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ABSTRACT

Recent findings indicate that over-parametrization, while crucial to the success of
deep learning, also introduces large amounts of redundancy. Tensor methods have
the potential to parametrize over-complete representations in a compact manner by
leveraging this redundancy. In this paper, we propose fully parametrizing Convo-
lutional Neural Networks (CNNs) with a single, low-rank tensor. Previous works
on network tensorization haved focused on parametrizing individual layers (con-
volutional or fully connected) only, and perform the tensorization layer-by-layer
disjointly. In contrast, we propose to jointly capture the full structure of a CNN
by parametrizing it with a single, high-order tensor, the modes of which represent
each of the architectural design parameters of the CNN (e.g. number of convolu-
tional blocks, depth, number of stacks, input features, etc). This parametrization
allows to regularize the whole network and drastically reduce the number of pa-
rameters by imposing a low-rank structure on that tensor. Further, our network is
end-to-end trainable from scratch, which has been shown to be challenging in prior
work. We study the case of networks with rich structure, namely Fully Convolu-
tional CNNs, which we propose to parametrize them with a single 8−dimensional
tensor. We show that our approach can achieve superior performance with small
compression rates, and attain high compression rates with negligible drop in ac-
curacy for the challenging task of human pose estimation.

1 INTRODUCTION

State-of-the-art performance is currently attained with Convolutional Neural Networks for a wide
range of challenging tasks including recognition (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; He et al., 2016), detection (Ren et al., 2015), semantic segmentation (Long et al., 2015;
He et al., 2017) and human pose estimation (Newell et al., 2016) outperforming prior works by
a large margin. There is evidence that a key feature behind the success of these methods is over-
parameterization which helps find good local minima (Du & Lee, 2018; Soltanolkotabi et al., 2018).
However, at the same time, over-parameterization leads to a great amount of redundancy, and from
a statistical perspective, it might hinder generalization because it excessively increases the number
of network parameters. Furthermore, models with excessive number of parameters have increased
storage and computation requirements rendering them problematic for deployment on devices with
limited resources. This paper focuses on a novel way of leveraging the redundancy in the parameters
of CNNs by tensorizating the whole network.

There is a significant amount of recent work on using tensors to reduce the redundancy and improve
the efficiency of CNNs; mostly focusing on reparametrizing individual layers. For example, Tai
et al. (2015); Kim et al. (2016) treat a convolutional layer as a 4D tensor and then computes a low-
rank decomposition of the 4D convolution kernel tensor into a sum of a small number of low rank
tensors. Similarly, Novikov et al. (2015) proposed tensorizing the fully-connected layers. The bulk
of these methods focus on tensorizing individual layers only, and perform the tensorization layer-by-
layer disjointly, usally by applying tensor decomposition to the pretrained weights and fine-tuning to
compensate for performance loss. For example Tai et al. (2015) tensorize the second convolutional
layer of AlexNet Krizhevsky et al. (2012).

Our paper primarily differs from prior work by the use of a single tensor to parametrize the whole
CNN (as opposed to using different tensors to parametrize the individual layers). In particular, we
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propose to parametrize the network with a single high-order tensor each dimension of which rep-
resents a different architectural design parameter of the CNN. For the case of Fully Convolutional
Networks (FCNs) with an encoder-decoder structure considered herein (see Fig. 1, each dimension
of the 8−dimensional tensor represents a different architectural design parameter of the network
such as the number of (stacked) FCNs used, the depth of each network, the number of input and
output features for each convolutional block and the spatial dimensions of each of the convolutional
kernels. By modelling the whole CNN with a single tensor, our approach allows to learn correla-
tions between the different tensor dimensions and hence fully capturing the structure of the network.
Moreover, this parametrization allows to regularize the whole network and drastically reduce the
number of parameters by imposing a low-rank structure on that tensor. Owing to these properties,
our framework is much more general, and flexible compared to prior work offering increased accu-
racy and high compression rates. In summary the contributions of this work are:

• We are the first to propose using a single high-order tensor for whole network tensorization,
and applying it for capturing the rich structure of Fully Convolutional Networks. Our
approach allows for a wide spectrum of network decompositions and compression rates
which can be chosen and optimized for a particular application. Further, our network can
be trained end-to-end – not only by fine-tuning, by also from scratch, which has been shown
to be challenging in prior work.

• We show that, for a wide spectrum of compression rates (both high and low), our method
preserves high accuracy. Compared to prior work based on tensorizing individual convolu-
tional layers, our method consistently achieves higher accuracy, especially for the case of
high compression rates. In addition, we show that, for lower compression rates, our method
outperforms the original uncompressed network.

• We illustrate the favorable properties of our method by performing a large number of ex-
periments and ablation studies for the challenging computer vision task of human pose
estimation. The experiments sheds light on several interesting properties of our method
including the effect of varying the rank for each mode of the tensor, as well as the de-
composition method used. Further, we validate some of our conclusions by conducting
experiments for a different dense prediction task, namely facial part segmentation.

1.1 RELATED WORK

Tensor methods offer a natural extension of traditional algebraic methods to higher orders. For
instance, Tucker decomposition can be seen as a generalization of PCA to higher dimensions (Kolda
& Bader, 2009). Tensor decompositions have large reaching applications, including for learning a
wide range of probabilistic latent-variable models (Anandkumar et al., 2014). Tensor methods have
recently been applied to deep learning, for instance to provide a theoretical analysis of deep neural
nets (Cohen et al., 2015). New layers were also proposed, leveraging tensor methods. Kossaifi
et al. (2017) propose tensor contraction layers to reduce the dimensionality of activation tensors
while preserving their multilinear structure. Tensor regression layers (Kossaifi et al., 2018a) express
outputs through a low-rank multilinear mapping from a high-order activation tensor to an output
tensor of arbitrary order.

A lot of the existing work has been dedicated to leveraging tensor decompositions in order to re-
parametrizing existing layers, either to speed up computation or to reduce the number of parameters.
Separable convolutions, for instance, can be obtained from existing ones by applying CP decomposi-
tion to their kernel. The authors in Lebedev et al. (2014) propose such parametrization of individual
convolutional layers using CP decomposition with the goal of speeding them up. Specifically, each
of the 4D tensors parametrizing the convolutional layers of a pretrained network are decomposed
into a sum of rank–1 tensors using CP decomposition. The resulting factors are used to replace
each existing convolutions with a series of 4 convolutional layers with smaller kernels. The network
is then fine-tuned to restore the performance. Kim et al. (2016) propose a similar approach but
use Tucker decomposition instead of CP to decompose the convolutional layers of a pretrained net-
work, before fine-tuning to restore the performance. Specifically, Tucker decomposition is applied
to each convolutional kernel of a pretrained network, on two of the modes (input and output channel
modes). The resulting network is fine-tuned to compensate for the drop in performance induced by
the compression. Astrid & Lee (2017) also reparametrize the layers of deep convolutional neural
networks using CP decomposition, but optimize this using the tensor power method. The network is
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then iteratively fine-tuned to restore performance. Similarly, Tai et al. (2015) propose to use tensor
decomposition to remove redundancy in convolutional layers and express these as the composition
of two convolutional layers with less parameters. Each 2D filter is approximated by a sum of rank–1
matrices. Thanks to this restricted setting, a closed-form solution can be readily obtained with SVD.
This is done for each convolutional layer with a kernel of size larger than 1 × 1. Layers other than
convolutional can be also parametrized. For instance, Novikov et al. (2015) use the Tensor-Train
(TT) format to impose low-rank tensor structure on the weights of the fully-connected layers. Ten-
sorization of generative adversarial networks (Cao & Zhao, 2017) and sequence models (Yu et al.,
2017) have also been proposed.

Tensor decomposition has also been used for weight sharing between layers and multi-task learning.
Chen et al. (2017) proposes the so-called collective residual units (CRU), which are obtained by
stacking the convolutional kernels of several residual units sharing the same size along the last
mode (corresponding to the number of output channels) to obtain a 4thorder tensor f size (width
(= 3), height (= 3), input channels, L× output channels). Generalized block term decomposition
(shortly put, a sum of Tucker decompositions), is used to decompose the last two modes of the
resulting tensors along these dimensions. These CRUs are stacked to form the final network. The
sharing is done for 6 residual units only, and each of the CRUs is parametrized individually. Yang
& Hospedales (2016) leverage tensor decomposition for multi-task learning, to allow for weight
sharing between the fully-connected and convolutional layers of two or more deep neural networks.

However, to the best of our knowledge, our work is the first that proposes an end-to-end trainable
architecture, fully parametrized by a single, high order, low-rank tensor.

Human pose estimation. CNN–based methods have recently produced results of remarkable ac-
curacy for the task of human pose estimation, outperforming traditional methods by large margin
(Toshev & Szegedy, 2014; Tompson et al., 2014; Pfister et al., 2015; Bulat & Tzimiropoulos, 2016;
Newell et al., 2016; Wei et al., 2016). Arguably, one of the most widely used architectures for
this task is the stacked Hourglass (HG) network proposed by Newell et al. (2016). An HG is an
encoder-decoder network with skip connections between the encoder and the decoder, suitable for
making predictions at a pixel level in a fully convolutional manner. Newell et al. (2016) use a stack
of eight of these networks to achieve state-of-the-art performance on the MPII dataset (Andriluka
et al., 2014). In this work, we choose tensorizing the HG network primarily because of its rich
structure which makes it suitable to model it with a high-order tensor. We note that the aim of this
work is not to produce state-of-the-art results for the task of human pose estimation but to show the
benefits of modelling a state-of-the-art architecture with a single high-order tensor.

2 METHODOLOGY

In this section we first introduce some mathematical background in subsection 2.1, before introduc-
ing our method in subsection 2.2.

2.1 MATHEMATICAL BACKGROUND

Notation: We denote v, vectors (1storder tensors), M matrices (2ndorder tensors) and
X̃ tensors of order 3 or greater. We denote element (i0, i1, · · · , iN ) of a tensor as
X̃i0,i1,··· ,iN or X̃ (i0, i1, · · · , iN ). A colon is used to denote all elements of a mode e.g. the
mode-1 fibers of X̃ are denoted as X̃ (:, i2, i3, · · · , iN ). Id is the identity matrix. Finally, for any
i, j ∈ N, [i . . j] denotes the set of integers {i, i+ 1, · · · , j − 1, j}.

Mode-n unfolding of a tensor X̃ ∈ RI0×I1×···×IN , is a matrix X[n] ∈ RIn,IM , with M =
∏N

k=0,
k 6=n

Ik,

defined by the mapping from element (i0, i1, · · · , iN ) to (in, j), with j =
∑N

k=0,
k 6=n

ik×
∏N

m=k+1,
m 6=n

Im.

Tensor vectorization of a tensor X̃ ∈ RI0×I1×···×IN , is a vector vec(X̃ ) of size (I0 × · · · × IN )

defined by the mapping from element (i0, i1, · · · , iN ) of X̃ to element j of vec(X̃ ), with j =∑N
k=0 ik ×

∏N
m=k+1 Im.
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Figure 1: Overall network architecture. Each block in the fully convolutional network is a basic-
block module (blue insert), as introduced by He et al. (2016), containing 2 convolutional layers with
3×3 kernels followed by BatchNorm and ReLU. For all of our experiments, unless explicitly stated
otherwise, we used a stack of 4 encoder-decoder sub-networks.

Mode-n product: for a tensor X̃ ∈ RI0×I1×···×IN and a matrix M ∈ RR×In , the n-mode product of
a tensor is a tensor of size (I0 × · · · × In−1 ×R× In+1 × · · · × IN ) and can be expressed using the
unfolding of X̃ and the classical dot product as X̃ ×n M = MX̃[n] ∈ RI0×···×In−1×R×In+1×···×IN

Tensor diagrams: given the high order of the tensor manipulated, it is impractical to represent them
graphically. We instead use tensor diagrams, where tensors are represented by circles (vertices), and
their order by edges from originating from this circle. Tensor contraction over two modes is then
represented by simply linking together the two edges corresponding to these two modes. Figure 2
shows the Tucker decomposition of the 8thorder weight tensor with tensor diagrams.

2.2 FULLY-TENSORIZED ARCHITECTURE

In this section, we describe how to tensorize the stacked hourglass architecture of Newell et al.
(2016). The hourglass has a number of design parameters namely the number of (stacked) HGs,
the depth of each HG, the three signal pathways of each HG (skip, downsample and upsample),
the number of convolutional blocks, the number of input and output features for each convolutional
block and finally the spatial dimensions of each of the convolutional kernels.

Figure 2: Tensor diagram of the Tucker
form of the weight tensor W̃ .

To enable the tensorization of the whole network, we
used a modified HG architecture in which we replaced
all the residual modules with the basic block introduced
by He et al. (2016), maintaining the same number of
input and output channels throughout the network. We
made the encoder and the decoder symmetric, with 4
residual modules each. Figure 1 illustrates the modified
HG architecture.

From the network described above, we derive the
proposed Tensorized-Network (T-Net) as follows: all
weights are parametrized by a single 8th order tensor
W̃ ∈ RI0×I1×···×I7 , the modes of which correspond to
the number of HGs (I0 = #hg), the depth of each HG
(I1 = hgdepth), the three signal pathways (I2 = hgsubnet),
the number of convolutional blocks (I3 = #blocks), the number of input features (I4 = fin), the num-
ber of output features (I5 = fout), and finally the height (I6 = h) and width (I7 = w) of each of the
convolutional kernels.

Tucker form: Given the weight tensor W̃ ∈ RI0×I1×···×I7 , we can express it as a rank–
(R0, · · · , R7) Tucker tensor, composed of a low rank core G̃ ∈ RR0×R1×···×R7 along with pro-
jection factors

(
U(0), · · · ,U(7)

)
, with U(k) ∈ RRk,Ik , k ∈ (0, · · · , 7). This allows us to write the
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Figure 3: Tensor diagram of the MPS/TTrain form of the weight tensor W̃ . Note the train–like
shape from which the method takes its name, as well as the boundary conditions (R0 = R7 = 1).

weight tensor in a decomposed form as: W̃ = G̃ ×0 U
(0)×1 U

(2)× · · · ×7 U
(7) See also Fig. 2 for

a tensor diagram of the tucker form of the weight tensor.

In this work, we either initialize both the factors and the core randomly, when training from scratch,
or apply Tucker decomposition to the full weight tensor for fine-tuning.

Matrix-Product-State (MPS) form also known as tensor-train (Oseledets, 2011), the Matrix-
Product-State expresses a tensor as a series of third order tensors (the cores) and allows for es-
pecially large space-savings. In our case, given the weight tensor W̃ ∈ RI0×I1×···×I7 , we can
decompose it into a rank R0, R1, · · ·R8–MPS as a series of third order cores G̃0 ∈ RR0,I0,R1 , G̃0 ∈
RR1,I1,R2 , · · · , G̃0 ∈ RR7,I7,R8 . The boundary conditions dictate R0 = R8 = 1. In term of individ-
ual elements, we can write, for i0 ∈ [0 . . I0], i1 ∈ [0 . . I1], · · · , i7 ∈ [0 . . I7]:

W̃(i0, i1, · · · , i7) = G̃0[i0]︸ ︷︷ ︸
1×R0

× G̃1[i1]︸ ︷︷ ︸
R0×R1

× · · · × G̃7[i7]︸ ︷︷ ︸
R6×1

Parameter analysis: Considering a Tucker rank–R0, R1, · · · , R7 of the weight tensor parametriz-
ing the whole network, the corresponding number of parameters is:

NT−Net =
∏7

k=0 Rk +
∑7

k=0 Rk × Ik.

Compressing each of the Nconv convolutional layer separately (Kim et al., 2016), with a rank R4 and
R5 for the number of input and output features, respectively, we obtain a number of parameters of:

Nconv × (R4 ×R5 × I6 × I7 +R4 × I4 +R5I5), with Nconv =
∏4

k=0 Ik.

In comparison, our model, with the same ranks R4 and R5 imposed on the number of features, would
only have Nconv× (R4 ×R5 × 3× 3)+R4× I4+R5I5 parameters. In other words, our model has(∏4

k=0 Ik − 1
)
(R4 × I4 +R5I5) parameters less than a corresponding layer-wise decomposition.

Speeding up the convolutions: convolutions expressed in CP or Tucker format, can be re-
placed by a series of convolutions with smaller kernels (Lebedev et al., 2014; Kim et al.,
2016), thus allowing for large computational speedups. This also applies to our model as,
given a weight tensor W̃ ∈ RI0×I1×···×I7 , we can write, using the Tucker form, W̃ =
G̃ ×0 U(0) ×1 U(2) × · · · ×7 U(7). Each element W̃(i0, i1, i2, i3, :, :, :) corresponds to one
of the convolutional kernels. Let’s denote K̃ = W̃(i0, i1, i2, i3, :, :, :) one such kernel. By
leaving the last two dimensions untouched (U(6) = U(7) = Id) and re-arranging the terms,
we can write: K̃(s, t, j, k) =

∑R4

r4=0

∑R5

r5=0 C̃(r4, r5, j, k)U(4)(s, r3)U
(5)(s, r4) with C̃ =(

G̃ ×0 U
(0) ×1 U

(2) × · · ·×3

)
(i0, i1, i2, i3, :, :, :, :) ∈ R(I4,I5,I6,I7). This gives us an effective

way of approximating each convolution by three, smaller convolutions (Kim et al., 2016).

3 EXPERIMENTAL SETUP

The bulk of our experiments are conducted for the task of human pose estimation. We also validate
some of our conclusions by conducting experiments for a different dense prediction task, namely
facial part segmentation.

Human Pose Estimation. Following Tompson et al. (2014), throughout this work, we conduct
experiments using the standard train and validation split of one of the most challenging single pose
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Figure 4: Qualitative results produced by our method on MPII.

human pose estimation datasets, namely MPII (Andriluka et al., 2014). The dataset contains 22,000
images for training and another 3,000 for validation.

Semantic Facial Part Segmentation. We constructed the facial part segmentation dataset similarly
to (Bulat & Tzimiropoulos, 2017): for training, we used the 300W training dataset (more than 3,000
images) and for testing the whole 300W competition test set (600 images) Sagonas et al. (2013).

Implementation details We used a stacked HG architecture with the following architectural param-
eters: #hg = 4, hgdepth = 4, hgsubnet=3, #blocks = 2, fin=128, fout=128, and h = w = 3. This resulted in
a 8th-order tensor of size 4× 4× 3× 2× 128× 128× 3× 3. The network is composed of a total of
15, 830, 976 parameters (1, 675, 200 for the base convolutions and 14, 555, 776 for the weight tensor
parametrizing the convolutional blocks).

For the uncompressed baseline network, we reduce the number of its parameters by simple de-
creasing the number of channels in each residual block, varying from 128 to 64. By doing so, (as
opposed to reducing the number of stacks), we maintain all the architectural advantages offered by
the stacked HG architecture and ensure a fair comparison with the proposed tensorized network.

Training All models were trained for 110 epochs using RMSprop (Tieleman & Hinton, 2012). The
learning rate was varied from from 2.5e − 4 to 1e − 6 using a Multi-Step fixed scheduler. During
training, we randomly augment the data using: rotation(−25◦ to 25◦ for human pose and −40◦ to
40◦ for face parsing), scale distortion (0.75 to 1.25), horizontal flipping and color jittering.

All experiments were run on a single NVIDIA TITAN V GPU. All networks were implemented
using PyTorch (Paszke et al., 2017), and TensorLy (Kossaifi et al., 2018b) was used for all tensor
operations.

Metrics For the human pose estimation experiments, we report accuracy using the PCKh (Andriluka
et al., 2014). For facial part segmentation, we report segmentation accuracy using the mean accu-
racy and mIO metrics (Long et al., 2015). Finally, we measure the compression of the number of
parameters using the compression ratio = uncompressed

compressed , defined as the total number of parameters of
the uncompressed network, divided by the number of parameters of the compressed network.

4 RESULTS

This section offers an in-depth analysis of the performance and accuracy of the proposed T-Net. Our
main results are that the proposed approach: i) Outperforms the layer-wise decomposition of Kim
et al. (2016), which is the most closely related work to our method; ii) Outperforms the uncom-
pressed, original network for low compression rates; iii) Offers consistent compression ratios across
arbitrary dimensions. Finally, we further validate some of these results for the task of semantic facial
part segmentation.

All results reported are obtained by fine-tuning our networks in an end-to-end manner from a pre-
trained uncompressed original network. We were able to reach the same level of accuracy when
training from scratch, though this required training for more iterations. In contrast, we found that
when trained from scratch, the layer-wise method of Kim et al. (2016) reaches sub-par performance,
as also reported in their paper.

In order to better understand the compressibility of each mode of the weight tensor, we first investi-
gate the redundancy of each of the modes of the tensor by compressing only one of the modes at a
time. Table 1 shows the accuracy (PCKh) as well as the compression ratio obtained by compressing
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Tucker-rank Accuracy Compression
#hg hgdepth hgsubnet #blocks fin fout h w (PCKh) ratio

Original 86.99% 1.0x
3 4 3 2 128 128 3 3 87.42% 1.28x
2 4 3 2 128 128 3 3 86.95% 1.82x
1 4 3 2 128 128 3 3 86.05% 3.03x
4 3 3 2 128 128 3 3 87.71% 1.28x
4 2 3 2 128 128 3 3 87.59% 1.82x
4 1 3 2 128 128 3 3 86.89% 3.03x
4 4 2 2 128 128 3 3 87.53% 1.43x
4 4 1 2 128 128 3 3 86.19% 2.50x
4 4 3 1 128 128 3 3 82.59% 1.82x
4 4 3 2 96 96 3 3 87.43% 1.64x
4 4 3 2 64 64 3 3 86.13% 3.03x
4 4 3 2 32 32 3 3 83.10% 6.25x
4 4 3 2 128 128 2 2 87.30% 1.98x

Table 1: Human pose estimation task. Study of the redundancy of each of the modes of the
parameter tensor. We compress one dimension at a time by reducing its corresponding rank in the
Tucker-tensor. Reported accuracy is in terms of PCKh.

Method Parameters Compression ratio Accuracy
Original full, fin=fout=128 1x 86.99%
Original fin=fout=112 1.32x 86.87%
Original fin=fout=92 1.97x 85.92%
Original fin=fout=64 3.99x 84.54%

(Kim et al., 2016) Tucker–(128, 128, 2, 2) 1.42x 84.86%
(Kim et al., 2016) Tucker–(96, 96, 3, 3) 1.32x 86.85%
(Kim et al., 2016) Tucker–(64, 64, 3, 3) 2.33x 86.39%
(Kim et al., 2016) Tucker–(32, 32, 3, 3) 4.73x 85.33%
(Kim et al., 2016) Tucker–(16, 16, 3, 3) 6.91x 83.74%

T-Net [Ours] Tucker–(4, 3, 3, 2, 110, 110, 3, 3) 1.66x 87.45%
T-Net [Ours] Tucker–(4, 4, 2, 2, 110, 110, 3, 3) 1.82x 87.36%
T-Net [Ours] Tucker–(3, 3, 3, 2, 110, 110, 2, 2) 3.67x 87.09%
T-Net [Ours] Tucker–(3, 2, 3, 2, 96, 96, 3, 3) 3.38x 86.73%
T-Net [Ours] Tucker–(3, 3, 2, 2, 80, 80, 3, 3) 4.20x 86.27%
T-Net [Ours] Tucker–(2, 2, 2, 2, 96, 96, 3, 3) 5.23x 86.00%
T-Net [Ours] MPS–(1, 4, 4, 12, 24, 110, 9, 3, 1) 7.39x 85.52%

Table 2: Human pose estimation task. Comparison between our T-Net and (a) the original network
“compressed” by reducing the number of features and (b) the layer-wise decomposition method of
Kim et al. (2016). Reported accuracy is in terms of PCKh.

one of the modes, corresponding respectively to the number of HGs (#hg), the depth of each HG
(hgdepth), the three pathways of each HG (hgsubnet), the number of convolutional blocks (#blocks) and
finally,the number of input features (fin), output features (fout), height (h) and the width (w) of each
of the convolutional kernels. These results are shown along with the performance of the original un-
compressed network. We observe that by taking advantage of the redundancy at the network-level
(as opposed to (Lebedev et al., 2014; Kim et al., 2016) which compress individual layers), the pro-
posed approach is able to efficiently compress across arbitrary dimensions, for large compression
ratios while maintaining similar or even in some cases, higher accuracy than that of the original
uncompressed network.
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Figure 5: Qualitative results produced by our method on the facial part segmentation task.

Based on the insights gained from the previous experiment, we select promising configurations and
compress over multiple dimensions simultaneously. The results can be seen in Table 2 along with
(a) the performance of the original network “compressed” by just reducing the number of feature
dimensions and (b) the layer-wise decomposition method of Kim et al. (2016). We firstly observe
that by just reducing the number of feature dimensions in the original network, a significant drop
in performance can be noticed. Secondly, our method consistently outperforms (Kim et al., 2016)
across the whole spectrum of compression ratios. This can be seen by comparing the accuracy
provided for any compression ratio for (Kim et al., 2016) with the accuracy of the closest but higher
compression ratio for our method (for example, compare 2.33x for (Kim et al., 2016) with 3.67x for
our method). It can be seen that our method always achieves higher accuracy even the compression
ratio is also higher. In addition, contrary to (Kim et al., 2016) which does not seem to work well
when the size of the convolutional kernel is compressed from 3 × 3 to 2 × 2, our method is able
to compress that dimension while maintaining similar level of performance. In the same table,
we also report the performance of a variant of our method, using an MPS decomposition on the
weights rather than a Tucker one. This result shows that our method works effectively with other
decomposition methods as well. However we focused mainly on Tucker as it is the most flexible
compression method, allowing us to control the rank of each mode of the weight tensor.

Finally, we select two of our best performing models and retrain them on semantic facial part seg-
mentation. Our method offers significant compression ratios (up to 6x) with virtually no loss in
accuracy (see Table 3). These results further confirm that our method is task-independent.

Method Parameters Compression ratio mIO mAcc
Uncompressed full, fin=fout=128 1x 76.02% 97.31%

Tucker rank–(3, 2, 3, 2, 96, 96, 3, 3) 3.38x 76.01% 97.29%
Tucker rank–(2, 2, 2, 2, 64, 64, 3, 3) 6.94x 75.57% 97.01%

Table 3: Segmentation task. Comparison between our T-Net and a network with the same architec-
ture and the same number of features as the compressed one. Our approach is capable of retaining a
high accuracy even at high compression rates (up to 7x).

5 CONCLUSIONS

We proposed a novel method to jointly capture the full structure of a new Fully Convolutional
Network by parametrizing it with a single, high-order tensor. The modes of this tensor represent
each of the architectural design parameters of the network (e.g. number of convolutional blocks,
depth, number of stacks, input features, etc). This parametrization allows to jointly regularize the
whole network and drastically reduce the number of parameters by imposing a low-rank structure
on that tensor. Further, our network can be trained in an end-to-end manner not only during fine-
tuning but also from scratch which has been shown to be challenging in prior work. We showed
that our approach can achieve superior performance with small compression rates, and attain high
compression rates with negligible drop in accuracy, on both the challenging task of human pose
estimation and face segmentation.
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