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ABSTRACT

Neural networks can converge faster with help from a smarter batch selection
strategy. In this regard, we propose Ada-Boundary, a novel adaptive-batch selec-
tion algorithm that constructs an effective mini-batch according to the learning
progress of the model. Our key idea is to present confusing samples what the
true label is. Thus, the samples near the current decision boundary are considered
as the most effective to expedite convergence. Taking advantage of our design,
Ada-Boundary maintains its dominance in various degrees of training difficulty.
We demonstrate the advantage of Ada-Boundary by extensive experiments using
two convolutional neural networks for three benchmark data sets. The experiment
results show that Ada-Boundary improves the training time by up to 31.7% com-
pared with the state-of-the-art strategy and by up to 33.5% compared with the
baseline strategy.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performance in many fields, especially, in
computer vision and natural language processing (Krizhevsky et al., 2012; Goodfellow et al., 2016).
Nevertheless, as the size of data grows very rapidly, the training step via stochastic gradient descent
(SGD) based on mini-batches suffers from extremely high computational cost, which is mainly
due to slow convergence. The common approaches for expediting convergence include some SGD
variants (Zeiler, 2012; Kingma and Ba, 2015) that maintain individual learning rates for parameters
and batch normalization (Ioffe and Szegedy, 2015) that stabilizes gradient variance.

Recently, in favor of the fact that not all samples have an equal impact on training, many studies
have attempted to design sampling schemes based on the sample importance (Wu et al., 2017; Fan
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(a) Difficulty distribution. (b) Hard sample oriented training.

Figure 1: Analysis on hard batch selection strategy: (a) shows the true sample distribution according
to the difficulty computed by Eq. (1) at the training accuracy of 60%. An easy data set (MNIST) does
not have “too hard” sample but “moderately hard” samples colored in gray, whereas a relatively hard
data set (CIFAR-10) has many “too hard” samples colored in black. (b) shows the result of SGD
on a hard batch. The moderately hard samples are informative to update a model, but the too hard
samples make the model overfit to themselves.
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et al., 2017; Katharopoulos and Fleuret, 2018). Curriculum learning (Bengio et al., 2009) inspired
by human’s learning is one of the representative methods to speed up the training step by gradually
increasing the difficulty level of training samples. In contrast, deep learning studies focus on giving
higher weights to harder samples during the entire training process. When the model requires a lot
of epochs for convergence, it is known to converge faster with the batches of hard samples rather
than randomly selected batches (Schaul et al., 2016; Loshchilov and Hutter, 2016; Gao and Jojic,
2017). There are various criteria for judging the hardness of a sample, e.g., the rank of the loss
computed from previous epochs (Loshchilov and Hutter, 2016).

Here, a natural question arises: Does the “hard” batch selection always speed up DNN training?
Our answer is partially yes: it is helpful only when training an easy data set. According to our in-
depth analysis, as demonstrated in Figure 1(a), the hardest samples in a hard data set (e.g., CIFAR-
10) were too hard to learn. They are highly likely to make the decision boundary bias towards
themselves, as shown in Figure 1(b). On the other hand, in an easy data set (e.g., MNIST), the
hardest samples, though they are just moderately hard, provide useful information for training. In
practice, it was reported that hard batch selection succeeded to speed up only when training the
easy MNIST data set (Loshchilov and Hutter, 2016; Gao and Jojic, 2017), and our experiments in
Section 4.4 also confirmed the previous findings. This limitation calls for a new sampling scheme
that supports both easy and hard data sets.

In this paper, we propose a novel adaptive batch selection strategy, called Ada-Boundary, that ac-
celerates training and is better generalized to hard data sets. As opposed to existing hard batch
selection, Ada-Boundary picks up the samples with the most appropriate difficulty, considering the
learning progress of the model. The samples near the current decision boundary are selected with
high probability, as shown in Figure 2(a). Intuitively speaking, the samples far from the decision
boundary are not that helpful since they are either too hard or too easy: those on the incorrect (or
correct) side are too hard (or easy). This is the reason why we regard the samples around the decision
boundary, which are moderately hard, as having the appropriate difficulty at the moment.
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Figure 2: Key idea of Ada-Boundary: (a) shows the sampling process of Ada-Boundary, (b) shows
the results of an SGD iteration on the boundary samples.

Overall, the key idea of Ada-Boundary is to use the distance of a sample to the decision boundary
for the hardness of the sample. The beauty of this design is not to require human intervention. The
current decision boundary should be directly influenced by the learning progress of the model. The
decision boundary of a DNN moves towards eliminating the incorrect samples as the training step
progresses, so the difficulty of the samples near the decision boundary gradually increases as the
model is learned. Then, the decision boundary keeps updated to identify the confusing samples in
the middle of SGD, as illustrated in Figure 2(b). This approach is able to accelerate the convergence
speed by providing the samples suited to the model at every SGD iteration, while it is less prone to
incur an overfitting issue.

We have conducted extensive experiments to demonstrate the superiority of Ada-Boundary. Two
popular convolutional neural network (CNN)1 models are trained using three benchmark data sets.
Compared to random batch selection, Ada-Boundary significantly reduces the execution time by
14.0–33.5%. At the same time, it provides a relative improvement of test error by 7.34–14.8% in the
final epoch. Moreover, compared to the state-of-the-art hard batch selection (Loshchilov and Hutter,

1The idea is applicable to the DNNs other than CNNs, and we leave this extension as the future work.
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2016), Ada-Boundary achieves the execution time smaller by 18.0% and the test error smaller by
13.7% in the CIFAR-10 data set.

2 Ada-Boundary COMPONENTS

The main challenge for Ada-Boundary is to evaluate how close a sample is to the decision bound-
ary. In this section, we introduce a novel distance measure and present a method of computing the
sampling probability based on the measure.

2.1 SAMPLE’S DISTANCE BASED ON SOFTMAX DISTRIBUTION

To evaluate the sample’s distance to the decision boundary, we note that the softmax distribution,
which is the output of the softmax layer in neural networks, clearly distinguishes how confidently
the learner predicts and whether the prediction is right or wrong, as demonstrated in Figure 3.
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(a) Strongly correct. (b) Weakly correct. (c) Weakly incorrect. (d) Strongly incorrect.

Figure 3: Classification of CIFAR-10 samples using the softmax distribution obtained from
WideResNet 16-8 when training accuracy is 90%. If the prediction probability of the true label
is the highest, the prediction is correct; otherwise, incorrect. If the highest probability dominates the
distribution, the model’s confidence is strong; otherwise, weak.

Let h(y|xi;θ
t) be the softmax distribution of a given sample xi over y ∈ {1, 2, . . . , k} labels, where

θt is the parameter of a neural network at time t. Then, the distance from a sample xi with the true
label yi to the decision boundary of the neural network with θt is defined by the directional distance
function in Eq. (1). More specifically, the function consists of two terms related to the direction and
magnitude of the distance, determined by the model’s correctness and confidence, respectively. The
correctness is determined by verifying whether the label with the highest probability matches the
true label yi, and the confidence is computed by the standard deviation of the softmax distribution.
Intuitively, the standard deviation is a nice indicator of the confidence because the value gets closer
to zero when the learner confuses.

dist(xi, yi;θ
t) =

correctness︷ ︸︸ ︷
sign(xi, yi) ·

confidence︷ ︸︸ ︷
std(h(y|xi;θ

t))

sign(xi, yi) =

{
+1, argmaxy∈{1,2,...,k}h(y|xi;θ

t) = yi
−1, otherwise

(1)

One might argue that the cross-entropy loss, H(p, q) = −p(xi) log(q(xi)) where p(xi) and q(xi)
are the true and softmax distributions for xi, can be adopted for the distance function. However,
because p(xi) is formulated as a one-hot true label vector, the cross-entropy loss cannot capture the
prediction probability for false labels, which is an important factor of confusing samples.

Another advantage is that our distance function is bounded as opposed to the loss. For k labels, the

maximum value of std(h(y|xi;θ
t)) is k−1

√
(k − 1) when h(m|xi;θ

t) = 1 and ∀l �=mh(l|xi;θ
t) =

0. Thus, dist(xi, yi;θ
t) is bounded as in Eq. (2).
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− k−1
√
k − 1 ≤ dist(xi, yi;θ

t) ≤ k−1
√
k − 1 (2)

2.2 SAMPLING PROBABILITY BASED ON QUANTIZATION INDEX

The rank-based approach introduced by Loshchilov and Hutter (2016) is a common way to make the
sampling probability of being selected for the next mini-batch. This approach sorts the samples by a
certain importance measure in descending order, and exponentially decays the sampling probability
of a given sample according to its rank. Let N denote the total number of samples. Then, each r-th
ranked sample is selected with the probability p(r) which drops by a factor of exp (log(se)/N).
Here, se is the selection pressure parameter that affects the probability gap between the most and
the least important samples. When normalized to sum up to 1.0, the probability of the r-th ranked
sample’s being selected is defined by Eq. (3).

p(r) =
1/ exp (log(se)/N)r∑N
j=1 1/ exp (log(se)/N)j

(3)

In the existing rank-based approach, the rank of a sample is determined by |dist(xi, yi;θ
t)| in as-

cending order, because it is inversely proportional to the sample importance. However, if the mass
of the true sample distribution is skewed to one side (e.g., easy side) as shown in Figure 4, the
mini-batch samples are selected with high probability from the skewed side rather than around the
decision boundary where |dist(xi, yi;θ

t)| is very small. This problem was attributed to uncondi-
tionally fixed probability to a given rank. In other words, the samples with similar ranks are selected
with similar probabilities regardless of the magnitude of the distance values.
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Figure 4: Sample distribution according to the normalized dist(xi, yi;θ
t) at the training accuracy

of 80%, when training LeNet-5 (se = 100) with the Fashion-MNIST data set. The distributions of
mini-batch samples selected by the rank-based and quantization-based approaches, respectively, are
plotted together with the true sample distribution.

To incorporate the impact of the distance into batch selection, we adopt the quantization method
(Gray and Neuhoff, 1998; Chen and Wornell, 2001) and use the quantization index q instead of the
rank r. Let Δ be the quantization step size and d be the output of the function dist(xi, yi;θ

t) of a
given sample xi. Then, the index q is obtained by the quantizer Q(d) as in Eq. (4). The quantization
index gets larger as a sample moves away from the decision boundary. In addition, the difference
between two indexes reflects the difference in the actual distances.

q = Q(d), Q(d) = �|d|/Δ� (4)

In Eq. (4), we set Δ to be k−1
√
k − 1/N such that the index q is bounded to N (the total number

of samples) by Eq. (2). The sampling probability of a given sample xi with the true label yi is
defined as Eq. (5). As shown in Figure 4, our quantization-based method provides a well-balanced
distribution, even if the true sample distribution is skewed.

p(xi, yi) =
1/ exp (log(se)/N)Q(dist(xi,yi;θ

t))∑N
j=1 1/ exp (log(se)/N)Q(dist(xj ,yj ;θt))

(5)
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3 Ada-Boundary ALGORITHM

3.1 MAIN PROPOSED ALGORITHM

Algorithm 1 describes the overall procedure of Ada-Boundary. The input to the algorithm consists
of the samples of size N (i.e., training data set), the mini-batch size b, the selection pressure se,
and the threshold γ used to decide the warm-up period. In the early stages of training, since the
quantization index for each sample is not confirmed yet, the algorithm requires the warm-up period
during γ epochs. Randomly selected mini-batch samples are used to warm-up (Lines 6–7), and their
quantization indexes are updated (Lines 11–16). After the warm-up epochs, the algorithm computes
the sampling probability of each sample by Eq. (5) and selects mini-batch samples based on the
probability (Lines 8–10). Then, the quantization indexes are updated in the same way (Lines 11–
16). Here, we compute the indexes using the model with θt+1 after every SGD step rather than
every epoch, in order to reflect the latest state of the model; besides, we asynchronously update
the indexes of the samples only included in the mini-batch, to avoid the forward propagation of the
entire samples which induces a high computational cost.

Algorithm 1 Ada-Boundary Algorithm

INPUT: N samples, numEpoch, b: mini-batch size, se: selection pressure, γ: warm-up period
1: t ← 1;
2: θt ← Initialize the model parameter;
3: q dict ← {}; /* Dictionary for quantization indexes */
4: for i = 1 to numEpoch do
5: for j = 1 to N/b do
6: if i ≤ γ then /* Warm-up */
7: {(x1, y1), . . . , (xb, yb)} ← Randomly select next mini-batch samples;
8: else /* Adaptive batch selection */
9: prob table ← Compute Probability(q dict, se); /* By Eq. (5) */

10: {(x1, y1), . . . , (xb, yb)} ← Select next mini-batch samples based on prob table;
11: loss ← Get Loss({(x1, y1), . . . , (xb, yb)},θt); /* Forward 1 */
12: θt+1 ← SGD Step(loss,θt); /* Backward */
13: /* Asynchronous update */
14: {h(y|x1;θ

t+1), ..., h(y|xb;θ
t+1)}←Get Softmax({x1, ..., xb},θt+1); /* Forward 2 */

15: for m = 1 to b do
16: q dict[xm] = Q(dist(xm, ym;θt+1)); /* Compute quantization indexes by Eq. (4) */
17: t ← t+ 1;

3.2 VARIANTS OF Ada-Boundary FOR COMPARISON
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Figure 5: The distributions of mini-batch samples selected by the three variants in the same config-
uration as Figure 4.

For a more sophisticated analysis of sampling strategies, we modify a few lines of Algorithm 1 to
present three heuristic sampling strategies, which are detailed in Appendix A. (i) Ada-Easy is de-
signed to show the effect of easy samples on training, so it focuses on the samples far from the
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decision boundary to the positive direction. (ii) Ada-Hard is similar to the existing hard batch strat-
egy (Loshchilov and Hutter, 2016), but it uses our distance function instead of the loss. That is,
Ada-Hard focuses on the samples far from the decision boundary to the negative direction, which
is the opposite of Ada-Easy. (iii) Ada-Uniform is designed to select the samples for a wide range
of difficulty, so it samples uniformly over the distance range regardless of the sample distribution.
Figure 5 shows the distributions of mini-batch samples drawn by these three variants. The distribu-
tion of Ada-Easy is skewed to the easy side, that of Ada-Hard is skewed to the hard side, and that of
Ada-Uniform tends to be uniform.

To avoid additional inference steps of Ada-Boundary (Line 14 in Algorithm 1), we present a history-
based variant, called Ada-Boundary(History). It updates the qunatization indexes using the previous
model with θt. See Appendix B for the detailed algorithm and experiment results.

4 EVALUATION

4.1 DATA SETS AND ARCHITECTURES

In this section, all the experiments were performed on three benchmark data sets: MNIST2 of hand-
written digits (LeCun, 1998) with 60,000 training and 10,000 testing images; Fashion-MNIST3 of
various clothing (Xiao et al., 2017) with 60,000 training and 10,000 testing images; and CIFAR-
104 of a subset of 80 million categorical images (Krizhevsky et al., 2014) with 50,000 training and
10,000 testing images. We did not apply any data augmentation and pre-processing procedures.

A simple model LeNet-5 (LeCun et al., 2015) was used for two easy data sets, MNIST and Fasion-
MNIST. A complex model WideResNet-16-8 (Zagoruyko and Komodakis, 2016) was used for a
relatively difficult data set, CIFAR-10. Batch normalization (Ioffe and Szegedy, 2015) was applied
to both models. As for hyper-parameters, we used a learning rate of 0.01 and a batch size of 128; the
training epoch was set to be 50 for LeNet-5 and 70 for WideResNet-16-8, which is early stopping
to clearly show the difference in convergence speed. Regarding those specific to our algorithm, we
set the selection pressure se to be 100, which is the best value found from se = {10, 100, 1000} on
the three data sets, and set the warm-up threshold γ to be 10. Technically, a small γ was enough
to warm-up, but to reduce the performance variance caused by randomly initialized parameters, we
used the larger γ and shared model parameters for all strategies during the warm-up period.

Due to the lack of space, the experimental results using DenseNet (L = 25, k = 12) (Huang
et al., 2017) on two hard data sets, CIFAR-100 4 and Tiny-ImageNet 5, are discussed in Appendix C
together with the impact of the selection pressure se.

4.2 ALGORITHMS

We compared Ada-Boundary with not only random batch selection but also four different adaptive
batch selections. Random batch selection selects the next batch uniformly at random from the entire
data set. One of four adaptive selections is the state-of-the-art strategy that selects hard samples
based on the loss-rank, which is called online batch selection (Loshchilov and Hutter, 2016), and the
remainders, Ada-Easy, Ada-Hard, and Ada-Uniform, are the three variants introduced in Section 3.2.
All the algorithms were implemented using TensorFlow6 and executed using a single NVIDIA Tesla
V100 GPU on DGX-1. For reproducibility, we provide the source code at https://github.
com/anonymized.

4.3 EVALUATION METRICS

To measure the performance gain over the baseline (random batch selection) as well as the state-of-
art (online batch selection), we used the following three metrics. We repeated every test five times
for robustness and reported the average. The wall-clock training time is discussed in Appendix D.

2http://yann.lecun.com/exdb/mnist
3https://github.com/zalandoresearch/fashion-mnist
4https://www.cs.toronto.edu/˜kriz/cifar.html
5https://tiny-imagenet.herokuapp.com/
6https://www.tensorflow.org/versions/r1.8/
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(a) Training loss and test error of the MNIST data set.

(b) Training loss and test error of the Fashion-MNIST data set.

(c) Training loss and test error of the CIFAR-10 data set.

Figure 6: Convergence curves of five batch selection strategies with SGD on three data sets.

(i) Gainerr: Reduction in test error at the final epoch (%). In Figure 6(a), at the 50th epoch,
the test error of random batch selection was 1.014 · 10−2, and that of Ada-Boundary was
8.643 · 10−3. Thus, Gainerr was (1.014 · 10−2 − 8.643 · 10−3)/1.014 · 10−2 × 100 = 14.8%.

(ii) Gainepo: Reduction in number of epochs to obtain the same error (%). In Figure 6(a), the test

error of 1.014 · 102 achieved at the 50th epoch by random batch selection can be achieved only
at the 29th epoch by Ada-Boundary. Thus, Gainerr was (50− 29)/50× 100 = 42.0%.

(iii) Gaintim: Reduction in running time to obtain the same error (%). In Figure 6(a), similar to
Gainepo, Gaintim was (205.0− 136.3)/205.0× 100 = 33.5%.

4.4 CONVERGENCE ANALYSIS

Figure 6 shows the convergence curves of training loss and test error for five batch selection strate-
gies on three data sets, when we used the SGD optimizer for training. In order to improve legibility,
only the curves for the baseline and proposed strategies are dark colored; thus, the three metrics
in the figure were calculated against the baseline strategy, random batch selection. Owing to the
lack of space, we discuss the results with the momentum optimizer in Appendix E. Ada-Easy was
excluded in Figure 6 because its convergence speed was much slower than other strategies. That is,
easy samples did not contribute to expedite training. We conduct convergence analysis of the five
batch selection strategies for the same number of epochs, as follows:
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• MNIST (Figure 6(a)): All adaptive batch selections achieved faster convergence speed compared
with random batch selection. Ada-Boundary, Ada-Hard, and online batch selection showed sim-
ilar performance. Ada-Uniform was the fastest at the beginning, but its training loss and test error
increased sharply in the middle of the training or testing procedures.

• Fashion-MNIST (Figure 6(b)): Ada-Boundary showed the fastest convergence speed in both
training loss and test error. In contrast, after warm-up epochs, the training loss of the other
adaptive batch selections increased temporarily, and their test error at the final epoch became
similar to that of random batch selection.

• CIFAR-10 (Figure 6(c)): Ada-Boundary and Ada-Hard showed the fastest convergence on train-
ing loss, but in test error, the convergence speed of Ada-Hard was much slower than that of
Ada-Boundary. This means that focusing on hard samples results in the overfitting to “too hard”
samples, which is indicated by a larger difference between the converged training loss (error) and
the converged test error. Also, the slow convergence speed of online batch selection in test error
is explained by the same reason.

In summary, in the easiest MNIST data set, all adaptive batch selections accelerated their conver-
gence speed compared with random batch selection. However, as the training difficulty (complexity)
increased from MNIST to Fashion-MNIST and further to CIFAR-10, only Ada-Boundary converged
significantly (by Gainerr) faster than random batch selection.

4.5 SUMMARY OF PERFORMANCE GAINS

We clarify the quantitative performance gains of Ada-Boundary over random batch and online batch
selections in Table 1. Ada-Boundary significantly outperforms both strategies, as already shown
in Figure 6. There is only one exception in MNIST, because online batch selection is known to
work well with an easy data set (Loshchilov and Hutter, 2016). The noticeable advantage of Ada-
Boundary is to reduce the training time significantly by up to around 30%, which is really important
for huge, complex data sets.

Table 1: Performance gains over random batch and online batch selections.

Comparison target Against random batch selection Against online batch selection
Metrics Gainerr Gainepo Gaintim Gainerr Gainepo Gaintim

MNIST 14.8% 42.0% 33.5% −2.08% 0.00% 0.00%
Fashion-MNIST 8.01% 40.0% 29.6% 10.2% 42.0% 31.7%
CIFAR-10 7.34% 24.3% 14.0% 13.7% 46.0% 18.0%

5 RELATED WORK

There have been numerous attempts to understand which samples contribute the most during train-
ing. Curriculum learning (Bengio et al., 2009), inspired by the perceived way that humans and
animals learn, first takes easy samples and then gradually increases the difficulty of samples in a
manual manner. Self-paced learning (Kumar et al., 2010) uses the prediction error to determine the
easiness of samples in order to alleviate the limitation of curriculum learning. They regard that the
importance is determined by how easy the samples are. However, easiness is not sufficient to decide
when a sample should be introduced to a learner (Gao and Jojic, 2017).

Recently, Tsvetkov et al. (2016) used Bayesian optimization to optimize a curriculum for training
dense, distributed word representations. Sachan and Xing (2016) emphasized that the right cur-
riculum not only has to arrange data samples in the order of difficulty, but also introduces a small
number of samples that are dissimilar to the previously seen samples. Shrivastava et al. (2016)
proposed a hard-example mining algorithm to eliminate several heuristics and hyper-parameters
commonly used to select hard examples. However, these algorithms are designed to support only a
designated task, such as natural language processing or region-based object detection. The neural
data filter proposed by Fan et al. (2017) is orthogonal to our work because it aims at filtering the
redundant samples from streaming data. As mentioned earlier, Ada-Boundary in general follows the
philosophy of curriculum learning.

8



Under review as a conference paper at ICLR 2019

More closely related to the adaptive batch selection, Loshchilov and Hutter (2016) keep the history
of losses for previously seen samples, and compute the sampling probability based on the loss rank.
The sample probability to be selected for the next mini-batch is exponentially decayed with its rank.
This allows the samples with low ranks (i.e., high losses) are considered more frequently for the next
mini-batch. Gao and Jojic (2017)’s work is similar to Loshchilov and Hutter (2016)’s work except
that gradient norms are used instead of losses to compute the probability. In contrast to curriculum
learning, both methods focus on only hard samples for training. Also, they ignore the difference in
actual losses or gradient norms by transforming the values to ranks. We have empirically verified that
Ada-Boundary outperforms online batch selection (Loshchilov and Hutter, 2016), which is regarded
as the state-of-the-art of this category. Similar to our work, Chang et al. (2017) claimed that the
uncertain samples should be preferred during training, but their main contribution lies on training
more accurate and robust model by choosing samples with high prediction variances. In contrast,
our main contribution lies on training faster using confusing samples near the decision boundary.

For the completeness of the survey, we mention the work to accelerate the optimization process
of conventional algorithms based on importance sampling. Needell et al. (2014) re-weight the ob-
tained gradients by the inverses of their sampling probabilities to reduce the variance. Schmidt et al.
(2015) biased the sampling to the Lipschitz constant to quickly find the solution of a strongly-convex
optimization problem arising from the training of conditional random fields.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel adaptive batch selection algorithm, Ada-Boundary, that presents
the most appropriate samples according to the learning progress of the model. Toward this goal, we
defined the distance from a sample to the decision boundary and introduced a quantization method
for selecting the samples near the boundary with high probability. We performed extensive experi-
ments using two CNN models for three benchmark data sets. The results showed that Ada-Boundary
significantly accelerated the training process as well as was better generalized in hard data sets.
When training an easy data set, Ada-Boundary showed a fast convergence comparable to that of
the state-of-the-art algorithm; when training relatively hard data sets, only Ada-Boundary converged
significantly faster than random batch selection.

The most exciting benefit of Ada-Boundary is to save the time needed for the training of a DNN. It
becomes more important as the size and complexity of data becomes higher, and can be boosted with
recent advance of hardware technologies. Our immediate future work is to apply Ada-Boundary
to other types of DNNs such as the recurrent neural networks (RNN) (Mikolov et al., 2010) and
the long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), which have a neural
structure completely different from the CNN. In addition, we plan to investigate the relationship
between the power of a DNN and the improvement of Ada-Boundary.
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A IMPLEMENTATION OF THE THREE VARIANTS

For Ada-Easy which prefers easy samples to hard samples, q should be small for the sample located
deep in the positive direction. For Ada-Hard, q should be small for the sample located deep in the
negative direction. Thus, Ada-Easy and Ada-Hard can be implemented by modifying the quantizers

Q(d) in Line 16 of Algorithm 1. When we set Δ = k−1
√
k − 1/N to make the index q bound to

N , the quantizers of Ada-Easy and Ada-Hard are defined as Eqs. (6) and (7), respectively.

q = Q(d)

Q(d) =

{−�d/2Δ�+N/2 + 1, if d ≥ 0

−
d/2Δ�+N/2, otherwise

(6)

q = Q(d)

Q(d) =

{�d/2Δ�+N/2, if d ≥ 0


d/2Δ�+N/2 + 1, otherwise

(7)

Ada-Uniform can be implemented by using F
−1
(x) to compute the sampling probability in Line 9

of Algorithm 1, where F (x) is the empirical sample distribution according to the sample’s distance
to the decision boundary.

B HISTORY-BASED Ada-Boundary VARIANT

We present Ada-Boundary(History) that updates the quantization indexes based on the previous
model with θt instead of the latest model with θt+1. This is easily accomplished by replacing Lines
11–17 of Algorithm 1 with those of Algorithm 2. Ada-Boundary(History) reduces the time required
for additional inference steps that reflect the latest state of the model, which correspond to Lines
13–16 of Algorithm 1, at the expense of slight increase of test error.

Algorithm 2 Ada-Boundary(History)

INPUT: N samples, numEpoch, b: mini-batch size, se: selection pressure, γ: warm-up period
1: t ← 1;
2: θt ← Initialize the model parameter;
3: q dict ← {}; /* Dictionary for quantization indexes */
4: for i = 1 to numEpoch do
5: for j = 1 to N/b do
6: if i ≤ γ then /* Warm-up */
7: {(x1, y1), . . . , (xb, yb)} ← Randomly select next mini-batch samples;
8: else /* Adaptive batch selection */
9: prob table ← Compute Probability(q dict, se); /* By Eq. (5) */

10: {(x1, y1), . . . , (xb, yb)} ← Select next mini-batch samples based on prob table;
11: /* Forward and asynchronous update */
12: {h(y|x1;θ

t), ..., {h(y|xb;θ
t)}, loss ← Get Softmax&Loss({(x1, y1), ..., (xb, yb)},θt);

13: for m = 1 to b do
14: q dict[xm] = Q(dist(xm, ym;θt); /* Compute quantization indexes by Eq. (4) */
15: /* Backward */
16: θt+1 ← SGD Step(loss,θt);
17: t ← t+ 1;

Figure 7 and Figure 8 show the convergence curves of training loss and test error for Ada-
Boundary(History), when we used the SGD and momentum optimizers, respectively.
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(a) Training loss and test error of MNIST data set.

(b) Training loss and test error of Fashion-MNIST data set.

(c) Training loss and test error of CIFAR-10 data set.

Figure 7: Convergence curves of Ada-Boundary(History) with SGD on three data sets.
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(a) Training loss and test error of MNIST data set.

(b) Training loss and test error of Fashion-MNIST data set.

(c) Training loss and test error of CIFAR-10 data set.

Figure 8: Convergence curves of Ada-Boundary(History) with momentum on three data sets.
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(a) Training loss and test error of CIFAR-100 data set.

(b) Training loss and test error of Tiny-ImageNet data set.

Figure 9: Convergence curves of Ada-Boundary with varying se on two hard data sets.

C Ada-Boundary ON TWO HARD DATA SETS

As a practical paper, we include the experimental results on two more challenging data sets: CIFAR-
100 composed of 100 image classes with 50, 000 training and 10, 000 testing images; Tiny-ImageNet
composed of 200 image classes with 100, 000 training and 10, 000 testing images. All images in
Tiny-ImageNet were resized to 32× 32 images.

One of the state-of-the-art model DenseNet (L=25, k=12) (Huang et al., 2017) was used for two
hard data sets with momentum optimizer. Regarding algorithm parameters, we used a learning rate
of 0.1 and a batch size of 128; The training epoch and warm-up threshold γ were set to be 90 and
10, respectively. We repeated every test five times for robustness and reported the average.

C.1 IMPACT OF SELECTION PRESSURE se

The selection pressure se determines how strongly the boundary samples are selected. The greater
the se, the greater the sampling probability of the boundary sample, so more boundary samples
were chosen for the next mini-batch. On the other hand, the less se makes Ada-Boundary closer to
random batch selection.

Figure 9 shows the convergence curves of Ada-Boundary with varying se on two hard data sets. To
clearly analyze the impact of the selection pressure, we plotted the minimum of training loss and
test error with a given epochs. Overall, the convergence speed of training loss was accelerated as
the se increased from 2 to 16, but that of test error was faster only when the se was less than a
certain value. The convergence speed of test error was faster than random batch selection, when se
was less than or equal to 4 (CIFAR-100) and 2 (Tiny-ImageNet). Surprisingly, the overexposure to
the boundary samples using the large se incurred the overfitting issue in hard data sets, whereas the
large se = 100 worked well for our easy or relatively hard data sets as discussed in Section 4. That
is, the selection pressure se should be chosen more carefully considering the difficulty of the given
data set. We leave this challenge as our future work.
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C.2 PERFORMANCE ANALYSIS

Table 2 shows the performance gains of Ada-Boundary over random batch selection on two hard
data sets. We only quantify the gains of Ada-Boundary(se = 2) because its performance was the
best as shown in Figure 9. Ada-Boundary(se = 2) always outperforms random batch selection.
Especially, it reduces the training time significantly by up to around 20%.

Table 2: Performance gains of Ada-Boundary(se = 2) over random batch selection in Figure 9.

Comparison target Against random batch selection
Metrics Gainerr Gainepo Gaintim

CIFAR-100 1.99% 33.3% 21.4%
TINY-ImageNet 0.37% 31.1% 18.0%

Table 3 shows the wall-clock training time for the same number of parameter updates on two hard
data sets (Figure 9). Ada-Boundary(se = 2) with momentum was 15.2%–16.0% slower than random
batch selection. However, it reduced the running time by 18.0%–21.4% (by Gaintim) to obtain the
same test error of random batch selection.

Table 3: Wall-clock training time for Figure 9 (seconds).

Optimizer Momentum (Figure 9)
Data sets CIFAR-100 Tiny-ImageNet

Random batch 1917 3814
Ada-Boundary(se = 2) 2260 4542

D WALL-CLOCK TRAINING TIME

The procedures for recomputing sampling probabilities and updating quantization indexes make
Ada-Boundary slower than random batch selection. Table 4 shows the wall-clock training time
for the same number of parameter updates (i.e., the same number of epochs) with SGD (Figure
6) and momentum (Figure 10). Ada-Boundary with SGD was 12.8%–14.7% and 6.06%–12.2%
slower than random batch and online batch selections, respectively. Ada-Boundary with momen-
tum was 13.1%–14.7% and 6.67%–12.2% slower than random batch and online batch selections,
respectively. Although Ada-Boundary took longer for the same number of updates, Ada-Boundary
achieved significant reduction in running time by 7.96%–33.5% (by Gaintim) to obtain the same
test error of random batch selection due to the fast convergence.

Table 4: Wall-clock training time for Figure 6 and Figure 10 (seconds).

Optimizer SGD (Figure 6) Momentum (Figure 10)
Data sets MNIST Fashion-MNIST CIFAR-10 MNIST Fashion-MNIST CIFAR-10

Random batch 205 197 3347 199 192 3355
Online batch 218 217 3371 211 210 3388
Ada-Boundary 235 231 3838 231 225 3860

E EXPERIMENT RESULTS USING MOMENTUM OPTIMIZER

E.1 CONVERGENCE ANALYSIS

Figure 10 shows the convergence curves of training loss and test error for five batch selection strate-
gies on three data sets, when we used the momentum optimizer with setting the momentum to be
0.9. In the MNIST data set, we limited the number of epochs to be 30 because both training loss and
test error were fully converged after 30 epochs. We repeat the convergence analysis, as follows:
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• MNIST (Figure 10(a)): Except Ada-Uniform, all adaptive batch selections converged faster than
random batch selection. Online batch selection showed much faster convergence speed than
other adaptive batch selections in training loss, but converged similarly with the others in test
error owing to the overfitting to hard samples.

• Fashion-MNIST (Figure 10(b)): Ada-Boundary showed the fastest convergence speed in test
error, although it did not converge faster than online batch selection in training loss. In contrast,
online batch selection was the fastest in training loss, but its convergence in test error was slightly
slower than that of random batch selection. This emphasizes the need to consider the samples
with appropriate difficulty rather than hard samples. The convergence speeds of Ada-Hard and
Ada-Uniform in test error were slower than that of random batch selection.

• CIFAR-10 (Figure 10(c)): In both training loss and test error, Ada-Boundary and Ada-Hard
showed slightly faster convergence speed than random batch selection. On the other hand, online
batch selection converged slightly slower than random batch selection in both cases.

In summary, in the easiest MNIST data set, most of adaptive batch selections accelerated their
convergence speed compared with random batch selection. However, in Fashion-MNIST data set,
only Ada-Boundary converged faster than random batch selection. In a relatively difficult CIFAR-10
data set, Ada-Boundary and Ada-Hard showed comparable convergence speed and then converged
faster than random batch selection.

E.2 SUMMARY OF PERFORMANCE GAINS

We quantify the performance gains of Ada-Boundary over random batch and online batch selec-
tions in Table 5. Ada-Boundary always outperforms both strategies, as already shown in Figure 10.
Compared with Table 1, Gaintim over random batch selection tends to become smaller, whereas
Gaintim over online batch selection tends to become larger.

Table 5: Performance gains over two existing strategies in Figure 10.

Comparison target Against random batch selection Against online batch selection
Metrics Gainerr Gainepo Gaintim Gainerr Gainepo Gaintim

MNIST 5.58% 26.7% 14.9% 2.27% 13.0% 4.75%
Fashion-MNIST 2.24% 28.0% 15.6% 4.54% 46.0% 42.1%
CIFAR-10 3.43% 20.0% 7.96% 4.02% 28.0% 18.0%
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(a) Training loss and test error of MNIST data set.

(b) Training loss and test error of Fashion-MNIST data set.

(c) Training loss and test error of CIFAR-10 data set.

Figure 10: Convergence curves using the momentum optimizer for Figure 6.
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