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ABSTRACT

Generative Adversarial Networks are powerful generative models that can model
the manifold of natural images. We leverage this property to perform manifold
regularization by approximating a variant of the Laplacian norm using a Monte
Carlo approximation that is easily computed with the GAN. When incorporated
into the semi-supervised feature-matching GAN we achieve state-of-the-art results
for semi-supervised learning on CIFAR-10 benchmarks when few labels are used,
with a method that is significantly easier to implement than competing methods.
We find that manifold regularization improves the quality of generated images,
and is affected by the quality of the GAN used to approximate the regularizer.

1 INTRODUCTION

Deep neural network classifiers typically require large labeled datasets to obtain high predictive
performance. Obtaining such a dataset could be time and cost prohibitive especially for applications
where careful expert labeling is required, for instance, in healthcare and medicine. Semi-supervised
learning algorithms that enable models to be learned from a small amount of labeled data augmented
with (large amounts of) unlabeled data have the potential to vastly reduce this labeling burden.

Fundamentally, semi-supervised learning requires assumptions relating the distribution of the data
Px (which can be derived from the unlabeled data) to the classification task (Chapelle et al., 2010).
For instance, the classic manifold regularization framework (Belkin et al., 2006) for semi-supervised
learning makes the assumption that that the data lie on a low-dimensional manifoldM and moreover
that a classifier f is smooth on this manifold, so nearby points on the manifold are assigned similar
labels. Algorithms based on this framework enforce a classifier’s invariance to local perturbations
on the manifold by penalizing its Laplacian norm ‖f‖2L =

∫
x∈M ‖∇Mf(x)‖2 dPX(x). More gen-

erally, regularization terms penalizing classifier gradients in regions of high data density have also
been proposed (Bousquet et al., 2003).

Recently, generative adversarial networks (GANs) have been used for semi-supervised learning,
where they are competitive with state-of-the-art methods for semi-supervised image classification
(Dai et al., 2017; Kumar et al., 2017; Qi et al., 2018). GAN-based semi-supervised learning methods
typically build upon the formulation in (Salimans et al., 2016), where the discriminator is extended to
determine the specific class of an image or whether it is generated; by contrast, the original GAN’s
discriminator is only expected to determine whether an image is real or generated. Another key
application for GANs is image synthesis, where they have been shown to model the image manifold
well (Zhu et al., 2016). Recent work (Kumar et al., 2017; Qi et al., 2018) has used this property of
GANs to enforce discriminator invariance on the image manifold, resulting in improved accuracy
on semi-supervised image classification.

In this work, we leverage the ability of GANs to model the image manifold to efficiently approximate
the Laplacian norm and related regularization terms through Monte-Carlo integration. We show that
classifiers (with varying network architectures) regularized with our method outperform baselines
on the SVHN and CIFAR-10 benchmark datasets with a method that is significantly simpler to
implement than competing methods. In particular, when applied to the semi-supervised feature-
matching GAN (Salimans et al., 2016), our method achieves state-of-the-art performance amongst
GAN-based methods, and is highly competitive with other non-GAN approaches especially when
the number of labeled examples is small. We show that manifold regularization improves the quality
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of generated images as measured by Inception and FID scores when applied to the semi-supervised
feature-matching GAN, thus linking manifold regularization to recent work on gradient penalties for
stabilizing GAN training (Roth et al., 2017; Gulrajani et al., 2017; Mescheder et al., 2017). We also
found that generator quality (as measured by the quality of generated images) influences the benefit
provided by our manifold regularization strategy in that using a better quality generator results in
larger improvements in classification performance over a supervised baseline.

2 RELATED WORK

There have been several works adapting GANs for semi-supervised learning. One approach is to
change the standard binary discriminator of a standard GAN to predict class labels of labeled exam-
ples, while enforcing the constraint that generated data should result in uncertain classifier predic-
tions (Springenberg, 2016). The related approach of Salimans et al. (2016) also uses the discrim-
inator of the GAN as the final classifier, but instead modifies it to predict K + 1 probabilities (K
real classes and the generated class). This approach performs well when combined with a feature
matching loss for the generator. The work of Li et al. (2017) introduces an additional classifier as
well as uses a conditional generator instead of adapting the discriminator to overcome limitations
with the two-player formulation of standard GANs in the context of semi-supervised learning.

The idea of encouraging local invariances dates back to the TangentProp algorithm (Simard et al.,
1991) where manifold gradients at input data points are estimated using explicit transformations of
the data that keep it on the manifold, for example small rotations and translations. Since then other
approaches have tried to estimate these tangent directions in different ways. High order contrac-
tive autoencoders were used by Rifai et al. (2011b) to capture the structure of the manifold; this
representation learning algorithm was then used to encourage a classifier to be insensitive to local
direction changes along the manifold (Rifai et al., 2011a). This approach was recently revisited in
the context of GANs (Kumar et al., 2017), where the tangent space to the data manifold is estimated
using GANs with an encoder in order to inject invariance into the classifier. In addition, this work
also explored the use of an additional ambient regularization term which promotes invariance of
the discriminator to perturbations on training images along all directions in the data space. The
proposed method is competitive with the state-of-the-art GAN method of (Dai et al., 2017), which
argues that a generator that generates images that are in the complement of the training data distri-
bution is necessary for good semi-supervised learning performance. Most recently (Qi et al., 2018)
proposed the use of a local GAN which attempts to model the local manifold geometry around data
points without the need for an encoder. The local GAN is then used to approximate the Laplacian
norm for semi-supervised learning, and is shown to enable state-of-the-art classification results.

Aside from GAN-based approaches, Virtual Adversarial Training (VAT) (Miyato et al., 2017), which
is based on constraining model predictions to be consistent to local perturbation, has also achieved
state-of-the-art performance on benchmarks. Specifically, VAT smooths predictions of the classifier
over adversarial examples centered around labeled and unlabeled examples. (Park et al., 2018)
similarly introduces adversarial pruning of the neural network to regularize the training. This method
gives state-of-the-art results, when combined with VAT.

Other recent works are based on the self-training paradigm (Chapelle et al., 2010). Such methods
label the unlabeled data using classifiers trained on the labeled data, and then use this expanded
labeled dataset to train a final classifier. Recent progress has been due to clever use of ensembling
to produce better predictions on the unlabeled data: instead of simply using predictions of a model
trained on the labeled data, (Laine & Aila, 2017) ensembled model predictions under various per-
turbations or at different time steps. In follow-up work, the Mean Teacher method (Tarvainen &
Valpola, 2017) averages model weights instead at different time steps using exponential moving av-
erages, and achieves state-of-the-art performance on benchmark image datasets. Most recently, the
work of (Luo et al., 2018) proposes a consistency loss that considers perturbations not only on a
datapoint but also on its neighboors.

3 MANIFOLD REGULARIZATION

We present an approach to approximate any density-based regularization term of the form Ω(f) =∫
x∈M L(f)dχ(PX) (Bousquet et al., 2003) with L denoting a measure of smoothness of the clas-
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sifier function f and χ a strictly-increasing function. This class of regularizers enforce classifier
smoothness in regions of high data density and includes the Laplacian norm with L(f) = ‖∇Mf‖2
and χ the identity function. We focus on the following variant of the Laplacian norm

Ω(f) =

∫
x∈M

‖∇Mf‖F dPX

with L(f) = ‖∇Mf‖F in this work and show how it can be approximated efficiently 1. Our
approach relies on two commonly held assumptions about GANs:

1. GANs can model the distribution over images (Radford et al., 2016), such that samples from
the GAN are distributed approximately as PX(x), the marginal distribution over images x.

2. GANs learn the image manifold (Radford et al., 2016; Zhu et al., 2016). Specifically, we
assume that the generator g learns a mapping from the low-dimensional latent space with
coordinates z to the image manifold embedded in a higher-dimensional space, enabling us
to compute gradients on the manifold by taking derivatives with respect to z (Kumar et al.,
2017; Shao et al., 2017) .

With these assumptions, we may approximate Ω(f) as follows, where we list the relevant assumption
above each approximation step

Ω(f) =

∫
x∈M

‖∇Mf‖F dP
(1)
≈ 1

n

n∑
i=1

∥∥∥∇Mf(g(z(i)))
∥∥∥
F

(2)
≈ 1

n

n∑
i=1

∥∥∥Jzf(g(z(i)))
∥∥∥
F
.

Here, Jz denotes the Jacobian matrix of partial derivatives of classifier outputs f with respect to
latent generator variables z 2. Computing gradients of Ω(f) during model learning is computation-
ally prohibitive for deep neural networks as it requires computing the Hessian of a model with large
numbers of parameters 3. We hence used stochastic finite differences to approximate the gradient
term for computational efficiency.

Issues with manifold gradients: To motivate the specific approximation we used, we first illustrate
several issues with manifold gradients as estimated with a GAN when considering the obvious can-
didate approximation

∥∥Jzf(g(z(i)))
∥∥
F
≈
∥∥f(g(z(i)))− f(g(z(i) + δ))

∥∥
F
, δ ∼ N (0, σ2I) (Figure

1), using the Two Circles dataset and MNIST. The Two Circles dataset is an example of data lying
on disjoint manifolds. In this case, even though the GAN is able to accurately model the data distri-
bution (Figure 1a, left), we see several instances where the manifold gradients as per the GAN are
extremely noisy (Figure 1a, center) with large magnitudes. If data from the inner and outer circle
were to belong to different classes, enforcing classifier smoothness at those points in the manifold
with these large noisy gradients could result in the classifier predicting similar values for both circles
(as g(z(i)) and g(z(i) + δ) ≈ g(z(i)) +Jz(g(z(i)))δ lie on different circles), causing erroneous clas-
sifications. At the other extreme, there are points on the manifold where the estimated gradient has
such small magnitude such that the regularizer has minimal smoothing effect. These issues are also
evident on the MNIST dataset (Figure 1b), where we directly show how g(z(i)) and g(z(i) + δ) can
lie on different manifolds (red rectangle) or be virtually identical (blue rectangle), resulting in over-
smoothing and under-smoothing respectively of the classifier function. We note that the analysis of
Chen et al. (2018) suggests that the issue of large noisy gradients that we described may be inherent
to generative latent variable models, as such models may place points from disjoint manifolds in the
data space nearby in the latent space (see Figure A4 for an example).

Our improved gradient approximation: In light of these issues arising from the magnitude of
manifold gradients, we used the following approximation that takes a step of tunable size ε in the
direction of the manifold gradient, thus ignoring the magnitude of the gradient while enforcing
smoothness in its direction

Ω(f) ≈ 1

n

n∑
i=1

∥∥∥f (g (z(i)
))
− f

(
g
(
z(i)
)

+ εr̄
(
z(i)
))∥∥∥

F

1In our early experiments we used the regular Laplacian norm but found that this variant worked better in a
wider range of settings; results using the Laplacian norm are included in the Appendix.

2In our experiments, we defined f to be the logits of the softmax output layer instead of the resultant
normalized probabilities as we found it gave better performance.

3In fact, for multi-class classifiers f , we need to compute a Hessian tensor – one matrix for each component
(class output) of f , which quickly becomes impractical even with moderate numbers of classes.
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(a)
(b)

Figure 1: Issues with GAN-derived manifold gradients. (a) Left: Samples (green dots) and generated
samples (red dots) from a GAN trained on the two circles dataset. Middle: Manifold gradients from
the trained GAN. Right: Manifold gradients normalized to unit norm. The GAN approximates
the data manifold well in this toy example and normalizing gradients mitigates issues with noisy
gradients. (b) Effect of perturbations on the latent code of a GAN trained on MNIST. Each pair of
rows shows the generated example from the latent code (top) and the generated example from the
perturbed latent code (bottom). Random perturbations of equal norm in the latent space can have
almost no effect (blue box) or a large effect (red box) on generated examples.

Here r(z) = g(z + η δ̄) − g(z(i)), δ ∼ N (0, I) is an approximation of the manifold gradient
at z with tunable step size η, and v̄ = v

‖v‖ denotes a unit vector. Note that the stochastic finite
difference approximates a directional derivative in the randomly chosen direction δ: f(g(z) + εr̄)−
f(g(z)) ≈ εJf .Jg

δ̄
||Jg δ̄||

. To gain further intuition, we can rewrite the expression g(z) + εr̄(z) as

g(z)(1− ε
||r(z)|| ) + g(z + η δ̄) ε

||r(z)|| to see that a large manifold gradient (large ||r(z)||) will cause
f to be evaluated closer to g(z) instead of g(z + η δ̄), which is the desired behavior.

Advantages of our approach: We wish to highlight that our approach only relies on training a
standard GAN. In contrast to the approach of Kumar et al. (2017), we do not explicitly enforce
classifier smoothness on input data points, allowing us to avoid the added complexity of learning
an encoder network to determine the underlying manifold coordinates for a data sample, as well as
other tricks required to estimate tangent directions. Our approach leverages the GAN’s ability to
interpolate smoothly between input images to enforce classifier smoothness on the entirety of the
manifold and not just at the provided data points. We note that Qi et al. (2018) proposed an alternate
and elegant solution to the issues we identified by learning a local GAN instead at input data points,
but at the price of training a GAN with a more complex local generator.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experimental setup follows (Tarvainen & Valpola, 2017) – we separated 10% of the training data
on CIFAR-10 into a validation set, and did similarly for SVHN. We designed our algorithms and
chose our hyperparameters based on this validation set. We perform semi-supervised training using
a small fraction of the labeled training data containing an equal number of examples from each
class; the remaining training images are used as unlabeled data. Note that the classifier we used
for evaluation had weights that were the exponential moving average of classifier weights obtained
during training (this technique was also used in (Salimans et al., 2016)). We report the error rates on
the test set for models which performed best on the validation set. Details of hyperparameters and
network architectures we used in our experiments can be found in the Appendix.

4.2 INCORPORATING MANIFOLD REGULARIZATION INTO SEMI-SUPERVISED GANS

We first evaluated our regularization method when incorporated into the semi-supervised GAN
framework. We reproduced the semi-supervised feature-matching GAN of (Salimans et al., 2016)
and added our manifold regularizer to the model. The final loss function of the discriminator is:

L = Lsupervised + Lunsupervised + γm Ωmanifold, where
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Lunsupervised = −Ex∼pdata(x) [log [1− pf (y = K + 1|x)]]− Ex∼g [log [pf (y = K + 1|x)]]
Lsupervised = −Ex,y∼pdata(x,y) [log pf (y|x, y < K + 1)]
Ωmanifold = Ez∼U(z),δ∼N(δ)) ‖f (g (z))− f (g (z) + εr̄)‖2

and we used the feature matching loss for our generator,
∥∥Ex∼pdata

h(x)− Ez∼pz(z)h(g(z))
∥∥. Here,

h(x) denotes activations on an intermediate layer of the discriminator. We also checked if the
anisotropic regularization along manifold directions in the data space that we used provides addi-
tional benefits over simple ambient regularization in the data space. Specifically, we evaluated the
ambient regularizer λ Ex∼pd(x) ‖Jxf‖, as proposed in (Kumar et al., 2017) that we similarly ap-
proximate using a stochastic finite difference as shown below: L = Lsupervised + Lunsupervised +
γaΩambient , where

Ωambient = Eδ∼N(δ))

∥∥f (x)− f
(
x+ ε δ̄

)∥∥
2
.

Table 1: Error rate on CIFAR-10 averaged over 3 runs with different random seeds. Results in-
cluding data augmentation (4x4 random translations and random horizontal flips similar to previous
works). * marks baselines we ran; the remainder are taken from the relevant papers.

1000 labels (2%) 2000 labels (4%) 4000 labels (8%)
CIFAR-10 50000 images 50000 images 50000 images
Mean Teacher (Tarvainen & Valpola, 2017) 21.55 ± 1.48 15.73 ± 0.31 12.31 ± 0.28
Π (Laine & Aila, 2017) 31.65±1.20 17.57 ± 0.44 12.36±0.31
TempEns (Laine & Aila, 2017) 23.31±1.01 15.64 ± 0.39 12.16±0.31
VAT (Miyato et al., 2017) 18.34* 14.20* 11.36
VAT + EntMin (Miyato et al., 2017) 17.13±0.91* 14.25±0.74* 10.55
VAdD (QE) (Park et al., 2018) 11.32
VAdD (QE) + VAT (Park et al., 2018) 9.22
Pi + SNTG (Luo et al., 2018) 21.23±1.27 14.65 ± 0.31 11.00±0.13
TempEns+SNTG (Luo et al., 2018) 18.41±0.52 13.64 ± 0.32 10.93±0.14
VAT + Ent + SNTG (Luo et al., 2018) 9.89
Manifold (ours) (4 runs) 13.71 ± 0.24 12.99±0.49 11.79 ± 0.25

Table 2: Error rate on CIFAR-10 averaged over 4 runs with different random seeds. Results were
obtained without data augmentation.

1000 labels (2%) 2000 labels (4%) 4000 labels (8%)
CIFAR-10 50000 images 50000 images 50000 images
Π model (Laine & Aila, 2017) 32.18±1.33 23.92±1.03 16.55 ± 0.29
Mean Teacher (Tarvainen & Valpola, 2017) 30.62 ±1.13 23.14 ± 0.46 17.74 ± 0.30
VAT (large) (Miyato et al., 2017) 22.18* 18.32* 14.18
VAT+EntMin (large) (Miyato et al., 2017) 19.89±0.89* 15.78±0.36* 13.15
Π+SNTG (Luo et al., 2018) 13.62±0.17
VAT+Ent+SNTG (Luo et al., 2018) 12.49±0.36
Improved GAN (Salimans et al., 2016) 21.83 ± 2.01 19.61 ± 2.09 18.63 ± 2.32
Improved GAN + SNTG (Luo et al., 2018) 14.93
Improved Semi-GAN (Kumar et al., 2017) 19.52 ±1.50 16.20 ± 1.6
ALI (Dumoulin et al., 2017) 19.98 ± 0.89 19.09 ± 0.44 17.99 ± 1.62
Bad GAN (Dai et al., 2017) 14.41 ± 0.30
Local GAN (Qi et al., 2018) 17.44 ± 0.25 14.23 ± 0.27
Improved GAN (ours) 17.50 ± 0.34 16.80 ± 0.07 15.5 ± 0.35
Ambient (ours) 16.98 ± 0.36 15.99 ± 0.14 14.75 ± 0.37
Manifold reg. unnormalized (ours) 18.09 15.8 14.40 ± 0.21
Manifold (ours) 16.37 ± 0.42 15.25 ± 0.35 14.34 ± 0.17

We present results on CIFAR-10 (Krizhevsky, 2009) in in Tables 1 and 2, and results on SVHN
(Netzer et al., 2011) in Table 3. We first note that our implementation of the feature-matching
GAN with weight normalization (Salimans & Kingma, 2016) (Improved GAN) (Salimans et al.,
2016) significantly outperforms the original (and many other recent methods) after we tuned train-
ing hyperparameters, illustrating the sensitivity of semi-supervised GANs to hyperparameter set-
tings. Adding manifold regularization to the feature-matching GAN further improves performance,
achieving state-of-the-art results amongst all GAN-based methods, as well as being highly competi-
tive with other non-GAN-based methods, especially when less labeled data is used. We also observe
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that while simple (isotropic) ambient regularization provides some benefit, our (anisotropic) mani-
fold regularization term provides additional performance gains.

Our results are consistent with recent work in semi-supervised learning and more generally regular-
ization of neural networks. While studies have shown that promoting classifier robustness against lo-
cal perturbations is effective for semi-supervised learning (Laine & Aila, 2017; Tarvainen & Valpola,
2017), other recent work suggests that it is difficult to achieve local isotropy by enforcing invariance
to random perturbations independent of the inputs (which is what the simple ambient regularizer
does) in highly non-linear models (Szegedy et al., 2014), so data-dependent perturbations should be
used instead. One possibility is to enforce invariance to perturbations along adversarial directions of
the classifier (Miyato et al., 2017). Our approach instead enforces invariance to perturbations on the
data manifold as modelled by the GAN.

Table 3: Error rate on SVHN averaged over 4 runs with different random seeds. Results were
obtained without data augmentation.

500 labels(0.3%) 1000 labels(1.4%)
SVHN 73257 images 73257 images
Π model (Laine & Aila, 2017) 7.01 ± 0.29 5.73 ± 0.16
Mean Teacher (Tarvainen & Valpola, 2017) 5.45 ± 0.14 5.21 ± 0.21
VAT (large) (Miyato et al., 2017) 5.77
VAT+EntMin(Large)(Miyato et al., 2017) 4.28
VAT+Ent+SNTG (Luo et al., 2018) 4.02±0.20
Π+SNTG (Luo et al., 2018) 4.22±0.16
Improved GAN(Salimans et al., 2016) 18.44 ± 4.80 8.11 ± 1.3
Improved semi-GAN(Kumar et al., 2017) 4.87 ±1.6 4.39 ± 1.5
ALI (Dumoulin et al., 2017) 7.41 ± 0.65
Triple-GAN (Li et al., 2017) 5.77 ± 0.17
Bad GAN (Dai et al., 2017) 7.42 ± 0.65
Local GAN (Qi et al., 2018) 5.48 ± 0.29 4.73 ± 0.29
Improved GAN (ours) 6.13 ± 0.41 4.9 ± 0.10
Manifold regularization (ours) 5.67 ± 0.11 4.63 ± 0.11

4.3 INTERACTION OF OUR REGULARIZER WITH THE GENERATOR

In the semi-supervised GAN framework, applying manifold regularization to the discriminator has
the potential to affect the generator through the adversarial training procedure. We explored the
effects of our regularization on the generator by evaluating the quality of images generated using
the Inception (Salimans et al., 2016) and FID scores (Heusel et al., 2017) as shown in Table 4. We
observe that adding manifold regularization yields significant improvements in image quality across
both CIFAR-10 and SVHN datasets and with varying amounts of labeled data. Why might mani-
fold regularization help? Here we briefly discuss two possible explanations for this improvement –
gradient penalties and improved generator conditioning.

Gradient penalties: Our results are consistent with recent work suggesting that gradient penalties on
the discriminator may be used to stabilize GAN training (Gulrajani et al., 2017; Roth et al., 2017;
Mescheder et al., 2018b). Our regularization term is closely related to the proposed penalties in
(Mescheder et al., 2018b). In particular, the proposed R2 regularizer γ

2Ex∼Pg
[ ||∇Dx(x)||2] that

penalizes the gradient of the discriminator D with respect to the data space, over samples drawn
from the generator distribution Pg , is almost identical to our proposed regularizer, except that we
take gradients with respect to the generator’s latent variables z, and we do not square the norm.

Generator conditioning: Recent work suggests that the condition number of the Jacobian of the gen-
erator (generator conditioning) is causally related to GAN performance as measured by Inception
and FID scores in that well-conditioned generators perform better (Odena et al., 2018); we note that
a similar stochastic finite difference regularizer was used in this work to encourage the spectrum
of the generator Jacobian to lie in a specific range. If our manifold regularizer influenced gener-
ator conditioning, this could explain the improvements in GAN quality we observed. To test this
hypothesis, we computed the mean log condition number (MLCN) of the generator with and with-
out manifold regularization. Consistent with this hypothesis, we observed improved conditioning
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with regularization (MLCN: 7.97 with regularization, 8.45 without); in this experiment GANs were
trained with 1000 labeled training examples on the CIFAR-10.
Table 4: Comparison of Inception (Salimans et al., 2016) (higher is better) and FID scores (Heusel
et al., 2017) (lower is better). Results shown are from 3 runs using different random seeds.

CIFAR-10 Inception Score
Unsupervised DCGANs
(Radford et al., 2016) 6.16 ± 0.07

Supervised DCGANs
(Radford et al., 2016) 6.58

Unsupervised GP-WGAN
(Gulrajani et al., 2017) 7.86 ± 0.07

Supervised GP-WGAN
(Gulrajani et al., 2017) 8.42 ± 0.1

Zero-centered GP (R2)
(Mescheder et al., 2018a) 6.20

1000 labels
Improved GAN 6.28 ± 0.01
+ Manifold 6.77 ± 0.11
+ Ambient 6.90 ± 0.01
2000 labels
Improved GAN 6.24 ± 0.10
+ Manifold 6.69 ± 0.05
+ Ambient 6.80 ± 0.20
4000 labels
Improved GAN 6.24 ± 0.13
+ Manifold 6.63 ± 0.09
+ Ambient 6.87 ± 0.10

CIFAR-10 FID score
1000 labels
Improved GAN 38.59 ± 0.18
+ Manifold 32.03 ± 0.44
+ Ambient 27.58 ± 0.69
2000 labels
Improved GAN 39.18 ± 0.62
+ Manifold 33.09 ± 0.65
+ Ambient 29.09 ± 0.12
4000 labels
Improved GAN 39.23
+ Manifold 33.84 ± 1.08
+ Ambient 29.03 ± 0.11

SVHN
1000 labels
Improved GAN 86 ± 12.98
+ Manifold 47.03 ± 26.99
500 labels
Improved GAN 85.49 ± 11.73
+ Manifold 38.65 ± 7.33

4.4 INCORPORATING MANIFOLD REGULARIZATION INTO CONVOLUTIONAL NEURAL NETS

We also explored the potential for our manifold regularization framework to improve performance
of classifiers outside the semi-supervised GAN framework. We performed a series of experiments
where we first trained a GAN to learn the marginal distribution of the data PX and the data manifold
M, and subsequently used the trained GAN to regularize a separate neural network classifier. In this
setup, we minimize the following loss where V is the cross entropy loss on the labeled examples:

L =
1

n

∑
n

V (x(i), y(i), f) + γmΩ(f).

Here unlabeled examples are implicitly used to regularize the classifier f since they are used to train
the GAN. This “decoupled” setting enables us to understand how the quality of the generator used
to approximate the manifold regularizer affects classification accuracy as there is no interaction
between the generator and the classifier being regularized.

We first verified that our method works on synthetic 2D datasets when the manifold is known exactly
(Figure A2) and also when a GAN is used to learn both the data manifold and the data distribution
on this manifold (Figure A3). In these experiments, we penalized a neural network classifier with
our manifold regularizer as approximated with a consensus GAN (Mescheder et al., 2017). The
classifier we used consists of 6 fully-connected layers with 384 neurons each. We observed that
perfect classification could be achieved with only one labeled example per class even when the
GAN does not perfectly learn the data distribution or manifold.

We then evaluated our manifold regularization method on a real image dataset (CIFAR-10), using
a standard DCGAN to approximate the manifold regularizer and a 13 layer CNN as the classifier
(see the Appendix for more details). We observe that manifold regularization is able to reduce
classification error by 2-3% over the purely supervised baseline when different amounts of labeled
data are used (Table 5 bottom; first two rows).

4.5 EFFECT OF GAN QUALITY

To quantify the importance of the first step of manifold learning, we also compared the performance
of classifiers when regularized using GANs of differing quality (as assessed by the quality of gen-
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erated images). We compared the following three generators: 1) a DCGAN which produces decent
looking images (inception score of 6.68 and FID of 32.32 on CIFAR-10), 2) a DCGAN with a much
lower inception score (inception score of 3.57 on CIFAR-10), and 3) a noise image generator where
pixels are generated independently from uniform distributions in the range [0, 255].

Table 5: Error rate on 4 runs of a CNN with manifold regularization using a separate GAN (DC-
GAN). Results shown are obtained without data augmentation. Our models were not trained with
ZCA whitening but results from other methods include ZCA whitening.

1000 labels (2%) 2000 labels (4%) 4000 labels (8%)
CIFAR-10 50000 images 50000 images 50000 images
Supervised (Tarvainen & Valpola, 2017) 48.38 ± 1.07 36.07 ± 0.90 24.47 ± 0.50
Π model (Laine & Aila, 2017) 32.18±1.33 23.92±1.03 16.55 ± 0.29
Mean Teacher (Tarvainen & Valpola, 2017) 30.62 ± 1.13 23.14 ± 0.46 17.74 ± 0.30
Supervised (ours) 41.65 ± 3.12 32.46 ± 0.52 25.01 ± 1.29
+ manifold (IS: 6.68) 38.76 ± 1.81 29.44 ± 0.45 23.5 ± 1.20
+ manifold (IS: 3.57) 39.14 ± 1.46 32.84 ± 2.13 24.87 ± 0.73
+ manifold (noise) 66.99 ± 5.23 72.21 ± 4.87 67.79 ± 4.30

We observe that using GANs with better generators for manifold regularization resulted in lower
classification errors (Table 5; last 3 rows). Our results also suggest that even GANs that generate
lower quality images but nonetheless have captured some aspects of the image manifold are able
to provide some performance benefit when used for manifold regularization. As a negative control,
we observe that performance degrades relative to the supervised baseline when we compute the
regularizer using randomly generated images.

4.6 UNDERSTANDING OUR MANIFOLD REGULARIZATION APPROXIMATION METHOD

Finally, we attempt to provide some intuition of how our manifold regularization approximation
method works. Our method promotes classifier invariance between generated samples g(z) and their
corresponding perturbations g(z) + εr̄ obtained by perturbing their latent code. In other words, the
regularizer promotes invariance of the classifier specifically along directions on the data manifold.
We show in Figure A8 some examples of generated samples and their corresponding perturbations.
We see that even if some features such as the background color may change, there exists a global
class consistency between the images as ε is varied. Hence, enforcing invariance in predictions
along these directions will result in correct classifications provided ε is not too large (which would
result in larger distortions and unrecognizable images). An intuitive explanation is that manifold
regularization performs label propagation across “semantically similar” images by minimizing the
manifold consistency cost Ω(f), so that an image of a red car gets the same label as an orange car.

5 CONCLUSION

GANs are powerful generative models that are able to model the distribution and manifold over
natural images. We leverage these properties to perform manifold regularization by approximating
a variant of the Laplacian norm using a Monte Carlo approximation that is easily computed with
the GAN. We show that our regularization strategy consistently improves classification performance
using unlabeled data on the CIFAR-10 and SVHN benchmarks, on several neural network architec-
tures, and with varying amounts of labeled data. In particular, when incorporated into the feature-
matching GAN of (Salimans et al., 2016), we achieve state-of-the-art results for semi-supervised
image classification when few labels are used with a method that is significantly easier to implement
than competing methods. We explored the interaction between our regularization and the generator
in this framework and reveal a connection with gradient penalties for stabilizing GAN training. Us-
ing an experimental setup where we decoupled the GAN used for estimating the regularizer and the
classifier, we further observed a positive correlation between generator image quality and prediction
accuracy. Our work uses GANs in a novel way for semi-supervised classification, and we expect
that our approach will be applicable to semi-supervised regression (Belkin & Niyogi, 2004; Lafferty
& Wasserman, 2007; Moscovich et al., 2017) as well as unsupervised learning (Belkin et al., 2006).
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APPENDICES

A ADDITIONAL RESULTS ON CIFAR-10

Comparison of the finite difference methods: We provide in this section additional results for
the semi-supervised learning experiments with the semi-supervised GAN model. We compare the
two different manifold regularization methods: the normalized and unnormalized stochastic finite
difference. We observe that the normalization provides an additional performance boost that grows
as the number of labeled examples is reduced (Table A1).

VAT experimental details: We used the original VAT implementation made available online by the
authors. We kept the same hyperparameters that the authors used for their experiments with 4000
labels.

Figure A1: Results including data augmentation (4x4 random translations and random horizontal
flips similar to previous works).

Table A1: Error rate on CIFAR-10 averaged over 4 runs with different random seeds. Results were
obtained without data augmentation.

1000 labels (2%) 2000 labels (4%) 4000 labels (8%)
CIFAR-10 50000 images 50000 images 50000 images
Π model 32.18±1.33 23.92±1.03 16.55 ± 0.29
Mean Teacher 30.62 ±1.13 23.14 ± 0.46 17.74 ± 0.30
VAT (large) 22.18* 18.32* 14.18
VAT+EntMin (large) 20.52* 15.52* 13.15
Π+SNTG 13.62±0.17
VAT+Ent+SNTG 12.49±0.36
Improved GAN 21.83 ± 2.01 19.61 ± 2.09 18.63 ± 2.32
Improved GAN + SNTG 14.93
Improved Semi-GAN 19.52 ±1.5 16.20 ± 1.6
ALI 19.98 ± 0.89 19.09 ± 0.44 17.99 ± 1.62
Bad GAN 14.41 ± 0.30
Local GAN 17.44 ± 0.25 14.23 ± 0.27
Improved GAN (ours) 17.50 ± 0.34 16.80 ± 0.07 15.5 ± 0.35
Ambient (ours) 16.98 ± 0.36 15.99 ± 0.14 14.75 ± 0.37
Manifold reg. unnormalized (ours) 18.09 15.8 14.40 ± 0.21
Manifold (ours) 16.37 ± 0.42 15.25 ± 0.35 14.34 ± 0.17

B 2D DECOUPLED EXPERIMENTS

Known manifold: In Figure A2 we show an example of decoupled training with a perfectly
known manifold. We can compute the tangent to each data point (using its polar coordinates:
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θ = arctan( yx )). Instead of the finite difference method, we can plug in the exact tangent direc-
tion in our regularizer. As shown in Figure A2 the classifier achieves perfect classification thanks to
the tangential directions incorporated to the model.

Unknown manifold: In Figure A3 the distribution of the data is unknown. A GAN makes use of
the unlabeled examples to learn the data distribution. The data manifold modeled by the GAN is
used with by regularizer. It effectively improves generalization power of the model. As shown in
Figure A3, all the models achieves perfect classification with only one labeled example per class.
An example in the case of a noisy dataset is also given in Figure A11.

Figure A2: Manifold regularization with known tangent directions on a synthetic dataset. Left:
Semi-supervised classification of the disjoint manifold. Middle: Magnitude of the regularization
term for a batch of generated samples. Darker fill color reflects larger magnitude. Generated data-
points near the decision boundary are highly penalized. Right: Known tangent directions.

Figure A3: Behavior of manifold regularization with a separate classifier on toy examples. Left:
Classification boundaries of trained classifier. Labeled examples are shown as points, unlabeled
examples were drawn from distributions over the curves shown. The classifier achieves perfect ac-
curacy on the two datasets. Middle: Magnitude of the regularization term for a batch of generated
samples. Darker fill color reflects larger magnitude. Generated data-points near the decision bound-
ary are highly penalized. Right: Direction of invariance promoted by our norm. The trained GANs
are able to approximate the data distribution and manifold gradients. In this example γ = 6 and ε =
0.15.

C GENERATOR CONDITIONNING

Log condition number (MLCN): Following Odena et al. (2018), G defines a mapping from a low
dimensional space Z ∈ Rnz to the image space X ∈ Rnx , G : Z −→ X . For any z ∈ Z we
can define the Jacobian matrix Jz ∈ Rnz×nx . We can write the metric tensor Mz = JTz .Jz . The
condition number of the generator is defined for Mz as λmin

λmax
. Large eigenvalues of M correspond

to the direction in Z which result in high changes in G(z). A generator with a low mean condition
number, should provide smooth changes from Z space to X space.
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CIFAR10 Mean log condition number
Improved GAN 8.48
Manifold reg (unnormalized) 7.78
Manifold reg (normalized) 8.03

Table A2: Log condition number of the generator taken at the end of the training. The models are
trained with 1000 labels

Figure A4: GANs trained on a disjoint manifold. Visualization of the non continuous mapping.

We computed the MLCN by first computing the Jacobian for a set of random samples in the Z space
and then we extracted the eigenvalues of the resulted tensors by doing SVD. We report in Table A2
the results of our analysis concerning the conditioning of the generators. It shows that the manifold
regularization has a positive effect on the conditioning of the generator.

D DISJOINT MANIFOLD LEARNING

We provide an example of two disjoint manifold learnt by GANs in Figure A4. The latent space is
a 2D Gaussian vector. This example reveals the issue with generative latent variable models: such
models may place points from disjoint manifolds in the data space nearby in the latent space (see
left plot).

E GENERATED IMAGES

We provide in Figure A6 samples of generated images of the trained generator at the end of the
training with and without regularization. Mode collapse is visible for the Improved GAN images
with no regularization. While both ambient and manifold regularizations seem to increase images
quality.

(a) (b) (c)

Figure A5: Generated images from the coupled experiments trained on CIFAR-10. (a) Improved
GAN (b) Ambient regularization (c) Manifold regularization. Mode collapse is visible for the Im-
proved GAN images with no regularization.

13



Under review as a conference paper at ICLR 2019

(a) (b) (c)

Figure A6: Generated images from the coupled experiments trained on SVHN. (a) Improved GAN
(b) Ambient regularization (c) Manifold regularization. Mode collapse is visible for the Improved
GAN images with no regularization.

Figure A7: Generated images for decoupled experiments

F TANGENT IMAGES

We show samples from the decoupled generator trained on the unlabeled examples on CIFAR10, in
Figure A7. The model has an inception score of 6.68 and a FID of 32.32

In this section, for a better understanding of our method, we provide examples of tangent images,
approximated by our trained GAN. We shows the influence of the different hyperparameters η, ε in
Figure A9 and A8 on the visual aspect of the images.

Figure A8: Effect of hyperparameter ε for approximating manifold regularization. Generated images
with varying perturbations as per the gradient approximation (g(z) + εr̄) are shown for η = 1. We
used (ε = 20, η = 1) in our experiments.
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Figure A9: Effect of hyperparameter η for approximating manifold regularization. Moving η in the
range [10−4, 10−3, 10−2, 10−1, 1, 10] with ε = 20 fixed

Figure A10: Unsupervised learning of the two moon dataset. No labels are used for the training. The
objective function is made of the Laplacian norm, a l2 norm and the entropy of the output prediction
Ω(f) = γL ‖f‖L + γK ‖f‖2K − γhH(f). We added the entropy to avoid degenerated solutions. In
this example ε = 0.15 , γ = 3 ,γK = 1 , γh = 0.1

G UNSUPERVISED LEARNING OF SIMPLE MANIFOLDS BY MINIMIZING THE
LAPLACIAN NORM

Similarly to Belkin et al. (2006) we show that this is possible to go even further with the mani-
fold regularizer. Under certain conditions, we noticed that it was possible to cluster without any
supervision (Figure A10).

H SEMI SUPERVISED LEARNING ON A NOISY DATASET

Finally, Figure A11 proves the robustness of the method to the noise. The model successfully
performs perfect classification with only one labeled datapoint per class on a noisy Two Moons
dataset.

I ARCHITECTURES & HYPER PARAMETERS

I.1 TOY EXAMPLE

For the GAN, we used an simple setup. The generator and discriminator both have 6 ReLU layers of
384 neurons. The latent space of the generator has a latent space of two dimensions. The generator
has two outputs, the discriminator has one. The networks are trained under RMSProp. The networks
were trained using consensus optimization, introduced in this method is very effective to stabilize
the training of the GAN and to successfully capture highly multi modal distributions. The neural
network we used for the classification has a similar architecture than the discriminator with 6 ReLU
layers of 384 neurons.
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Figure A11: Semi-supervised learning of the the noisy two moons dataset after
200,400,800,1000,1200,1400,1600,1800,2000 iterations. We chose for all our 2D experiments the
hyper parameters ε=0.15, γ = 6 ,η=0.01

Table A3: Generator architecture we used in our semi supervised GANs experiments

CIFAR-10 & SVHN
latent space 100 (uniform noise)

dense 4 × 4 × 512 batchnorm ReLU
5×5 conv.T stride=2 256 batchnorm ReLU
5×5 conv.T stride=2 128 batchnorm ReLU

5×5 conv.T stride=2 3 weightnorm tanh

I.2 SEMI-SUPERVISED GANS

For reproducibility sake, we provide in this section the exact architectures and hyper-parameters that
we used for our different models. We provide in Tables A3 and A4 the architectures of the coupled
models. The corresponding hyper-parameters are given in Table A5.

I.3 DECOUPLED CONVNET

We provide in this section the architectures and hyper-parameters of the models used for the de-
coupled experiments. In Table A6 we give the architecture of the GAN we trained to learn the dis-
tribution of the training examples. Table A7 describes the architecture of the convolutional neural
network we used to perform semi supervised classification. Finally, Table A8 shows hyperperame-
ters we found, with a grid-search on the validation set for the training of our models.
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Table A4: Discriminator architecture we used in our semi supervised GANs experiments taken from

conv-large CIFAR-10 conv-small SVHN
32×32×3 RGB images

dropout, p = 0.2
3×3 conv. weightnorm 96 lReLU 3×3 conv. weightnorm 64 lReLU
3×3 conv. weightnorm 96 lReLU 3×3 conv. weightnorm 64 lReLU

3×3 conv. weightnorm 96 lReLU stride=2 3×3 conv. weightnorm 64 lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 192 lReLU 3×3 conv. weightnorm 128 lReLU
3×3 conv. weightnorm 192 lReLU 3×3 conv. weightnorm 128 lReLU

3×3 conv. weightnorm 192 lReLU stride=2 3×3 conv. weightnorm 128 lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 192 lReLU pad=0 3×3 conv. weightnorm 128 lReLU pad=0
NiN weightnorm 192 lReLU NiN weightnorm 128 lReLU
NiN weightnorm 192 lReLU NiN weightnorm 128 lReLU

global-pool
dense weightnorm 10

Table A5: Hyperparameters of the models based on the validation set used to report our semi-
supervised GAN experiments

Hyperparameters CIFAR SVHN
γ 10−3 10−3

ε 20 20
η 1 1
Epoch 1400 400
Batch size 25 50
Optimizer ADAM(α = 3 ∗ 10−4, beta1 = 0.5)
Learning rate linearly decayed to 0 after 1200 epochs no decay
Leaky ReLU slope 0.2
Weight initialization Isotropic gaussian (µ = 0, σ = 0.05)
Biais initialization Constant(0)

Table A6: GAN architecture we used for our experiments

Discriminator Generator
32×32×3 RGB images latent space 100 (gaussian noise)

4×4 64 conv stride=2 batchnorm lReLU 4×4 1024 batchnorm conv.T pad=0 ReLU
4×4 256 conv stride=2 batchnorm lReLU 4×4 256 stride=2 batchnorm conv.T ReLU

4×4 1024 conv stride=2 batchnorm lReLU 4×4 64 stride=2 batchnorm conv.T ReLU
4×4 1 conv pad=0 4×4 3 stride=2 batchnorm conv.T tanh
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Table A7: The convolutional network architecture we used in our decoupled experiments.

CIFAR-10 & SVHN convnet
32 × 32 × 3

3 × 3, 96 conv. batchnorm lReLU
3 × 3, 96 conv. batchnorm lReLU
3 × 3, 96 conv. batchnorm lReLU

2 × 2 maxpool
dropout = 0.5

3 × 3, 128 conv. batchnorm lReLU
3 × 3, 128 conv. batchnorm lReLU
3 × 3, 128 conv. batchnorm lReLU

2 × 2 maxpool
dropout=0.5

3 × 3, 256 conv. batchnorm lReLU pad=0
1 × 1, 128 conv. batchnorm lReLU
1 × 1, 128 conv. batchnorm lReLU

average pooling
10 dense

Table A8: Hyperparameters of the models based on the validation set used to report our decoupled
convnet experiments

Hyperparameters CIFAR
γ 10−4

ε 20
η 1
Epoch 200
Batch size 100
Optimizer ADAM(α = 3 ∗ 10−4, beta1 = 0.9)
Learning rate no decay
Leaky ReLU slope 0.2
Weight initialization Isotropic gaussian (µ = 0, σ = 0.05)
Biais initialization Constant(0)
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