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ABSTRACT

Generative adversarial networks (GANs) have achieved great success at generat-
ing realistic samples. However, achieving disentangled and controllable genera-
tion still remains challenging for GANs, especially in the high-resolution image
domain. Motivated by this, we introduce AC-StyleGAN, a combination of AC-
GAN and StyleGAN, for demonstrating that very limited supervision is sufficient
to benefit the generic disentanglement learning of high-resolution images. Specif-
ically, by only using 1% of the labelled data, the disentanglement quality is very
close to the fully supervised case and significantly outperforms the unsupervised
alternative. Inspired by the observed separation of fine and coarse styles in Style-
GAN, we then extend AC-StyleGAN to a new image-to-image model called FC-
StyleGAN for semantic manipulation of fine-grained factors in a high-resolution
image. In experiments, we show that FC-StyleGAN performs well in only control-
ling fine-grained factors, with the use of instance normalization, and also demon-
strate its good generalization ability to unseen images. Finally, we create two new
datasets – Falcor3D and Isaac3D with higher resolution, more photorealism, and
richer variation, as compared to existing disentanglement datasets.

1 INTRODUCTION

High-resolution controllable generation is an important component in many applications, such as
image editing (Yao et al., 2018), 3D scene understanding (Eslami et al., 2018) and inverse graph-
ics (Kulkarni et al., 2015). Generative adversarial networks (GANs) (Goodfellow et al., 2014)
have achieved great success at generating realistic images, of which two representatives are Style-
GAN (Karras et al., 2019) for unconditional generation and BigGAN (Brock et al., 2018) for class
conditional generation. However, the controllable generation is still a challenge for state-of-the-art
GANs, especially with high-resolution images. For instance, StyleGAN cannot be directly used to
synthesize high-fidelity human faces by specifically controlling skin color or eye size without af-
fecting other face attributes. Also, BigGAN is not able to control the hair color or length of a dog
image without changing other features.

Disentanglement of various factors allows us to independently control the variations across all the
factors. But this is not easy to learn in GANs without further modifications such as adding regular-
ization to encourage better disentanglement. For example, InfoGAN (Chen et al., 2016) proposes
maximizing mutual information between latent code and its reconstruction for an unsupervised dis-
entanglement. Most recently, Locatello et al. (2019a) has showed that unsupervised disentanglement
learning is impossible without model inductive bias or supervision. In that light, several recent works
attempt to learn disentanglement in GANs by introducing a strong model bias (Nguyen-Phuoc et al.,
2019). However, these works are restricted to a specific domain (e.g. 3D rotations only) and usually
difficult to scale up to higher resolution, mainly due to the intrinsic limitations of the model biases
themselves. This motivates us to study the impact of limited supervision in a generic disentangle-
ment learning with GANs, especially in the more challenging high-resolution image domain.

Main contributions: By combining the advantages of AC-GAN (Odena et al., 2017) and Style-
GAN, we introduce AC-StyleGAN, and demonstrate that, very limited supervision is sufficient: just
1% of the labelled data significantly improves the disentanglement quality, as compared to the unsu-
pervised alternatives. However, if we are only interested in controlling a subset of factors (effectively
treating the rest as random unobserved nuisance variables), we find that the disentanglement qual-
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ity of AC-StyleGAN degrades signi�cantly. We believe this is due to the latent nuisance factors
strongly confounding the observed factors, a common and dif�cult problem in high-dimensional
partially observed latent variables models (Bishop, 1998).

To address this, we propose FC-StyleGAN, a new image-to-image model that adds controllable �ne-
grained factors along with a super-resolution process. This is inspired by the separation of �ne and
coarse styles, observed in StyleGAN. FC-StyleGAN enables semantic manipulation of �ne styles in
high-resolution images, without a commonly-used encoder-decoder structure.

Finally, we create two new high-quality datasets –Falcor3D and Isaac3D– that present a new
challenge for controllable generation in terms of image resolution, photorealism, and richness of
style factors, as compared to existing disentanglement datasets such as 3D Chairs (Aubry et al.,
2014), dSprite (Matthey et al., 2017) and MPI3D (Gondal et al., 2019).

Thus, we propose new semi-supervised GAN architectures that enable agenericdisentanglement
learning of high-resolution images as well as new high-quality disentanglement datasets.

2 RELATED WORK

Disentanglement learning. Learninggenericdisentangled representations in an unsupervised
way has attracted a lot of attention. Two representative models are InfoGAN (Chen et al., 2016)
and� -VAE (Higgins et al., 2017). The nature of unsupervised disentanglement learning does not
guarantee that the learned disentangled factors are semantically meaningful without an additional
inductive bias or supervision (Locatello et al., 2019a; Nguyen-Phuoc et al., 2019; Locatello et al.,
2019b). Another line of work aims to learn disentangled representations via supervised learning
wherein factors are observed variables (Kulkarni et al., 2015; Reed et al., 2014; Xiao et al., 2018;
Locatello et al., 2019b). However, little work has systematically investigated the necessity ofvery
limited supervisionto genericdisentanglement learning. The analysis of Locatello et al. (2019b)
only applies to disentangled VAEs on low-resolution datasets. Instead, our work tries to answer a
more practical question: with very little supervision on more complex and higher-resolution datasets,
can we still well disentangle the factors of variation while maintaining the high generation quality?

Deep image manipulation. Deep neural networks have enabled various image editing tasks, such
as style transfer (Gatys et al., 2016), image-to-image translation (Zhu et al., 2017), automatic col-
orization (Zhang et al., 2016) and 3D-aware attribute editing (Yao et al., 2018). None of the above
methods except the 3D-SDN (Yao et al., 2018) has dealt with the semantic manipulation of multiple
attributes for scene images. Different from the 3D-SDN and other previous works on attribute edit-
ing that have been mostly focused on the 3D geometry manipulation, our proposed FC-StyleGAN
is designed to semantically manipulate the �ne-grained factors instead, such as lighting conditions
and object colors. Furthermore, FC-StyleGAN does not apply an encoder-decoder structure as com-
monly used in previous works for semantic manipulation (Yao et al., 2018), instead, it adds control-
lable �ne-grained factors along with a super-resolution process, which turns out to perform well in
editing �ne styles of high-resolution images with a good generalization ability.

3 MODELS

3.1 BACKGROUND ON AC-GAN AND STYLEGAN

AC-GAN. AC-GAN (Odena et al., 2017) is a variant of class conditional GANs. In the AC-GAN,
the generator inputs are a latentz (or called random noise) and the class label. The input to the
discriminator is the real or fake image, whilst its output is the probability that the image is real and
the prediction of the class label. Odena et al. (2017) has shown that this modi�cation to the standard
conditional GAN formulation produces more realistic images and appears to stabilize training.

StyleGAN StyleGAN (Karras et al., 2019) is a state-of-the-art GAN architecture for unsuper-
vised image generation, particularly for high-�delity human faces. Basically, StyleGAN comprises
a mapping network whose role is to map the latentz to an intermediate space, which then controls
the styles at each convolutional layer in the synthesis network via adaptive instance normalization
(AdaIN) (Ulyanov et al., 2016; Huang & Belongie, 2017). StyleGAN also enables the separation
of �ne-grained and coarse-grained features. For example, modifying the styles of low-resolution
blocks affects only coarse-grained features (e.g. pose and eyeglasses), while modifying the styles of
high-resolution blocks affects only �ne-grained features (e.g. color scheme and microstructure).
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(a) AC-StyleGAN (b) FC-StyleGAN

Figure 1:An overview of model architectures (a) AC-StyleGAN and (b) FC-StyleGAN. (a) The generator con-
ditions on meta code for generation and the discriminator predicts its value. (b) We downsample the real image
into 32x32 resolution and replace the lower resolution blocks (4x4 - 32x32) in the AC-StyleGAN generator by
a new input block. Also, the discriminator predicts the value of �ne code from the 32x32 block instead.

3.2 AC-STYLEGAN FOR CONTROLLABLE IMAGE SYNTHESIS

We introduce AC-StyleGAN, a combination of AC-GAN and StyleGAN, that enables conditional
generation of high-resolution images. As shown in Figure 1a, the generator in AC-StyleGAN con-
ditions on a meta code by simply concatenating the meta code, a vector representing all the factors
of variation, with the latentz. The discriminator in AC-StyleGAN now provides two outputs, the
classi�cation of real/fake and the prediction of meta code. And �nally, the outputs of the mapping
network – the conditioned styles – will modulate each block in the synthesis network via AdaIN.
We choose AC-GAN, instead of other conditional GAN methods, such as cGANs (with Projec-
tion Discriminator) (Miyato & Koyama, 2018), mainly because only AC-GAN has the property of
reconstructing meta code in the discriminator, which can easily be extended to a semi-supervised
disentanglement learning framework.

More formally, letx (n )
r denote then-th image from the set ofN real images and letc(n )

r be the
corresponding meta code, randomly sampled from the dataset. Letc(n )

f denote a random meta code
sampled from the label distribution, and letD (�) andG(�) denote the discriminator and generator
neural networks. We also assumes(n )

r ands(n )
f represent the real and fake classi�cation logits in the

discriminator, respectively, and̂c(n )
r andĉ(n )

f denote the predictions ofc(n )
r andc(n )

f , respectively.
From Figure 1a, we have

(s(n )
r ; ĉ(n )

r ) = D(x (n )
r ) and (s(n )

f ; ĉ(n )
f ) = D(G(c(n )

f ; z(n ) )) (1)

Since we are aiming at achieving both high image quality and good controllability, we de�ne a
semi-supervised loss function for the generator and discriminator in AC-StyleGAN as follows,
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+  kĉ(n )
f � c(n )

f k
| {z }

unsupervised disentanglement

+
N� (n ) 

P N � 1
n =0 � (n )
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(2)

which consists of three terms: the GAN loss term, unsupervised disentanglement term and super-
vised disentanglement term. For the GAN loss, we apply the non-saturating loss plus gradient
penalty in the discriminator, as in StyleGAN. For both the unsupervised and supervised disentangle-
ment terms, we simply usel2 norm of the reconstruction losses.

Furthermore, we introduce two coef�cients and� (n ) in the above loss function: (i) the disentan-
glement coef�cient 2 (0; 1 ) balances the trade-off between the generation quality and disen-
tanglement performance; (ii) the coef�cient� (n ) is the label maskdenoted by� (n ) = 1f � ( n ) <� g
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where� (n ) i:i:d:� Uniform[0; 1] and� 2 [0; 1] is a hyperparameter. Accordingly, the hyperparameter
� controls the fraction of labelled data that will be used for supervision (fully unsupervisedin the
disentanglement learning if� = 0 , andfully supervisedif � = 1 ).

Note that we sample all the� (n ) 's before training so that the label mask� (n ) remains unchanged
during training to re�ect the real semi-supervised case. We also apply a rescaling operation by mul-
tiplying the supervised disentanglement term in Eq. (2) with the rescaling coef�cientNP N � 1

n =0 � ( n ) to

take an average of effective supervised signals within a minibatch. Finally, note that AC-StyleGAN
reduces to an InfoGAN variant in the special case of� = 0 (fully unsupervised), when an appropri-
ate reconstruction loss is used.

3.3 FC-STYLEGAN FOR SEMANTIC MANIPULATION OF FINE STYLES

While we apply AC-StyleGAN with supervision over all observed factors for demonstrating a con-
trollable generation of high-resolution images in GANs, in a potentially more realistic case where
we are only interested in controlling asubsetof factors (effectively treating the rest as random un-
observed nuisance variables), the disentanglement quality of AC-StyelGAN drops signi�cantly, as
shown in Section 4.2. Furthermore, AC-StyleGAN cannot be directly applied to manipulate an
existing high-resolution image. Therefore, we propose a new image-to-image model called FC-
StyleAGN (i.e., Fine-grained Controlled StyleGAN) for only controlling �ne-grained factors.

Inspired by the observations that the lower resolution blocks in the StyleGAN generator learn the
coarse-grained features while its high-resolution blocks accounts for �ne styles, the generator in
FC-StyleGAN does not contain the lower-resolution blocks. As shown in Figure 1b, the generator
instead takes the real image as one of its inputs by downscaling it to a lower resolution� (e.g.,
� = 32 in Figure 1b). After that, it generates the high-resolution image by only modulating the
�ne-grained code into higher resolution blocks. Also, the discriminator in FC-StyleGAN predicts
the value of �ne-grained code from the block with resolution� , instead of the last output block.
The intuition is that similar to the observations in the generator, lower resolution blocks in the
discriminator have less relationship with �ne-grained styles. So it makes more sense to directly
predict the meta code from higher resolution blocks. Note that the value of� varies from 4 to
image size, determining what factors are identi�ed as �ne-grained. Finally, the loss function in
FC-StyleGAN is the same with Eq. (2) in AC-StyleGAN, indicating a semi-supervised approach.

During training of FC-StyleGAN, the generator takes the downscaled image as is, and justem-
bellishesit by increasing the resolution and generating the missing pixel-level detail. As it does
not need to learn the coarse-grained features any more, presumably it will have much easier time
handling complex high-resolution images. Furthermore, since the generator is still style-based in
higher-resolution blocks with �ne-grained code as its input, we will retain the control over �ne
styles. However, there are two caveats in FC-StyleGAN. The �rst caveat is that as an image-to-
image model, the original �ne-grained factors in the input image may interference the control of
�ne code over the �ne styles in the output image. In such sense, we emphasize the role of inductive
biases on the model – the use of instance normalization in the generator. Because the output of in-
stance normalization preserves the spatial structure of image content by only normalizing �ne styles
(Ulyanov et al., 2016), we argue that the original �ne styles in the input image could be washed
away by instance normalization, and thus the �ne code will fully control the �ne-grained factors.

The second caveat is how to identify �ne-grained factors in a dataset before training FC-StyleGAN.
To this end, we use the meta code of all factors as the input of FC-StyleGAN with different down-
scaled resolutions� . For each� , we introduce a new term –interpolation varianceof each factor
ci , denoted by� i (� ), based on which the factorci is de�ned as�ne-grained at� if its interpolation
variance satis�es that� i (� ) > � 0, where� 0 is a pre-de�ned threshold. The interpolation variance
� i (� ) is calculated as follows: GivenN real images, we do the latent traversal over each factorc(n )

i

of an imageI (n ) to getS interpolated (fake) imagesf Î (n )
i; 0 ; � � � ; Î (N )

i;S � 1g. Each interpolated image

Î (n )
i;s is then fed into the discriminator to get a predicted factorĉ(n )

i;s . Thus, the interpolation variance

is the average variance ofĉ(n )
i;s over the interpolations-dimension, which is

� i (� ) =
1
N

N � 1X

n =0

Vars
h
ĉ(n )

i;s

i
(3)
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Datasets # of Images # of Factors Resolution 3D
dSprites 737,280 5 64x64 7
Noisy dSprites 737,280 7 64x64 7
Scream dSprites 737,280 7 64x64 7
SmallNORB 48,600 5 128x128 3
Cars3D 17,568 3 64x64 3
3dshapes 480,000 7 64x64 3
MPI3D 640,800 7 64x64 3
Falcor3D 233,280 7 1024x1024 3
Isaac3D 737,280 9 512x512 3

Table 1: Summary of the proposed two datasets, compared with currently commonly-used datasets (Gondal
et al., 2019). We can see that the proposed two datasets –Faclor3D and Isaac3Dboth have much larger
resolutions than previous datasets, together with the maximum number of factors. Furthermore, in terms of
photorealism, both datasets are rendered based on a complex 3D scene, in particular with texturing in Isaac3D.

Intuitively, low interpolation variance� i (� ) means that changing the factorci does not affect much
the generated images, which further implies the factorci should not be considered as �ne-grained,
since FC-StyleGAN with downscaled resolution� cannot control it any more.

4 EXPERIMENTS

In this section, we �rst introduce two new datasets – Isaac3D and Falcor3D. We then evaluate the
performance of AC-StyleGAN and FC-StyleGAN on both datasets, focusing on three aspects: dis-
entanglement quality, semantic correctness and image quality. Quantitatively, we useFrechet In-
ception Distance (FID)(Heusel et al., 2017) to measure image quality,reconstruction error(i.e.,
l rec = kĉ( r ) � c( r ) k) to measure semantic correctness, andMIG (Chen et al., 2018) to measure
disentanglement quality. Qualitatively, we apply the latent traversals to visually evaluate all three
aspects as well. Due to space limitations, we only show results on Isaac3D in this section; results on
Falcor3D are quite similar to those on Isaac3D, and are available in the appendix.

4.1 CREATION OF HIGH-QUALITY DISENTANGLEMENT DATASETS

Current disentanglement datasets, such as 3D Chairs (Aubry et al., 2014), dSprites (Matthey et al.,
2017) and MPI3D (Gondal et al., 2019), are of low resolution and mostly lack of photorealism.
It makes them not suitable as disentanglement benchmarks in the high-resolution image domain.
To this end, we propose two new datasets –Falcor3D and Isaac3D, which possess much higher
resolution, better photorealism and richer factors of variations, as shown in Table 1.

Falcor3D In the Falcor dataset, there are in total 233,280 images and each has a resolution of
1024x1024. This dataset is based on the 3D scene of a living room, where we can move the camera
positions and change the lighting conditions. Each image is paired with a ground-truth meta code,
consisting of 7 factors of variation: lighting intensity (5), lightingx-dir (6), lightingy-dir (6), light-
ing z-dir (6), camerax-pos (6), cameray-pos (6), and cameraz-pos (6). Note that the numberm
behind each factor represents that the factor hasm possible values, uniformly sampled in the nor-
malized range of variations[0; 1]. To interpret this, for example, “lightingx-dir (6)” represents the
lighting direction moving along thex-axis and “cameraz-pos (6)” represents the camera position
moving along thez-axis. Also, both factors have 6 values uniformly sampled from[0; 1].

Isaac3D In the Isaac3D dataset, there are in total 737,280 images and each has a resolution of
512x512. This dataset is based on the 3D scene of a kitchen, where we can also move the camera
positions and vary the lighting conditions. To further increase the number of variations, we put
a robotic arm inside, attached with an object. The robotic arm has two degrees of freedom:x-
movement (or horizontal rotation) andy-movement (or vertical rotation). The attached object could
change its shape, scale and color. To make the rendered images more photorealistic, each object in
the 3D scene has been provided with proper textures. Finally, each image is paired with a ground-
truth meta code, consisting of 9 factors of variation: lighting intensity (4), lightingy-dir (6), object
color (4), wall color (4), object shape (3), object scale (4), camera height (4), robotx-movement (8),
and roboty-movement (5). Similarly, the numberm behind each factor represents that the factor
hasm possible values, uniformly sampled in the normalized range of variations[0; 1].
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Figure 2:Latent traversal of AC-StyleGAN with full supervision on Isaac3D. For illustration, we only show
three factors: (robotx-movement, camera height, lightingy-dir). Please see the appendix for latent traversal
of all the factors. Images in the �rst column (marked by red box) are randomly sampled real images with the
ground-truth and the rest images in each row are their interpolations, respectively, by uniformly varying the
given factor from 0 to 1. Unless otherwise stated, this setting applies to all the latent traversal results below.

Figure 3: Quantitative metrics – MIG,l rec and FID vary with the supervision coef�cient� 2
f 0:0; 0:01; 0:05; 0:1; 1:0g and the disentanglement coef�cient 2 f 1; 10g in AC-StyleGAN on Isaac3D. For
MIG, the higher is better, while forl rec and FID, the lower is better.

Please see the appendix for more detailed descriptions of the two datasets.

4.2 EVALUATION OF AC-STYLEGAN

Latent traversal of AC-StyleGAN. We �rst show the latent traversal results of AC-StyleGAN on
Isaac3D in Figure 2, where we apply full supervision from meta code of all the factors. For illus-
tration, here we only show three factors of variation: (robotx-movement, camera height, lighting
y-dir). Please see the appendix for latent traversal of all the factors. Images in the �rst column
(marked by red box) are randomly sampled real images and the rest images in each row are their in-
terpolations, respectively, by uniformly varying each factor from 0 to 1. Unless otherwise stated, this
setting applies to all the latent traversal results below. As we can see, each factor in the interpolated
images changes smoothly without affecting other factors. Taking “lightingy-dir” as an example,
only the direction of the point light gradually moves up from left to right in the bottom row, which
can be evidenced by the fact that the light spot moves up from the refrigerator to the wall and the
shadow of the cabinet on the wall moves down simultaneously. More importantly, all the interpo-
lated images visually look the same with the corresponding real images in the �rst column except for
the interpolated factors, and the image quality does not degrade over interpolation. Therefore, the
latent traversal results demonstrate three good properties of AC-StyleGAN with supervision: high
disentanglement quality and good semantic correctness and high generation quality.

Semi-supervised learning. How does AC-StyleGAN behave when given fewer labels? To this
end, we vary the supervision coef�cient� in Eq. (2) to show the impact of supervision on AC-
StyleGAN and the results with 2 f 1; 10g on Isaac3D are in Figure 3. First, we can see with
limited supervision (� � 0:1), the difference between = 1 and10is quite small. Also, both values
of MIG and l rec almost reach their own optimal ones, along with a lower FID. This quantitatively
supports the above latent traversal results in Figure 2. As expected, the disentanglement quality
and semantic correctness gradually get worse when less labelled data is used. Interestingly, the gap
between = 1 and10�rst increases and then decreases as� decreases from 0.5 to 0, with the largest
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