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ABSTRACT

The physical design of a robot and the policy that controls its motion are inher-
ently coupled. However, existing approaches largely ignore this coupling, instead
choosing to alternate between separate design and control phases, which requires
expert intuition throughout and risks convergence to suboptimal designs. In this
work, we propose a method that jointly optimizes over the physical design of a
robot and the corresponding control policy in a model-free fashion, without any
need for expert supervision. Given an arbitrary robot morphology, our method
maintains a distribution over the design parameters and uses reinforcement learn-
ing to train a neural network controller. Throughout training, we refine the robot
distribution to maximize the expected reward. This results in an assignment to the
robot parameters and neural network policy that are jointly optimal. We evaluate
our approach in the context of legged locomotion, and demonstrate that it dis-
covers novel robot designs and walking gaits for several different morphologies,
achieving performance comparable to or better than that of hand-crafted designs.

1 INTRODUCTION

An agent’s ability to navigate through and interact with its environment depends not just on its skill
at planning and controlling its motion, but also on its physical design. Different physical designs
are inherently better suited to different tasks and environments. By making appropriate choices
during fabrication, mechanical elements can be designed to improve robustness to non-idealities
such as errors in perception, delays in actuation, etc., and indeed, make control problem an easier
one to solve. At the same time, robots that take different forms may find completely different
control strategies to be optimal to complete the same task. Therefore, the physical and computational
design of an agent are inherently coupled, and must ideally be jointly optimized if the robot is to
successfully complete a task in a particular environment.

Consider the development of a legged robot for locomotion. Variations in physical design will
require changes to the joint torques in order to preserve a particular locomotion behavior (e.g., a
heavier torso requires greater torque at the ankle), and will likely result in completely different
walking gaits, even when the morphology is preserved. In fact, some changes to design may render
locomotion impossible for the target operating environment (e.g., a robot with long feet may be
unable to locomote up an incline). Meanwhile, careful choice of bipedal design enables passive
walking (McGeer, 1990; Goswami et al., 1998; Collins et al., 2001). It is therefore beneficial to
not simply consider the robot’s design or gait to be fixed, but to optimize both jointly for the target
environment and task. Similar co-design can be beneficial in other settings—for example for the
control policy and physical characteristics of digits in robotic grippers for grasping.

While a robot’s physical design and the corresponding control policy are inherently coupled, most
existing methods ignore this coupling, instead choosing to alternate between separate design and
control phases. Existing approaches that jointly reason over design and control (Digumarti et al.,
2014; Ha et al., 2017; Spielberg et al., 2017) assume knowledge of an accurate model of the robot
dynamics and require expert supervision (e.g., to provide a suitable initial design and guide the
optimization process). However, these restrictive assumptions limits their applicability to a handful
of specific settings, and often yield solutions heavily influenced by expert intuition.

In this work, we seek a general approach—one that can optimize a robot’s physical characteristics
jointly with controllers of a desired complexity (Fig. 1), that can be applied to general tasks in some
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Figure 1: Our algorithm learns a robot’s physical design jointly with the control policy. Here we
show the learned designs evolving over time for the Hopper (top left), the Walker2d (top right) and
the Ant (bottom), each with the default Roboschool design for comparison. Scale is fixed for each
robot. Note that these designs correspond to modes of the distribution over robot designs that our
algorithm maintains during training.

given environment, and that can explore the joint search space of physical design and computational
control in a purely data-driven way, without a model of the robot dynamics and independent of the
biases of expert intuition. We develop this approach in the context of determining the physical pa-
rameters of an articulated agent—the lengths and thicknesses of each limbs in a given morphology—
through joint training with a neural network for control, with the objective of achieving locomotion.
Our method maintains a distribution over these physical parameters, and simultaneously trains the
parameters of this distribution with those of a neural network controller, using deep reinforcement
learning. In this way, we pursue a design distribution and control policy that are jointly optimal for
the given task and environment. Experimental results show that starting from random initializations,
our approach is able to find novel designs and walking gaits that match or exceed the performance
of manually designed agents. To the best of our knowledge, our method is the first to successfully
carry out such a joint optimization of design and control in a completely model-free manner.

2 RELATED WORK

Attention has been paid recently to the problem of jointly optimizing the parameters that specify a
robot’s design and motion (e.g., gaits) or control. Early work in this area takes an evolutionary ap-
proach to optimizing a robot’s design and controller, typically parameterized as a neural network, for
virtual agents (Sims, 1994; Paul & Bongard, 2001; Agrawal et al., 2013) and physical robots (Lip-
son & Pollack, 2000; Bongard, 2011). Particularly relevant to our approach is the work of Ha et al.
(2017), who relate design and motion parameters via a set of implicit functions that express robot
dynamics, desired trajectories, and actuation limits. These functions encode a manifold that is then
linearized to model the relationship between design and motion via the implicit function theorem.
The method then solves for the desired parameters in a local fashion via constraint-based optimiza-
tion. Similarly, Spielberg et al. (2017) describe an approach that jointly reasons over physical design
and motion parameters for robots with articulated degrees of freedom (e.g., legged robots). They
formulate the problem in the framework of trajectory optimization by incorporating parameters in-
volved in the design of articulated robots, including dimensions, masses, mass distribution, and
moments of inertia, together with the contact force and torque variables typically associated with
trajectory optimization. They use weighted actuation cost as the objective, subject to a regulariza-
tion penalty on parameters. Their method is guaranteed to find a feasible design so long as the
problem is initialized within a small neighborhood of a feasible solution. Unlike our approach, their
method requires that the user provide an estimate of the robot configuration at each time step, as well
as an accurate analytic model of constraint dynamics (e.g., foot contact), which is computationally
expensive to enforce. Geijtenbeek et al. (2013) propose a derivative-free strategy that optimizes over
muscle routing and muscle-based control for simulated bipeds to realize a design that incorporates
biomechanical constraints. Meanwhile, Digumarti et al. (2014) describe an evolutionary method
that jointly reasons over design and motion parameters for legged robots, while also tuning the pa-
rameters of a robust controller that tracks these motions. Their method is limited to biologically
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inspired quadrupedal foothold patterns, and does not account for contact dynamics. In contrast, our
approach applies to arbitrary morphologies and does not require that we model contact dynamics.

While the focus on simultaneous optimization over robot design and motion parameters is relatively
new, there is a long history of research focused on the related problem of co-design of physical
structure and control (Reyer & Papalambros, 2002; Ravichandran et al., 2006). Park & Asada (1994)
jointly optimize the link geometry of a high-speed robot arm along with the parameters of a PD joint
controller. These methods often rely upon access to an accurate model of the robot dynamics in
order to design the controller. In order to reduce the dependence upon a detailed analytical model,
Pil & Asada (1996) use on-robot experiments to refine their model as part of the iterative design
process. More recently, Villarreal-Cervantes et al. (2013) allow for some degree of uncertainty in
the model by including the sensitivity of the design and control parameters to model uncertainty
along with the task-specific optimization objectives. However, existing methods still rely upon
access to an analytical model of the robot dynamics and are typically limited to simple (e.g., linear)
control designs. Our method assumes only that the controller can be modeled via a convolutional
neural network, and can thereby learn complex, highly nonlinear control policies with no a priori
knowledge of the robot dynamics.

Far more attention has been paid to the individual problem of task-driven optimization of robot
motion and control. Given an arbitrary robot design chosen by novice users, Megaro et al. (2015)
describe an interactive design framework that solves for a realizable walking gait that results in
stable locomotion. Similarly, Mordatch et al. (2012) synthesize emergent behaviors (motion) for
arbitrary morphologies and tasks from high-level specifications, by jointly optimizing over contact
and motion. Mordatch et al. (2015) build upon this work by training recurrent neural networks to
serve as feedback controllers capable of producing complex, stable behaviors for a variety of dy-
namical systems. Their method interleaves supervised learning with trajectory optimization, and
incorporates noise to improve generalizability. Meanwhile, there is a large body of literature that
formulates motion synthesis as a trajectory optimization problem. This approach has proven effec-
tive at respecting contact constraints (e.g., between the foot and ground), which make controlling
dynamic motion particularly challenging (Dai & Tedrake, 2016; Posa et al., 2016; Griffin & Grizzle,
2016). These approaches have been shown to generate sophisticated behaviors for complex robot
designs (e.g., humanoids) (Tassa et al., 2012), and for robots of arbitrary morphologies using only
a high-level specification of the robot’s shape, gait, and task (Wampler et al., 2013). Related, a
number of methods interleave trajectory optimization and supervised learning with neural network
regression (Levine & Abbeel, 2014; Levine & Koltun, 2014; Mordatch & Todorov, 2014; Mordatch
et al., 2015). Unlike our method, the use of trajectory optimization makes these approaches reliant
upon knowledge of the model.

A great deal of attention of-late has focused on the problem of learning complex control policies
directly from low-level sensory input, without any knowledge of the system dynamics. Methods that
have proven particularly effective combine neural networks that learn representations of the high-
dimensional raw sensor input with deep reinforcement learning (Riedmiller, 2005; Mnih et al., 2013;
2015; Schulman et al., 2015a). While much of the work in this area focuses on low-dimensional,
discrete action spaces, several methods have been recently proposed that learn continuous control
policies through deep reinforcement learning. These techniques have been applied to control simple,
simulated robots (Wawrzyński, 2009; Wawrzyński & Tanwani, 2013; Watter et al., 2015; Lillicrap
et al., 2015), perform robot manipulation (Levine et al., 2016a;b; Gu et al., 2017), and control legged
robots (Schulman et al., 2015b; Peng et al., 2016).

Black-box optimization (Schmidhuber et al., 2007; Risi & Togelius, 2017) is an alternative to using
reinforcement learning to training the control policy. These approaches have the advantage that they
do not involve backpropagating gradients, are insensitive to reward sparsity, and can handle long
time horizons. While black-box optimization strategies have traditionally been thought of as ill-
suited to difficult reinforcement learning problems, Salimans et al. (2017) recently showed that they
perform similarly to state-of-the-art RL methods on difficult continuous control problems, including
those that involve locomotion. Closely related is the policy-gradient method of Sehnke et al. (2010),
who define the policy as a distribution over the parameters of a controller, which they then sample
over. This results in gradient estimates that are far less noisy than is typical of policy gradient
algorithms. These approaches are similar to the way in which we learn the robot design, which we
formulate as a Gaussian mixture model over design parameters. Indeed, the two referenced methods
yield the same gradient estimate for Gaussian parameter distributions (Salimans et al., 2017).
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Meanwhile, much work has focused on the problem of determining robot designs that meet the
requirements of a particular task. Given a user demonstration of the desired behaviors, Coros et al.
(2013) learn optimum kinematic linkages that are capable of reproducing these motions. Mehta
et al. (2014) synthesize electromechanical robot designs in a compositional fashion based upon a
complete user-specified structural specification of the robot. Mehta et al. (2016) build upon this
work, allowing the user to specify functional objectives via structured English, which is parsed to
a formal specification using linear temporal logic. Censi (2017) describes a theory for co-design
that includes the ability to select discrete robot parts according to functional constraints, but do not
reason over geometry or motion.

Related to our approach is recent work that jointly optimizes sensor design and inference algorithms
for perception systems. Chakrabarti (2016) considers the problem of jointly learning a camera sen-
sor’s multiplexing pattern along with reconstruction methods for imaging tasks. They model infer-
ence as a neural network together and use stochastic gradient descent to backpropagate the loss to
a neural layer representation of the multiplexing pattern. Related, Schaff et al. (2017) jointly learn
design and inference for beacon-based localization. They encode beacon allocation (spatially and
across transmission channels) as a differential neural layer that interfaces with a neural network for
inference. Joint optimization then follows from standard techniques for training neural networks.

3 APPROACH

In this section, we begin by describing the standard reinforcement learning framework for training
agent policies, and then describe how we extend this to also learn the physical design of the agent.

3.1 REINFORCEMENT LEARNING BACKGROUND

In the standard reinforcement learning setting, an agent interacts with its environment, usually a
Markov Decision Process, over a number of discrete timesteps. At each time step t, the agent
receives a state st ∈ S and takes action at ∈ A according to a policy π : S → A. Then, the agent
receives a scalar reward rt and the next state st+1 from the environment. This process continues
until a terminal state is reached. The goal of reinforcement learning is to then find a policy π∗ that
maximizes the expected return E[Rt], whereRt =

∑∞
i=0 γ

irt+i and γ ∈ [0, 1) is a discount factor.

Policy gradient methods are a class of algorithms often used to optimize reinforcement learning
problems, due to their ability to optimize cumulative reward and the ease with which the can be used
with neural networks and other nonlinear function approximators. Consequently, they are com-
monly used for reinforcement learning problems that involve complex, continuous action spaces.
Policy gradient methods directly parameterize a stochastic policy πθ(at|st) and perform stochastic
gradient ascent on the expected return. “Vanilla” policy gradient methods compute an estimate of
the gradient ∇θE[Rt] using a sample-based mean computed over ∇θ log πθ(at|st)Rt (Williams,
1992), which yields an unbiased gradient estimate (Sutton et al., 2000). While the variance in the
resulting estimate decreases with the number of samples, sampling is computationally expensive.
Another way to reduce variance while maintaining an unbiased estimate is to estimate the gradient
by comparing the reward to a “baseline” reward b(st).

These methods are effective but can be unstable, especially when used for deep reinforcement learn-
ing. Small changes to the policy parameters may cause large changes in the distribution of visited
states. Several methods have been proposed to mitigate these effects. Among them, Schulman et al.
(2015a) introduce Trust Region Policy Optimization (TRPO), which imposes a constraint on the KL-
divergence between policies before and after an update. Recently, Schulman et al. (2017) proposed
proximal policy optimization (PPO), a first-order class of methods similar to TRPO. PPO alternates
between sampling data through interaction with the environment and optimizing the objective

Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε))

]
, (1)

where rt(θ) = πθ(at|st)
πθold (at|st)

and Êt represents an empirical average over a finite sample set. This
objective seeks to maximize the expected return while encouraging a small step in policy space. The
clipping within the objective removes any incentive for moving rt(θ) outside the interval [1−ε, 1+ε].
The net effect of this objective is a simple, robust policy gradient algorithm that attains or matches
state-of-the-art results on a wide array of tasks (Schulman et al., 2017).

4



Under review as a conference paper at ICLR 2018

Algorithm 1 Joint Optimization
Initialize πθ(a|s, r), pφ(r)
while True do

for i ∈ [1..np] do
Sample r1, ..., rn from pφ
Collect rollouts with each design
Update θ to maximize PPO’s surrogate objective.

end for
for i ∈ [1..nr] do

Sample r1, ..., rm from pφ
Compute returnsR1, ...,Rm.
Update φ to maximize PPO’s surrogate objective.

end for
end while

3.2 JOINT OPTIMIZATION OF DESIGN AND CONTROL

We extend the standard reinforcement learning formulation by considering the space of possible
robot designs Ω. Specifically, we assume that for every design E ∈ Ω, we can define common
state and action spaces S and A, reward function r(s, a), and initial state distribution p0(s), that are
meaningful to all designs. The designs differ only in the transition dynamics they induce pE(s′|s, a)
and share a common action space A—to achieve this, we assume a common morphology for all
possible designs.

Our goal then is to find the optimal design E∗ and policy π∗E∗ pair that maximizes the expected value
of a given reward function. However, this is a non-linear, non-convex optimization problem over the
spaces of all possible designs and all possible policies. Solving it exactly would require enumerat-
ing all possible designs (possibly through discretization of the design space), learning policies for
each, and comparing the resulting expected rewards. This is computationally infeasible for all but
the simplest of cases. Instead, we develop a gradient-based approach to solving this optimization
problem with the following key components: (1) we maintain a multi-modal distribution over the
space of physical designs and update this distribution using policy gradient methods in parameter
space, similar to Sehnke et al. (2010) and Salimans et al. (2017); and (2) we train a single controller
to act on all sampled designs during training, providing this controller with the design parameters of
the specific sample it is controlling. We find that the multi-modal stochastic parameterization of the
design space allows our method to explore the space more thoroughly (where a uni-modal Gaussian
distribution would frequently get trapped in local minima). Moreover, a common controller makes
optimization tractable, allowing efficient evaluation of unseen designs. We additionally benefit from
learning common strategies across diverse designs, while still adapting different policies to different
parts of the design space given the sample parameters as input. Together, these components enable
efficient joint exploration of the design and policy spaces.

Formally, let p(r;φ) denote the distribution over designs, and π(at|st, r; θ) a stochastic control
policy parameterized by φ and θ respectively. In our experiments, we use a neural network to model
the control policy π, and a Gaussian mixture model as the parametric form of the distribution p(r;φ).
Our goal is then to solve the following optimization problem:

φ∗, θ∗ = arg max
φ,θ

Er,t [Rt] , (2)

where Er,t[·] is the expectation over robots and trajectories those robots induce.

We use stochastic gradient-based updates to optimize Eqn. 2. Our method (Algorithm 3.2) alternates
between updating the parameters of the policy and design distributions, θ and φ, respectively. We
empirically find this to yield convergence to better solutions in a reasonable number of iterations
compared to performing simultaneous updates. We optimize the policy parameters θ using Proximal
Policy Optimization. However, instead of collecting data from a single design, we sample a design r
after a fixed number T of timesteps according to the distribution p(r;φ). After n iterations of PPO,
we freeze the policy parameters and proceed to optimize the parameters of the design distribution.
Without knowledge of the model, we optimize the design parameters φ via policy gradient over
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Figure 2: From left to right: the default Hopper, Walker2d, and Ant robots. The Hopper and
Walker2d are constrained to walk in a line, while the Ant can walk anywhere in the plane.

parameter space, similar to Sehnke et al. (2010). This is equivalent to black-box optimization
methods that have proven effective for complex learning problems (Salimans et al., 2017). We
samplem different designs and compute their returns for a single episode acting under policy π(·; θ).
We then use this data to shift the design distribution p(·;φ) in a direction maximizing expected
return. These iterations are repeated until convergence.

4 RESULTS

We validate our approach with three commonly used robots provided in OpenAI’s Ro-
boschool (Schulman et al., 2017). Environments in Roboschool are built on top of Bullet Physics,
a popular open-source physics engine. In a series of locomotion experiments, we show that our
approach not only discovers novel robot designs and gaits, but also outperforms two out of three of
the hand-designed robots trained on the same task and yields performance comparable to the third.

4.1 EXPERIMENT DETAILS

We evaluate our approach on three legged locomotion tasks within Roboschool: RoboschoolHopper,
RoboschoolWalker2d, and RoboschoolAnt (note that we subsequently drop the Roboschool prefix
for brevity). Figure 2 depicts the default Roboschool design for each robot. These environments
describe a locomotion task that has the robots moving along the positive x-axis (to the right in the
figures) towards a distant goal. The reward function defined in these environments is a weighted
sum of rewards for forward progress and staying upright, and penalties for applying torques and
for joints that reach their rotational limits. The episode ends when the robot falls over or reaches a
maximum number of timesteps.

We learn robot designs using the morphologies specified by the standard Roboschool designs. For
each morphology, we parameterize the robot in terms of the length and radius (e.g., mass) of each
link (or just the radius in the case of the sphere for the ant body). We impose symmetry, and share
parameters across each leg for the Walker2d and Ant designs. This parameterization permits a wide
variety of robots of different shapes and sizes, some of which are better suited to the locomotion
objective than others, and some designs that do not permit a control policy that results in locomotion.

We model the control policy π(at|st, E ; θp) as a feed forward neural network consisting of three
fully-connected layers with 64 units and tanh activation functions. A final layer maps the output
to the robot action space. With the exception of the last robot-specific layer, the architecture is the
same for all experiments. Meanwhile, we represent the distribution over the parameterized robot
design p(·; θr) using a Gaussian mixture model with four mixture components (each with a diag-
onal covariance matrix over the different parameters). We initialize the means of each component
randomly within a wide range, and initialize the variances in order to span the range of each parame-
ter. We find that our approach maintains high variance distributions during early iterations—thereby
continuing exploration of the design space—before committing to a chosen design. The appendix
provides further details regardng the evolution of these distributions.
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Figure 3: Training curves that show the evolution of reward across training iterations for the Hopper,
Walker2d, and Ant environments over eight different random seeds. The black dashed line corre-
sponds to the highest achievable performance of the corresponding baseline robot. In other figures,
we display the best-performing checkpoint of each run. Therefore, we make each training curve
transparent after it stops improving.

We train our method with eight threads of Proximal Policy Optimization for a total of 300M environ-
ment timesteps across all threads. We use the publicly available implementation of PPO provided
in OpenAI Baselines (Hesse et al., 2017). We alternate between 50 policy PPO iterations and 2
design iterations, finding this ratio to yield convergence to good solutions. We set this and the other
hyper-parameters on the Hopper and used the same settings for all experiments.

4.2 EXPERIMENTS

We evaluate the performance of our approach to joint optimization over robot design and control
on the Hopper, Walker2d, and Ant robots, and compare against a policy trained for the standard
Roboschool design. We evaluate the consistency and robustness of our approach relative to the
initial robot parameter distribution using several different random seeds. For each robot morphology,
we find that our method learns robot designs and the corresponding control policy that are either
comparable (Walker2d) or exceed the performance (Hopper and Ant) achievable using the default
designs (Fig. 3). We also see that our method achieves these levels of performance by discovering
unique robot designs (Fig. 1) together with novel walking gaits (Fig. 4) that can not be achieved with
the default designs. Note that our method was able to learn these designs and control policies from
a random initialization, without access to a dynamics model or any expert supervision.

Our method learns a joint design and controller for the Hopper that outperforms the baseline by as
much as 50%. Our learned robot exploits the small size of the foot to achieve faster, more precise
walking gaits. Meanwhile, the longer torso of the learned robot improves stability, allowing it to
maintain balance while locomoting at a faster pace. We found this behavior to be consistent across
several different Hopper experiments, with the method converging to designs with a small foot and
long, thin torso. In the appendix, we explore the stability of this design with respect to variations
in the environment using the coefficient of friction as an example, and find the improvement to
be consistent. For the ant, our optimization yields a physical design that is significantly different
from the default design (Fig. 2). Consequently, the learned Ant drastically outperforms the baseline,
improving reward by up to 116%. Our method learns a design with a small, lightweight body and
extremely long legs. The long legs enable the ant to apply large torque at contact, allowing it to
move at a fast pace.

Our framework learned different design-control pairs for the Walker2d that perform similarly to the
default design. Across several different experiments, we see two distinct, successful designs and
walking gaits. Interestingly, neither agent walks primarily on its feet. The first design has small,
thick legs and long feet. The controller is then able to exploit the thick middle leg link, which
protrudes slightly past the foot, to push off the ground. The long foot then provides additional
balance. The second design is similar in geometry to the baseline Walker2d, but moves in a very
different way. By lowering the knee joint and lengthening the foot, the Walker2d is able to efficiently
balance on its knees and toes. This low stance allows the Walker2d to fully extend its leg backwards,
creating a long, powerful stride, similar to that of a sprinter using starting blocks.
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Figure 4: Here, we compare locomotion of default and learned robots, visualizing both their physical
design and corresponding learned gaits. We pick the best results for Hopper and Ant, and two of the
best results for Walker2d (due to diversity in gaits). Note that for each robot type, we show a blend
of a fixed number of frames in the same time interval, allowing direct comparison between the speed
with which different designs are able to locomote.

5 CONCLUSION

We proposed what is, to the best of our knowledge, the first model-free algorithm that jointly op-
timizes over the physical design of a robot and the corresponding control policy, without any need
for expert supervision. Given an arbitrary morphology, our robot maintains a distribution over the
robot design parameters and learns these parameters together with a neural network controller using
policy gradient-based reinforcement learning. This results in an assignment to the policy over robot
parameters and the control policy that are jointly optimal. We evaluated our approach on a series of
different legged robot morphologies, demonstrating that it results in novel robot designs and walking
gaits, achieving performance that either matches or exceeds that of manually defined designs.

Our findings suggest several avenues for future work. The most direct is extending the current
approach to find optimized designs for uneven terrain, the presence of obstacles, changes in slope,
variations in friction, etc. We are also interested in extending our framework to relax the assumption
that the morphology is pre-defined. Finally, we are investigating applications to different types
of agents and design spaces beyond legged robots (e.g., end-effectors), and exploring appropriate
stochastic parameterization for such designs.
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control of diverse complex characters with neural networks. In Advances in Neural Information
Processing Systems (NIPS), 2015.

Jahng-Hyon Park and Haruhiko Asada. Concurrent design optimization of mechanical structure and
control for high speed robots. J. Dynamic Systems, Measurement, and Control, 116(3):344–356,
1994.

Chandana Paul and Josh C Bongard. The road less travelled: Morphology in the optimization of
biped robot locomotion. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS),
volume 1, pp. 226–232. IEEE, 2001.

Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. Terrain-adaptive locomotion skills using
deep reinforcement learning. Trans. on Graphics, 35(4):81, 2016.

Anton C. Pil and Harry H. Asada. Integrated structure/control design of mechatronic systems using
a recursive experimental optimization method. Trans. on Mechatronics, 1(3):191–203, 1996.

Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimization and stabilization of trajectories
for constrained dynamical systems. In Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA),
2016.

Thambirajah Ravichandran, David Wang, and Glenn Heppler. Simultaneous plant-controller design
optimization of a two-link planar manipulator. Mechatronics, 16(3):233–242, 2006.

Julie A. Reyer and Panos Y. Papalambros. Combined optimal design and control with application to
an electric dc motor. J. of Mechanical Design, 124(2):183–191, 2002.

Martin Riedmiller. Neural fitted Q iteration-first experiences with a data efficient neural reinforce-
ment learning method. In Proc. European Conf. on Machine Learning (ECML), volume 3720.
Springer, 2005.

Sebastian Risi and Julian Togelius. Neuroevolution in games: State of the art and open challenges.
IEEE Trans. on Computational Intelligence and AI in Games, 9(1):25–41, 2017.

10



Under review as a conference paper at ICLR 2018

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alterna-
tive to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R. Walter. Jointly optimizing place-
ment and inference for beacon-based localization. In Proc. IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems (IROS), September 2017.

Jürgen Schmidhuber, Daan Wierstra, Matteo Gagliolo, and Faustino Gomez. Training recurrent
networks by evolino. Neural Computation, 19(3):757–779, 2007.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. arXiv preprint arXiv:1502.05477, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen
Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

Karl Sims. Evolving virtual creatures. In Proc. Int’l Conf. on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 15–22, 1994.

Andrew Spielberg, Brandon Araki, Cynthia Sung, Russ Tedrake, and Daniela Rus. Functional
co-optimization of articulated robots. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2017.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2000.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and
Systems (IROS), 2012.

Miguel G. Villarreal-Cervantes, Carlos A. Cruz-Villar, Jaime Alvarez-Gallegos, and Edgar A.
Portilla-Flores. Robust structure-control design approach for mechatronic systems. Trans. on
Mechatronics, 18(5):1592–1601, 2013.
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6 APPENDIX

The following provides further evaluation of our framework, including the behavior of the design
distribution during training and the robustness of the learned designs to environment variations.

6.1 A - EVOLUTION OF GMM THROUGHOUT TRAINING

To provide insight into the training process of our algorithm, we evaluate the evolution of the Gaus-
sian mixture model distribution throughout training of the best performing Hopper experiment. We
initialize each component of the mixture model with random means and a diagonal covariance ma-
trix chosen to cover the parameter space. The initial mixture weights are uniform. As shown in
Figure 5 (left), roughly one third of the way through training, our algorithm converges to the most
successful component. Additionally, we find that modes generally do not collapse (Figure 5 (right)).
We find this behavior to be consistent across random seeds and different robots.

Figure 5: Plots of (left) the entropy of the mixture weights and (right) the marginal variance of each
parameter throughout training. The curves are normalized such that all initial variances are one.

6.2 B - ROBUSTNESS OF LEARNED DESIGNS

It is often desirable for a robot to be able to operate in a variety of environments. In this section,
we consider the robustness of a learned design to changes in friction. We conducted experiments
on the Hopper in which we first learned the design and controller for one friction setting (0.8). We
finetuned the controller in environments with different friction settings, while leaving the design
fixed. We find the learned design to be reasonably robust with variability comparable to controllers
finetuned for the default hand-crafted design (Fig. 6). Additionally, the learned design outperforms
the hand-crafted one across the full range of friction values (although, for very low friction values,
both designs essentially were unable to learn a successful gait).

Note that our framework can incorporate this goal of generalization by simply sampling from a
diverse set of environments during training. But at the same time, it may be useful in some applica-
tions to seek out solutions that are specifically adapted to a relatively narrower set of environments,
gaining better performance within this set at the cost of more general performance.
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Figure 6: A visualization of accumulated reward for different friction values. The controllers and
learned design were trained in an environment with a friction value of 0.8. We finetuned the con-
trollers (but not the designs) for both the learned and hand-crafted designs for 10M timesteps for
each friction value. Rewards are reported as an average over 100 episodes.
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