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ABSTRACT

We explore some mathematical features of the loss landscape of overparameter-
ized neural networks. A priori one might imagine that the loss function looks like
a typical function from R™ to R - in particular, nonconvex, with discrete global
minima. In this paper, we prove that in at least one important way, the loss func-
tion of an overparameterized neural network does not look like a typical function.
If a neural net has n parameters and is trained on d data points, with n > d, we
show that the locus M of global minima of L is usually not discrete, but rather an
n — d dimensional submanifold of R™. In practice, neural nets commonly have
orders of magnitude more parameters than data points, so this observation implies
that M is typically a very high-dimensional subset of R".

1 INTRODUCTION

In recent years, it has become clear that neural nets are incredibly effective at a wide variety of
tasks. Why they work so well is less understood. During training neural nets implement a form of
curve fitting, by minimizing a loss function L : R® — R. Evidence suggests that they work better
when there are more parameters than data points. Here we explore the geometry of the loss land-
scape of overparameterized neural networks, as a first step toward understanding their unreasonable
effectiveness.

A priori one might imagine that the loss function L of a neural network looks like a typical function
from R™ to R - in particular, nonconvex, with discrete global minima, many “bad” local minima
that are not global minima, and complicated geometry. However, it turns out that in at least one
important way, the loss function of an overparameterized neural network does not look like a typical
function. In the overparameterized setting where the neural net has n parameters and is trained on d
data points, with n > d, it is generally the case that L is nonconvex. However, the locus M C R"™
of global minima of L is often not discrete. Indeed we find M is often quite the opposite — rather
than being a discrete set, M is often an n — d dimensional submanifold of R™. We expect this to be
true in a very general setting. The neural network can be any depth, and while our strongest results
are for feedforward neural networks, many of the results in this paper apply for a broader set of
architectures. In practice, neural nets commonly have orders of magnitude more weights than data
points, so in practical applications M is typically a very high-dimensional submanifold of R".

Our contributions include:

e Giving a heuristic that explains that in the overparameterized setting, generically the locus
of global minima of the loss function should be an n — d dimensional submanifold of R",
and that at a global minimum, the Hessian of L has d positive eigenvalues, n—d eigenvalues
equal to 0, and no negative eigenvalues.

e Proving that for a broad class of activation functions, a large enough feedforward neural
network with one hidden layer can fit a fixed training dataset exactly.

e Proving that for an overparameterized feedforward neural network with a rectified smooth
activation function, the locus of global minima for the loss function is a nonempty smooth
n — d dimensional submanifold of R™.

These results provide a theoretical setting for several lines of recent work. It has been widely sug-
gested that gradient descent is successful in producing good solutions in deep learning because many
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local minima are close to global minima and give similar results |LeCun et al.|(2015}),|Choromanska
et al.[(2015). As a result, the loss landscape has been studied in papers such as |[Freeman & Bruna
(2017). Several authors have proved that under various strong assumptions, all local minima are
global [Liang et al.| (2018)), |Ge et al.| (2017)), |[Laurent & Brecht| (2017)), [Kawaguchi| (2016). This is
not true in “real world” settings for deep learning. But recent work has suggested that in some set-
tings there are paths between local minima such that the value of the loss function stays low along
the paths |Garipov et al.|(2018)), |[Draxler et al.| (2018). We show a stronger result in a more general
setting. We prove that in a very general setting, there are not only one-dimensional paths between
minima, but very high dimensional manifolds.

In Section |2} we study the geometry of the loss landscape in the general overparameterized setting.
In Section we study the global geometry of the landscape. We study the locus M = L~1(0)
because L is a nonnegative function, so as long as M is nonempty, M is the locus of global minima
of L. We show that if nonempty, M is an n — d dimensional submanifold of R™. In Section
we consider the local geometry of the loss landscape near M, and show that if M is nonempty then
at a global minimum m € M, the Hessian of L has n — d zero eigenvalues, d positive ones, and
no negative ones. This is consistent with previous observations in papers such as |Chaudhari et al.
(2016) and |Wu et al.| (2017).

In Section 3] we write down a proof of a commonly believed fact, that given a fixed dataset, a large
enough one-hidden-layer feedforward neural net can memorize it exactly, i.e. learn it with zero
training error. This is commonly assumed, and in the case that the activation function used is ReLU,
proved in|Zhang et al.| (2016). We require a somewhat more general statement, but our argument is
based on the one given there.

In Sectiond] we combine the results of the previous two sections to show that in the setting of over-
parameterized feedforward neural networks, if they are wide enough then the locus M = L~1(0) is
in fact a nonempty smooth n — d dimensional submanifold of R".

1.1 ASSUMPTIONS

In this paper, we will always consider the overparameterized setting. So in all of our analyses, we
assume that the number of parameters n of the neural net is greater than the number of data points d
that it is training on.

2 GEOMETRY OF THE LOSS LANDSCAPE L - GENERAL CASE

2.1 POSITIVE DIMENSIONALITY OF M

Suppose we have a neural net of any architecture (e.g. feedforward, LSTM, etc.), with weights
(w1, ...) and biases (b1, ...), n parameters in total. Suppose this net uses a smooth activation function
o and is training on a data set {(x; — y;)} with d data points. Each entry in the data set is given
as a pair of vectors, x; € RP (e.g. a vector of pixel values) and y; € R. We assume that the z; are
distinct and that n > d.

Let f, be the function given by the neural net with the parameters w,b. For each data points
(x; = yi), let fi(w,b) = fup(x;) — yi. Assume that each f;(w, b) is smooth in w and b. For most
choices of architecture, this is implied by the assumption that the activation function o is smooth.
For example, for any feedforward neural network, if o is smooth then f;(w, b) is smooth for each 1.

Let the loss function used in training be the commonly used

L(w7 b) = Z(fw,b(xi) - yi)2'

Define f;(w,b) : R™ — R as
filw, ) = fuwp(i) — i,
so L(w, b) can be written as

L(w,b) =Y fi(w,b)*.
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It is clear from the definition that L(w, b) > 0, so if nonempty, M = L~1(0) is the locus of global
minima of L. Therefore, in this section we will focus on understanding the geometry of M in the
case that it is nonempty.

Note that
M = (M,
where
M; = fi(w,b)~1(0).

The rest of this section is devoted to the following theorem.

Theorem 2.1. In the setting described above, the set M = L~1(0) is generically (that is, possibly
after an arbitrarily small change to the data set) a smooth n — d dimensional submanifold (possibly

empty) of R™.
Remark 2.2. The loss function
L(w,b) = _|fi(w, )]
is also regularly used. Note that
L7Y(0) = L7H(0),

so Theoremalso shows that the locus M = L~! (0) is a smooth n — d dimensional submanifold
of R™.

We start with a heuristic argument for Theorem 2.1}

Heuristic: For each f;, the regular values of f; : R™ — R are dense. So generically we expect that
each M; = fi_1 (0) is a smooth codimension 1 submanifold of R™. Generically the intersection of d
smooth codimension 1 submanifolds of R™ is a smooth codimension d submanifold, so one would
expect that M = [ M; is smooth of codimension d.

With this heuristic in mind, we proceed to a proof of Theorem [2.1]

Proof. We construct a function H related to L. Let H : R” — R¢ be defined as the function
H(w7 b) = (fl(wa b)a (X3} fd(w7 b))

By construction, L, = |H|?, and importantly,
M =L"'0)=H""((0,..,0)).
If (0,...,0) is a regular value of H, proceed to next paragraph. If not, pick any ¢ > 0. By Sard’s

theorem, regular values of H are generic. We may therefore choose a regular value r = (71, ..., 74)
with |r| < e. We use 7 to perturb the data, replacing z; — y; by x; — §; where §; = y; + r;. Let

fi(w’b) = fz(w’b> —Ti= fw,b(xi) - Yi,
i’(w’b) = Zf?,

and ﬁ(w,b) = (fl(w,b>7~-~7fd(w7b))
= H(w,b) — (r1,...,74d)-

Note that |(z,y) — (z,¥)| < €, meaning that after taking an arbitrarily small perturbation of the data,
(0,...,0) is a regular value of H.

After possibly replacing H by H, (0, ...,0) is a regular value of H, meaning
M = H((0,...,0))

is either empty or smooth of codimension d in R, as desired.
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2.2 THE LOCAL GEOMETRY OF THE LOSS FUNCTION NEAR M

Proposition 2.3. Consider the submanifold M = L=*(0) = () M;, where M; = f7*(0). If
each M; is a smooth codimension 1 submanifold of R™, M is nonempty, and the M; intersect
transversally at every point of M, then at any point m € M, the Hessian of L evaluated at m has d
positive eigenvalues and n — d eigenvalues equal to O.

Proof. Let H(L) denote the Hessian of L. At every point p € R™, the Hessian of L evaluated at
p, H(L)|p, is a real symmetric matrix, hence has a basis of eigenvectors. Since m is a minimum
(in fact a global minimum) of L, the eigenvalues of H(L)|,, are nonnegative. Since M isn — d
dimensional, the kernel of H(L)|,, is at least n — d dimensional. It remains to show that it is also at
most n — d dimensional.

Well, L = Z?:l f, SO
d

H(L) =D H(fD).
=1

Let us consider each summand. The linear transformation #(f?) has n — 1 eigenvalues equal to 0
and a unique nonzero eigenvalue ). This follows from the fact that M; is a smooth codimension
1 submanifold. Furthermore, \; is positive as 0 is a global minimum of f;. Let v; denote the
eigenvector corresponding to this positive eigenvalue.

The vectors v, ...,vq are linearly independent because the M, intersect transversally at m. An
elementary linear algebra calculation shows that if an n x n matrix A is the sum of d matrices
A= Zle A;, n > d, where each A; has a unique nonzero eigenvalue \; and the corresponding
vectors v; are all linearly independent, then A has d nonnegative eigenvalues and n — d eigenvalues
equal to 0. We conclude that in our setting, (L) has d positive eigenvalues and n — d eigenvalues
equal to 0, as desired.

O

3 FEEDFORWARD NEURAL NETS CAN FIT POINTS

We have seen that in a very general setting, assuming almost nothing about the architecture of a
neural network, the locus M = Lil(()) is, if nonempty, a positive dimensional submanifold of
R™. However, whether M is nonempty depends on the chosen architecture and other details of
implementation. In this section, we address the issue of nonemptiness of M in a (still fairly general)
setting of feedforward neural networks with nice activation functions.

We start by recalling the definition of a feedforward network, and setting some notation. A feedfor-
ward neural network is specified by the data of a directed acyclic graph G(V, E), a parameter vector
pin R™, alabeling 7 : EUV — {1,...,m}, and an activation function o. Let V;,, denote the set of
input vertices (the vertices in V with no incoming edges) and V,,,; the set of output vertices (those
with no outgoing edges).

The labeling 7 associates to each edge or vertex a parameter. The parameters for the edges are
commonly referred to as weights, and the parameters for the vertices are called biases. We often
reflect this by referring to a pair of vectors w of weights and b of biases instead of a single parameter
vector p.

Given a fixed parameter vector p, (or the pair (w, b)), we can construct a function fg r o.p : RIVinl —

RIVoutl as follows. For any input node v € Vj,,, its output o, is the corresponding coordinate of the
input vector 2 € RVi. For each internal node v, its output is defined recursively as

Oy = Z U(pﬂ'(u%’u) * Oy +p7r(v))a
u—veEE
or perhaps more familiarly with weights and biases,

Oy = Z U(wﬂ(u—w) c 0y + b‘n’(v))

u—veE
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For output nodes v € V,,,;, no non-linearity is applied and their output

Oy = Z Wr(u—v) * Ou + by

u—veEER
determines the corresponding coordinate of the computed function fg o p-

We denote the hypothesis class of functions computable by the neural net using some choice of
parameters by N (G, 7, 0) = {fa,x.0p[p € R™}.

The term neural network can refer to a specific function, the hypothesis class of functions, or other
related objects. When we use the term neural network, we generally mean a hypothesis class of
functions, or this class of functions along with a framework for choosing parameters p such that the
resulting function fg r o, fits the training data reasonably well.

When we talk about neural networks, we generally consider G, , and o fixed, and the task is to find
a good choice of parameters p. We often suppress the fixed objects in our notation. For example,
in this paper we will commonly use the notation f,, ; to denote the function computed by a neural
net with a choice of parameters w weights and b biases, and implicitly G, 7, and ¢ are fixed in the
discussion.

3.1 RECTIFIED ACTIVATION FUNCTIONS

Definition 3.1. We call a continuous function o : R — R rectified if

ole) = {o, z<0,

monotonic increasing, = > 0.

Our strongest results apply to feedforward neural networks whose activation function o is rectified
smooth.

The set of rectified smooth functions doesn’t contain most commonly considered activation func-
tions. For example, ReLU, tanh, and sigmoid are not rectified smooth functions. However, ReLU
modified by smoothing the corner at O, commonly used in practice when implementing neural net-
works, is. Translated and truncated tanh and sigmoid are as well, and in practice behave similarly to
tanh and sigmoid in neural networks.

For a concrete definition of a smooth rectified activation function, we make the following definition.
Definition 3.2. Let smooLU be defined as

0, z <0,
smooLU(x) = {x exp(—1/x), x>0.

In the remainder of this paper, the reader can take the activation function ¢ to be smooLU if desired.
The function smooL.U is similar to softplus, which is commonly used in neural nets.

With these concepts in hand, we proceed to the main result of this section. For the next lemma we
don’t need to assume o is smooth.

Lemma 3.3. Fix a data set S = {(x;,y;)} with d data points, ; € RP, y; € R, and a rectified
activation function o. Assume that the vectors x; are distinct, i.e. no two are equal. For any h > d,
there exists a feedforward neural network f,, , with 1 hidden layer of width h and activation function
o that represents S with zero training error. In fact, we produce weights w, b such that f., ,(x;) = y;
for all i. Here the number of parameters n governing the family of neural nets we consider in the
construction is n = 2d + p.

Proof. A feedforward neural net of this form is a function
fuwp(x) = Moo (Myz — by) — ba,
where M7, M, are linear transformations

M : RP — R" and M, : R" - R,
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and by, by are vectors
by € R" and by, € R.

The weights w are the entries of M; and M, and the biases b are the entries of b and b.

We use the convention that o applied to a vector denotes component-wise evaluation:

(V1 ey U) = (0(V1), ..., 0 (V).

In our construction, we will take by = 0 and all the rows of M; to be equal to a single vector
a = (ai, ..., ap). We also take h = d the number of data points. If h > d, one can set all the weights
and biases of the nodes after the first d to be 0, so it suffices to make the construction for h = d. So
we are looking for a function f,, ; of the form

d
fuwp(z) = ija(a -z —bj)

such that f,, p(z;) = y; for all i. Our job is to find values for the 2d + p parameters my, ..., mgq,
ai, ..., Gp, b1, ..., bg satistying these conditions.

First, we choose a vector a € RP such that {a - z;} are distinct. This is possible because we
assumed the z; are distinct and a general projection from R? — R will preserve that property. Up
to a reordering of the points x;, we can assume that {ax;} are increasing. Choose x( such that
arg = ax1 — 1. Let

ar;—1 + ax;

b; =
2
Now, to arrange that f,, ,(z;) = y; we require
Yi :ZU(G'J}Z‘ — b;)m;. 3.1

J

We express Equation [3.T]using the notation of matrix multiplication,

Y1 ola-xy1—by) -+ ola-z1—0ba) my
| = : : | (3.2)
Yd ola-xqg—>b1) -+ ola-xq—"0g) mq

Let us denote the matrix whose 4, j'" entry is (o(a - z; — b;)) by A.
By construction, A is lower triangular with nonzero entries on the diagonal, hence invertible. So we
set the weights by

mi Y1

=A"!

mq Yd
This gives us a choice of weights and biases for a neural network with one hidden layer which has
learned the data {(z;,y;)} with zero error.

O

Since a feedforward neural network with one hidden layer can always be embedded in a deeper
feedforward net with sufficient width, we have the following corollary of Lemma[3.3]

Corollary 3.4. Fix a data set S = {(x;,y;)} with d data points, x; € R?, y; € R, and a rectified
activation function o. Assume that the vectors x; are distinct, i.e. no two are equal. Among feed-
forward neural networks with activation function o and T hidden layers, last hidden layer of width
h > d, remaining hidden layers of arbitrary width, there exists a choice of weights so that the neural
network f,, 1, represents S with zero training error.
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Proof. We can adapt the construction in the proof of Lemma [3.3] to the case of a deeper net by
simply choosing a subset of the nodes of the deeper net to use. Suppose the T" hidden layers have
widths hq, ..., hp. The nodes we use are the first node of each of the first 7' — 1 hidden layers, and
the first d nodes of the last hidden layer. Let the first linear transformation M, : RP? — R be
constructed as the vector a as in Lemma in the first row and O in all other rows. Choose b; so
that @ - ¢; — by is positive for all ¢. In the remaining layers, let the matrix M, 2 < j7 < T be 1 in the
top left entry and O in all the others. Note that the property that a - x; — by are all positive and distinct
is preserved through the layers, because the activation function o is rectified. Finally, let M1, be
constructed as in Lemma[3.3] O

4 GEOMETRY OF THE LOSS LANDSCAPE L - FEEDFORWARD CASE

4.1 POSITIVE DIMENSIONALITY OF M

Suppose we have a feedforward neural net of any depth and last hidden layer of width h > d.
Suppose this net uses a rectified smooth activation function o and is training on a data set {(z; —
y;)} with d data points. Each entry in the data set is given as a pair of vectors, x; € R? (e.g. a vector
of pixel values) and y; € R. We assume that the x; are distinct.

Let f, » be the function given by the neural net with the parameters w,b. As before, let the loss
function used in training be the commonly used

L(w,b) = Z(fw,b(xi) - %)2-

Theorem 4.1. In the setting described above, the global minimum of L is generically (that is,
possibly after an arbitrarily small change to the data set) equal to 0, and the set of global minima
M = L=Y(0) is a nonempty smooth n — d dimensional submanifold of R™.

Proof. By Theorem[2.1} M = L~*(0) is a smooth n —d dimensional submanifold of R™. It remains
only to show that M is nonempty. But that is exactly the guarantee of Lemma|[3.3] given that we have
assumed that o is a rectified smooth activation function and that the architecture of the networks is
a feedforward network whose last hidden layer has width at least d. O

Remark 4.2. The results in this paper can all be modified to accommodate the case that y; € R’ (e.g.
a space of labels) where £ > 1. The argument in Theorem [2.1]is modified by letting H : R"™ — R
be (fi(w,b), ..., f4(w, b)) where f;(w,b) is now a function from R™ to R, and we find that M is
codimension ¢d. The construction in Lemma([3.3]and Corollary [3.4is modified by having ¢ copies of
the neural network, one for each component of y;. The parameter bounds change appropriately. With
strengthened versions of those results, the argument in Theorem 4.T|extends without modification to
the more general setting.

5 DISCUSSION

In this paper, we note that far from being a typical function from R” to R, the loss function of an
overparameterized neural network has some special geometric properties. This is compatible with
several recent observations. For example, in |Chaudhari et al.| (2016), it was empirically observed
that at solutions found by training neural networks with standard methods, the Hessian of the loss
function tended to have many zero eigenvalues, some positive eigenvalues, and a small number of
negative eigenvalues, which tended to be small in magnitude compared to the positive eigenvalues.
Similarly, in|Wu et al.[(2017), Wu, Zhu, and E train some small deep neural networks and compute
the spectrum of the Hessian at points obtained after training. They too observe that across several
different models and datasets most of the eigenvalues are approximately zero, with few negative
eigenvalues. In fact, they conjecture that “the large amount of zero eigenvalues might imply that the
dimension of this manifold is large, and the eigenvectors of the zero eigenvalues span the tangent
space of the attractor manifold. The eigenvectors of the other large eigenvalues correspond to the di-
rections away from the attractor manifold.” We have proved a more precise version of that statement
here.
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Note that Theorem [2.T] applies in a very general setting. In particular, it holds for a neural network
of any architecture learning a data set S = {x;, y;}, as long as the loss function L is of the form

L(w,b) =Y |fiwp(i) — vil*,a > 1,

and each f;.,  : R™ — R is smooth. In practice, these conditions usually hold as long as a smooth
activation function is used. (In practice, usually all the f;.,, ; are even the same.) So in most settings,
we are guaranteed that M is an n — d dimensional possibly empty submanifold of R™.

To determine whether M is nonempty requires an argument specific to the chosen architecture and
details of implementation, such as the one we gave here for feedforward neural networks with recti-
fied smooth activation functions.
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