelihood of the former and decreases it
for the latter. The generator tries to bring its probability distribution closer to the real one so that it
increases the likelihood of confusing the discriminator into believing that it is the true distribution.
Ideally, equilibrium is achieved when the generator manages to rank the documents according to the
true distribution.

However, the formulation and implementation of the loss function in the work seems to have a few
issues. Specifically, the use of the baseline term recommended in the work results in pitting the loss
functions of the discriminator and the generator directly against each other and this leads to issues
that are conspicuous in the loss curves. The training starts off with a pre-trained discriminator and
generator, and the performance of the generator decreases as the training proceeds, while you would
actually expect the opposite. When pre-training is not used, the generator does not learn at all. This
forces IRGAN to choose the generator or discriminator based on whichever has better performance,
while it expected that the generator is chosen at equilibrium.
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Given the traction this paper has received since its inception (53 citations as of 27th September
2018), it is important to critically analyze the work and attribute the claimed performance improve-
ments correctly. To this end, we propose two models which outperform IRGAN on two of the three
tasks and give a comparable performance on the third. They also serve as an ablation study by
experimentally showing that the generator might not be playing a vital role during train or test time.

The following contributions are made in this work

• We propose a model motivated by Co-training which outperforms IRGANs
• We point out inaccuracies in the minimax loss function used in IRGANs
• We substantiate the same by drawing conclusions from the loss curves

2 RELATED WORK

2.1 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) (Goodfellow et al. (2014)) were proposed as an alterna-
tive to generative models (Salakhutdinov & Larochelle (2010)) which used Markov Chains or other
approximations to compute intractable probability distributions. In essence, the generator tries to
model the real data distribution and the discriminator learns to differentiate between real data points
and generated data points. GANs are notoriously unstable to train and works like DCGANs (Rad-
ford et al. (2015)) and Wasserstein GAN (Arjovsky et al. (2017)) have successfully attempted to
alleviate a few issues. Nonetheless, GANs have been widely applied to various problems like image
generation, text generation, cross-modal retrieval and more niche ones like Interactive Image Gen-
eration (Zhu et al. (2016)), Text to Image (Zhang et al. (2017)), Image to Image style transfer (Isola
et al. (2017)) and robotics (Bousmalis et al. (2017)).

While GANs allow generation based on a random variable z, Conditional GANs (Mirza & Osindero
(2014)) partition the sample variable into two parts (z and y). y is used to denote which part of
the probability distribution the generator has to generate from, and z plays the same role played in
Vanilla GANs (Goodfellow et al. (2014)). Conditional GANs dovetail with IR because y can be
used to represent the query or its embedding, and in theory, the model should be able to generate the
required document.

y ∼ query G(z|y) ∼ pθ(d|z, q)

We feel that an eventual adversarial formulation for IR will be similar to this in flavor.

2.2 RETRIEVAL OF IMAGE RESPONSES

Creswell & Bharath (2016) employed Sketch-GANs for the interesting task of retrieving similar
merchant seals (images) based on an input image. DCGANs (Radford et al. (2015)) are used to
generate an image, and post training, the last layer of the discriminator is popped off and the rest of
it is used as an encoder. This model, however, is specifically for retrieving image responses.

3 BACKGROUND

In the subsequent sections, D denotes the discriminator, G the generator, ptrue the real probability
distribution over documents, φ the parameters of the discriminator, θ the parameters of the generator,
d the document, q the query and r the rank of a document with respect to a query.

The equations used to train the discriminator and generator in Goodfellow et al. (2014) are the
following respectively.
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The discriminator minimizes the likelihood of a “generated” data point and maximizes it for a “real”
data point, while the generator tries to generate data points which the discriminator thinks is “real”.
The two models are trained alternatively and the procedure culminates in a generator which is able
to produce data which looks like the real data.

4 IRGAN FORMULATION

This section elucidates the IRGAN formulation (Wang et al. (2017)). Comments by the authors are
in italics (in this section alone), while normal typeface is a paraphrased version of IRGAN. IRGAN
is motivated by the combination of two schools of thoughts, the generative retrieval model and the
discriminative retrieval model.

4.1 DISCRIMINATOR AND GENERATOR

The generative retrieval model pθ(d|q, r) tries to sample relevant documents from a candidate pool
with the aim of cloning the true probability distribution ptrue. The discriminative retrieval model
fφ(q, d), which is a binary classifier, tries to discriminate between real and generated pairs (q, d).

Two different loss functions IRGAN-Pointwise and IRGAN-Pairwise are proposed.

4.2 IRGAN-POINTWISE

This is called so because each data point is independently used to train, unlike in IRGAN-Pairwise
where pairs of points are used. The dataset is expected to have some cue with respect to how often
a document is correctly retrieved for a query, if at all.

JG
∗,D∗ = min

θ
max
φ

N∑
n=1

(Ed∼ptrue(d|qn,r)[(logD(d|qn))] + Ed∼pθ(d|qn,r)[(log 1−D(d|qn))])

Note that the generator G can alternately be written as pθ(d|qn, r), which denotes the modeled
probability distribution, and D(d|q) = σ(fφ(d, q)) represents the discriminator’s score.

4.3 IRGAN-PAIRWISE

In some IR problems the training data may not be a set of relevant documents for each query, but
rather a set of ordered document pairs Rn = [< di, dj > |di � dj ], where di � dj means that
the first document is more relevant for query qn than the second document. o represents a real pair
< du, dv > and o′ represents a generated pair < d′u, d

′
v >. The discriminator’s goal in this setting

is to discriminate between o and o′, with D(o|q) = σ(fφ(du, q)− fφ(dv, q))

JG
∗,D∗ = min

θ
max
φ

N∑
n=1

(Eo∼ptrue(o|qn)[(logD(o|qn))] + Eo′∼pθ(o′|qn)[(log 1−D(o′|qn))])

Note the similarity between this and the previous formula. The problem with this formula is that
D(o|q) is actually supposed to denote the probability that the pair o is from the real data distribution
and not the probability that the pair is correctly ranked, as mentioned in the paper.

4.4 OPTIMIZING THE GENERATOR

The generator samples documents from the candidate pool based on its belief (relevance score).
This sampling has the downside that the gradients cannot be backpropagated, and policy gradients
(Sutton et al. (2000)) have to be used. As an intuition, the documents can be considered as the
arms of a contextual multi-arm bandit (Auer et al. (2002), Lu et al. (2010)), and picking an arm can
be viewed as analogous to choosing the document as relevant. The policy discovered gives us the
relevance of each document and − log(1 −D(d|q)) is the reward for picking that action/document
(d). Let JG represent the objective function of the generator that it has to maximize. The policy
gradient (REINFORCE) can be written as the following.
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∇θJG(qn) =
1

K

K∑
k=1

∇θ log pθ(dk|qn, r) log(1 + exp(fφ(dk, qn)))

4.5 BASELINE TERM

To reduce the variance in REINFORCE, a standard trick is to use the advantage function instead of
just the reward. This does not change the optimal parameters.

log(1 + exp(fφ(dk, qn)))− Epθ(dk|qn)[log(1 + exp(fφ(dk, qn)))]

Another baseline term that is suggested for each query is fφ(d+, q), where d+ represents the pos-
itive document. This is legal because the term does not depend on the document (action). This is
motivated by the belief of a larger generator score if fφ(d+, q) is large and lower if fφ(d+, q) is
low. This baseline term is used in two of their three tasks and causes the violation of adversarial
formulation, as we show in the following section.

5 INSIGHTS INTO IRGAN MINIMAX LOSS FUNCTION

Having shown that the generator can be optimized using REINFORCE, we focus on the loss func-
tion and show how the baseline term exacerbates training. We consider Stochastic Gradient Descent
updates for ease of illustration. Consider a triple (q, dr, dg), where dr denotes the correct docu-
ment according to the true distribution and dg denotes the generated document. The discriminator’s
updates are in the direction of∇JD, with the following definition.

JD = logD(dr|q) + log(1−D(dg|q))

With the baseline term included, the generator’s updates are in the direction of ∇JG, with the
following definition.

JG = log(1−D(dr|q)) + logD(dg|q)

Since maximizing log(1− z) with respect to z is the same as maximizing − log z, we can write the
following equivalent loss functions

JD = logD(dr|q)− logD(dg|q) JG = − logD(dr|q) + logD(dg|q)

Note that this substitution is similar in principle to the substitution in Goodfellow et al. (2014),
where the motivation is to allow easier flow of gradients. It is apparent that the discriminator and
the generator are optimizing directly opposite loss functions and this detrimental to the performance
of the models. We provide experimental proof later that the performance improvements shown in
IRGAN are mainly because of the discriminator maximizing the likelihood of the real data and not
because of the generator.

6 PROPOSED MODELS

We propose two models to compare and critically analyze performance gains facilitated by IRGAN
and illustrate them in Figure 1.

The first model increases the likelihood of the training data and decreases the likelihood of docu-
ments which are not relevant to the query but have a high score according to its own parameters.
It maximizes the following, where the sampling for the second term is from a candidate pool with
only negative answers (denoted by p−). Not following this will lead to undesirable updates because
sampling positive documents for the second term will result in decreasing the likelihood of real data.
ψ denotes the parameters of the only model.

JModel1 = max
ψ

N∑
n=1

(Ed∼ptrue(d|qn,r)[(logD(d|qn))] + Ed∼p−ψ (d|qn,r)[(log 1−D(d|qn))])
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(a) One Discriminator Model (b) Co-training setup

Figure 1: Models

To alleviate the pernicious loss function of IRGAN, we propose a model which uses two discrimi-
nators in a co-operative setup influenced by Co-training (Blum & Mitchell (1998)). Instead of using
two different views (x1, x2) as mentioned in the work, we use the same views for both the discrim-
inators but let them influence each other in a feedback loop. Training is similar to Model 1 with the
only difference being that each discriminator decreases the likelihood of documents relevant to the
other discriminator rather than itself, as shown in the equation below. This model achieves better
performance than IRGAN.

JModel1 = max
ψ1

N∑
n=1

(Ed∼ptrue(d|qn,r)[(logD(d|qn))] + Ed∼p−ψ2
(d|qn,r)[(log 1−D(d|qn))])

JModel2 = max
ψ2

N∑
n=1

(Ed∼ptrue(d|qn,r)[(logD(d|qn))] + Ed∼p−ψ1
(d|qn,r)[(log 1−D(d|qn))])

7 EXPERIMENTAL SETUP

This section describes the datasets, the task and hyperparameters.

7.1 DATASETS

We conduct experiments on three tasks, Web Search, Item Recommendation and Question Answer-
ing, using the same datasets mentioned in IRGAN.

Table 1: Datasets

Task Dataset
Web Search LETOR by Liu et al. (2007)

Item-Recommendation Movielens
Question Answering InsuranceQA by Feng et al. (2015)

7.2 TASK

In Web Search, the task is to retrieve the document which is most relevant to the query. Each query
on average has around 5 positive documents. In Content Recommendation, users give ratings for
movies and given a user, the task is to retrieve a movie that they would probably rate high. In
IRGAN, any movie retrieved for which the user rating is greater than or equal to 4 (out of a scale
of 5) is considered correct. Based on the dataset statistics, around 55% of the user-movie ratings
are ≥ 5. This makes the problem easy to solve. In Question Answering, every query has just one
relevant document in most cases. This is thus the hardest task.
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7.3 HYPERPARAMETERS

The hyperparameters for the proposed model are the same except for absence of G Epochs, for
obvious reasons. Information about hyperparameter tuning is mentioned in the Appendix.

Table 2: Hyperparameters for IRGAN

Hyperparameter Description
Learning Rate For both generator and discriminator

Batch Size Batch size for training
Embed Dim Embedding dimension of query or document

Epochs Number of epochs of training
D Epochs Number of epochs the discriminator is trained per epoch
G Epochs Number of epochs the generator is trained per epoch

Temperature Temperature parameter for softmax sampling of documents

8 EXPERIMENTS AND DISCUSSION

We report only the P@5 and NDCG@5 values because all other metrics follow the same trend.

8.1 WEB SEARCH

Table 3 reports the performance of various models. As can be seen, both the Single Discriminator
and the Co-training models outperform IRGAN models. The fact that each query is associated
approximately with 5 positive documents provides evidence that the proposed models can perform
well in sparse reward settings.

Table 3: Results on LETOR dataset used in IRGAN

Model P@5 NDCG@5
RankNet (Burges et al. (2005)) 0.1219 0.1709

LambdaRank (Burges et al. (2007)) 0.1352 0.1920
IRGAN-pointwise 0.1657 0.2225
IRGAN-pairwise 0.1676 0.2154

Single Discriminator 0.1676 0.2190
Co-training 0.1733 0.2252

8.2 ITEM-RECOMMENDATION

This task, in contrast to the other two, has multiple relevant documents that can be retrieved for each
query, making it slightly easier. Each user (query) rates a movie (document), and 55% of the entries
in the train set and 56% in the test set are relevant pairs. It can be seen in Table 4 that the single
discriminator model achieves only a slightly lower score, and given the small size of the dataset (943
users), it makes just 7 more mistakes when compared to IRGAN. This is not a statistically significant
number, especially because the IRGAN generator is pre-initialized to a model which scores 0.34 but
our model learns from scratch.

8.3 QUESTION ANSWERING

After close correspondence with the authors of IRGAN, we obtained all the hyperparameters re-
quired for the models. Multiple random seeds were used in vain, the results in the paper for
Question-Answering tasks could not be replicated. We instead mention the best results out of all
random seeds. We believe that if there is some random seed which gives better performance for IR-
GAN, it should do so for our model as well. The co-training model outperforms IRGAN-Pairwise.
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Table 4: Results on Movielens Dataset

Model P@5 NDCG@5
BPR (Rendle et al. (2009)) 0.3044 0.3245

LambdaFM (Yuan et al. (2016)) 0.3474 0.3749
IRGAN-pointwise 0.3750 0.4099

Single Discriminator 0.3675 0.3925
Co-training 0.345 0.373

Table 5: P@1 on InsuranceQA

Model P@1
IRGAN-Pairwise 0.616

Single Discriminator 0.614
Co-training 0.623

8.4 LOSS CURVES

(a) Web Search (b) Question Answering

Figure 2: Performance curves

The loss curves in Figure 2 picked from IRGAN’s work show deteriorating performance of the gen-
erator, which is in contrast to what is observed in actual adversarial training. In the minimax setting,
since the generator is expected to capture the real data distribution, its performance is supposed to
improve and this can indirectly be seen in GANs and DCGANs where the samples generated look
more and more like real-world data points. Further, a deteriorating generator implies that the dis-
criminator’s improvement in performance is only because of the first term of JD, which hints that
our proposed models might be able to do better than IRGAN. The reason offered in the paper is that
“A worse generator could be the result of the sparsity of document distribution, i.e., each question
usually has only one correct answer”. But this reason does not seem plausible, given that DCGANs
have been able to model very high dimensional data, where the probability distribution is only a tiny
part of the real space.

Further, the increase in performance of the discriminator in all cases is coupled with a deteriorat-
ing generator. This substantiates our claim that the discriminator and the generator are optimizing
directly opposite loss functions.

Item-recommendation task is a little different from the other two tasks at hand because of a large
number of positive answers. When the loss curves are plotted, though the generator’s performance
improves, the discriminator’s loss remains high and almost constant throughout the procedure, as
shown in Figure 3. This is another indication that the performance of IRGAN is not actually because
of the adversarial setup, but because of the maximization of the likelihood of the real data.

9 CONNECTIONS TO PREVIOUS WORK

We have already shown in Section 2 that Conditional GANs are connected directly to Information
Retrieval. The problem can also be viewed as a contextual multi-armed bandit problem (Li et al.

7
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Figure 3: Discriminator Loss for Content-Recommendation

(2010)), where each documents is an arm and the context xq,d can be used to determine the action-
value function fθ(xq,d). In previous works (Li et al. (2010)) f has been considered to be linear, but
recent studies Collier & Llorens (2018) have modeled them as deep neural networks.

In Pfau & Vinyals (2016), a parallel is drawn between Actor-Critic algorithms (Konda & Tsitsiklis
(2000)) and GANs. This is directly related to our work because REINFORCE (Sutton et al. (2000))
with a baseline can be connected to Actor-Critic algorithms when bootstrapping is used (Sutton &
Barto (2018)). The work shows a restricted scenario which involves a stateless MDP, each action
setting all the pixels of the image and cross-entropy loss instead of mean-squared Bellmann residual
in which GANs are equivalent to Actor-Critic algorithms. But this equivalence holds only when
the baseline term is not used so the formulation in IRGAN is not exactly equivalent to a GAN
framework. Another study (Finn et al. (2016)) draws a parallel between Inverse Reinforcement
Learning (Ng et al. (2000)) and GANs because both the methods try to “learn” the cost function to
optimize for.

10 CONCLUSION AND FUTURE WORK

The experiments performed show that IRGAN is by no means state-of-the-art on those datasets.
Further, the performance does not justify the large training time of 4 hours per generator epoch and
1 hour of discriminator epoch as opposed to 2 hours per epoch of the co-training model (11 GB
GPU and Question Answering task). The shaky mathematical formulation renders the generator
useless after training, and any gains in performance can be attributed directly to the first term of JD,
where the likelihood of the real data is increased. We showed that the discriminator and generator
are optimizing directly opposite loss functions and this is the cause of deleterious training.

The poor performance of IRGAN on Web-Search and Question Answering and only a satisfactory
performance on Content-Recommendation (which has dense rewards) lead us to speculate that it
does not work well in sparse reward scenarios. This is similar to a well-known problem called the
Sparse Reward Reinforcement Learning. We think that a correct formulation along with established
techniques from the former, like reward shaping (Ng et al. (1999)) may lead to better performance.
Newer methods like Hindsight Experience Replay (Andrychowicz et al. (2017)) which allow models
to learn both from mistakes and rewards may further ameliorate learning.

We would also like to explore in the direction of learning correct adversarial frameworks for more
complex tasks like Image Retrieval and Question Answering which will involve learning end-to-
end trainable models. With advances in modeling sequences, this could also involve generation of
documents rather than sampling them.
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Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipu-
lation on the natural image manifold. In European Conference on Computer Vision, pp. 597–613.
Springer, 2016.

10



Under review as a conference paper at ICLR 2019

APPENDIX A HYPERPARAMETERS

The hyperparameters are mentioned in tables 6, 7, 8, 9 and 10. The following were the ranges of
hyperparameter tuning, along with the best value. Gradient Descent Optimizer was used so that the
comparison with IRGAN is fair.

Table 6: Single Discriminator for Web-Search

Hyperparameter/Seed Range/List Best
Learning Rate 0.002-0.2 0.004

Batch Size [8,16,32] 8
Feature Size [46, 92] 46

Random Seed [20,40,60] 40

For the co-training model, for every epoch, we optimize the two discriminators several times. We
call these the outer and inner epochs in Table 7.

Table 7: Co-training for Web-Search

Hyperparameter/Seed Range/List Best
Learning Rate 0.002-0.2 0.006
Outer Epochs [30,50] 50
Inner Epochs [30,50] 30
Batch Size [8,16,32] 8

Feature Size [46, 92] 46
Random Seed [20,40,60] 40

DNS K in Table 8 represents the number of candidates that are chosen before performing the soft-
max. This is done to make the procedure computationally tractable. We use the value suggested in
IRGAN.

Table 8: Single Discriminator for Content Recommendation

Hyperparameter/Seed Range/List Best
Learning Rate 0.01-0.05 0.02

Batch Size 10 10
Embedding Dimension [20, 40, 60] 20

Random Seed 70 70
DNS K 5 5

APPENDIX B DESCRIPTION OF MODELS

The discriminator and the generator have the same architecture in all the tasks. For the Web-retrieval
task, the model has a single hidden layer 46 units.

For the content-recommendation task, the model converts users and movies to a 5 dimensional
embedding. This can be though to be a single hidden layer which compresses a one-hot user
embedding to a 5 dimensional embedding.

For the Question-Answering task, each word is initialized to a 100 dimensional random vector.
A Convolutional Neural Network is then used and the window size of the convolutional kernel is
(1,2,3,5). A max-pooling-over-time strategy is then used and the output is a 100 dimensional vector
because each feature map is pooled to a scalar. Note that this architecture is the same as the one
used in the IRGAN paper. We refer the user to that for further description.
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Table 9: Single Discriminator for Question Answering

Hyperparameter Best
Learning Rate 0.05

Epochs 20
Batch Size 100

Embedding Dimension 100

Table 10: Co-training for Question Answering

Hyperparameter Best
Learning Rate 0.05
Outer Epochs 20
Inner Epochs 1
Batch Size 100

Embedding Dimension 100
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